xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	spin_lock(&dmabuf->name_lock);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	spin_unlock(&dmabuf->name_lock);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static void dma_buf_release(struct dentry *dentry)
58 {
59 	struct dma_buf *dmabuf;
60 
61 	dmabuf = dentry->d_fsdata;
62 	if (unlikely(!dmabuf))
63 		return;
64 
65 	BUG_ON(dmabuf->vmapping_counter);
66 
67 	/*
68 	 * Any fences that a dma-buf poll can wait on should be signaled
69 	 * before releasing dma-buf. This is the responsibility of each
70 	 * driver that uses the reservation objects.
71 	 *
72 	 * If you hit this BUG() it means someone dropped their ref to the
73 	 * dma-buf while still having pending operation to the buffer.
74 	 */
75 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
76 
77 	dmabuf->ops->release(dmabuf);
78 
79 	mutex_lock(&db_list.lock);
80 	list_del(&dmabuf->list_node);
81 	mutex_unlock(&db_list.lock);
82 
83 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
84 		dma_resv_fini(dmabuf->resv);
85 
86 	module_put(dmabuf->owner);
87 	kfree(dmabuf->name);
88 	kfree(dmabuf);
89 }
90 
91 static const struct dentry_operations dma_buf_dentry_ops = {
92 	.d_dname = dmabuffs_dname,
93 	.d_release = dma_buf_release,
94 };
95 
96 static struct vfsmount *dma_buf_mnt;
97 
98 static int dma_buf_fs_init_context(struct fs_context *fc)
99 {
100 	struct pseudo_fs_context *ctx;
101 
102 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
103 	if (!ctx)
104 		return -ENOMEM;
105 	ctx->dops = &dma_buf_dentry_ops;
106 	return 0;
107 }
108 
109 static struct file_system_type dma_buf_fs_type = {
110 	.name = "dmabuf",
111 	.init_fs_context = dma_buf_fs_init_context,
112 	.kill_sb = kill_anon_super,
113 };
114 
115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
116 {
117 	struct dma_buf *dmabuf;
118 
119 	if (!is_dma_buf_file(file))
120 		return -EINVAL;
121 
122 	dmabuf = file->private_data;
123 
124 	/* check if buffer supports mmap */
125 	if (!dmabuf->ops->mmap)
126 		return -EINVAL;
127 
128 	/* check for overflowing the buffer's size */
129 	if (vma->vm_pgoff + vma_pages(vma) >
130 	    dmabuf->size >> PAGE_SHIFT)
131 		return -EINVAL;
132 
133 	return dmabuf->ops->mmap(dmabuf, vma);
134 }
135 
136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
137 {
138 	struct dma_buf *dmabuf;
139 	loff_t base;
140 
141 	if (!is_dma_buf_file(file))
142 		return -EBADF;
143 
144 	dmabuf = file->private_data;
145 
146 	/* only support discovering the end of the buffer,
147 	   but also allow SEEK_SET to maintain the idiomatic
148 	   SEEK_END(0), SEEK_CUR(0) pattern */
149 	if (whence == SEEK_END)
150 		base = dmabuf->size;
151 	else if (whence == SEEK_SET)
152 		base = 0;
153 	else
154 		return -EINVAL;
155 
156 	if (offset != 0)
157 		return -EINVAL;
158 
159 	return base + offset;
160 }
161 
162 /**
163  * DOC: implicit fence polling
164  *
165  * To support cross-device and cross-driver synchronization of buffer access
166  * implicit fences (represented internally in the kernel with &struct dma_fence)
167  * can be attached to a &dma_buf. The glue for that and a few related things are
168  * provided in the &dma_resv structure.
169  *
170  * Userspace can query the state of these implicitly tracked fences using poll()
171  * and related system calls:
172  *
173  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
174  *   most recent write or exclusive fence.
175  *
176  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
177  *   all attached fences, shared and exclusive ones.
178  *
179  * Note that this only signals the completion of the respective fences, i.e. the
180  * DMA transfers are complete. Cache flushing and any other necessary
181  * preparations before CPU access can begin still need to happen.
182  */
183 
184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
185 {
186 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dcb->poll->lock, flags);
190 	wake_up_locked_poll(dcb->poll, dcb->active);
191 	dcb->active = 0;
192 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
193 }
194 
195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
196 {
197 	struct dma_buf *dmabuf;
198 	struct dma_resv *resv;
199 	struct dma_resv_list *fobj;
200 	struct dma_fence *fence_excl;
201 	__poll_t events;
202 	unsigned shared_count, seq;
203 
204 	dmabuf = file->private_data;
205 	if (!dmabuf || !dmabuf->resv)
206 		return EPOLLERR;
207 
208 	resv = dmabuf->resv;
209 
210 	poll_wait(file, &dmabuf->poll, poll);
211 
212 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
213 	if (!events)
214 		return 0;
215 
216 retry:
217 	seq = read_seqcount_begin(&resv->seq);
218 	rcu_read_lock();
219 
220 	fobj = rcu_dereference(resv->fence);
221 	if (fobj)
222 		shared_count = fobj->shared_count;
223 	else
224 		shared_count = 0;
225 	fence_excl = rcu_dereference(resv->fence_excl);
226 	if (read_seqcount_retry(&resv->seq, seq)) {
227 		rcu_read_unlock();
228 		goto retry;
229 	}
230 
231 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
232 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
233 		__poll_t pevents = EPOLLIN;
234 
235 		if (shared_count == 0)
236 			pevents |= EPOLLOUT;
237 
238 		spin_lock_irq(&dmabuf->poll.lock);
239 		if (dcb->active) {
240 			dcb->active |= pevents;
241 			events &= ~pevents;
242 		} else
243 			dcb->active = pevents;
244 		spin_unlock_irq(&dmabuf->poll.lock);
245 
246 		if (events & pevents) {
247 			if (!dma_fence_get_rcu(fence_excl)) {
248 				/* force a recheck */
249 				events &= ~pevents;
250 				dma_buf_poll_cb(NULL, &dcb->cb);
251 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
252 							   dma_buf_poll_cb)) {
253 				events &= ~pevents;
254 				dma_fence_put(fence_excl);
255 			} else {
256 				/*
257 				 * No callback queued, wake up any additional
258 				 * waiters.
259 				 */
260 				dma_fence_put(fence_excl);
261 				dma_buf_poll_cb(NULL, &dcb->cb);
262 			}
263 		}
264 	}
265 
266 	if ((events & EPOLLOUT) && shared_count > 0) {
267 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
268 		int i;
269 
270 		/* Only queue a new callback if no event has fired yet */
271 		spin_lock_irq(&dmabuf->poll.lock);
272 		if (dcb->active)
273 			events &= ~EPOLLOUT;
274 		else
275 			dcb->active = EPOLLOUT;
276 		spin_unlock_irq(&dmabuf->poll.lock);
277 
278 		if (!(events & EPOLLOUT))
279 			goto out;
280 
281 		for (i = 0; i < shared_count; ++i) {
282 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
283 
284 			if (!dma_fence_get_rcu(fence)) {
285 				/*
286 				 * fence refcount dropped to zero, this means
287 				 * that fobj has been freed
288 				 *
289 				 * call dma_buf_poll_cb and force a recheck!
290 				 */
291 				events &= ~EPOLLOUT;
292 				dma_buf_poll_cb(NULL, &dcb->cb);
293 				break;
294 			}
295 			if (!dma_fence_add_callback(fence, &dcb->cb,
296 						    dma_buf_poll_cb)) {
297 				dma_fence_put(fence);
298 				events &= ~EPOLLOUT;
299 				break;
300 			}
301 			dma_fence_put(fence);
302 		}
303 
304 		/* No callback queued, wake up any additional waiters. */
305 		if (i == shared_count)
306 			dma_buf_poll_cb(NULL, &dcb->cb);
307 	}
308 
309 out:
310 	rcu_read_unlock();
311 	return events;
312 }
313 
314 /**
315  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316  * The name of the dma-buf buffer can only be set when the dma-buf is not
317  * attached to any devices. It could theoritically support changing the
318  * name of the dma-buf if the same piece of memory is used for multiple
319  * purpose between different devices.
320  *
321  * @dmabuf: [in]     dmabuf buffer that will be renamed.
322  * @buf:    [in]     A piece of userspace memory that contains the name of
323  *                   the dma-buf.
324  *
325  * Returns 0 on success. If the dma-buf buffer is already attached to
326  * devices, return -EBUSY.
327  *
328  */
329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
330 {
331 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
332 	long ret = 0;
333 
334 	if (IS_ERR(name))
335 		return PTR_ERR(name);
336 
337 	dma_resv_lock(dmabuf->resv, NULL);
338 	if (!list_empty(&dmabuf->attachments)) {
339 		ret = -EBUSY;
340 		kfree(name);
341 		goto out_unlock;
342 	}
343 	spin_lock(&dmabuf->name_lock);
344 	kfree(dmabuf->name);
345 	dmabuf->name = name;
346 	spin_unlock(&dmabuf->name_lock);
347 
348 out_unlock:
349 	dma_resv_unlock(dmabuf->resv);
350 	return ret;
351 }
352 
353 static long dma_buf_ioctl(struct file *file,
354 			  unsigned int cmd, unsigned long arg)
355 {
356 	struct dma_buf *dmabuf;
357 	struct dma_buf_sync sync;
358 	enum dma_data_direction direction;
359 	int ret;
360 
361 	dmabuf = file->private_data;
362 
363 	switch (cmd) {
364 	case DMA_BUF_IOCTL_SYNC:
365 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
366 			return -EFAULT;
367 
368 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
369 			return -EINVAL;
370 
371 		switch (sync.flags & DMA_BUF_SYNC_RW) {
372 		case DMA_BUF_SYNC_READ:
373 			direction = DMA_FROM_DEVICE;
374 			break;
375 		case DMA_BUF_SYNC_WRITE:
376 			direction = DMA_TO_DEVICE;
377 			break;
378 		case DMA_BUF_SYNC_RW:
379 			direction = DMA_BIDIRECTIONAL;
380 			break;
381 		default:
382 			return -EINVAL;
383 		}
384 
385 		if (sync.flags & DMA_BUF_SYNC_END)
386 			ret = dma_buf_end_cpu_access(dmabuf, direction);
387 		else
388 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
389 
390 		return ret;
391 
392 	case DMA_BUF_SET_NAME_A:
393 	case DMA_BUF_SET_NAME_B:
394 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
395 
396 	default:
397 		return -ENOTTY;
398 	}
399 }
400 
401 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
402 {
403 	struct dma_buf *dmabuf = file->private_data;
404 
405 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
406 	/* Don't count the temporary reference taken inside procfs seq_show */
407 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
408 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
409 	spin_lock(&dmabuf->name_lock);
410 	if (dmabuf->name)
411 		seq_printf(m, "name:\t%s\n", dmabuf->name);
412 	spin_unlock(&dmabuf->name_lock);
413 }
414 
415 static const struct file_operations dma_buf_fops = {
416 	.mmap		= dma_buf_mmap_internal,
417 	.llseek		= dma_buf_llseek,
418 	.poll		= dma_buf_poll,
419 	.unlocked_ioctl	= dma_buf_ioctl,
420 	.compat_ioctl	= compat_ptr_ioctl,
421 	.show_fdinfo	= dma_buf_show_fdinfo,
422 };
423 
424 /*
425  * is_dma_buf_file - Check if struct file* is associated with dma_buf
426  */
427 static inline int is_dma_buf_file(struct file *file)
428 {
429 	return file->f_op == &dma_buf_fops;
430 }
431 
432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
433 {
434 	struct file *file;
435 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
436 
437 	if (IS_ERR(inode))
438 		return ERR_CAST(inode);
439 
440 	inode->i_size = dmabuf->size;
441 	inode_set_bytes(inode, dmabuf->size);
442 
443 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
444 				 flags, &dma_buf_fops);
445 	if (IS_ERR(file))
446 		goto err_alloc_file;
447 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
448 	file->private_data = dmabuf;
449 	file->f_path.dentry->d_fsdata = dmabuf;
450 
451 	return file;
452 
453 err_alloc_file:
454 	iput(inode);
455 	return file;
456 }
457 
458 /**
459  * DOC: dma buf device access
460  *
461  * For device DMA access to a shared DMA buffer the usual sequence of operations
462  * is fairly simple:
463  *
464  * 1. The exporter defines his exporter instance using
465  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467  *    as a file descriptor by calling dma_buf_fd().
468  *
469  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470  *    to share with: First the filedescriptor is converted to a &dma_buf using
471  *    dma_buf_get(). Then the buffer is attached to the device using
472  *    dma_buf_attach().
473  *
474  *    Up to this stage the exporter is still free to migrate or reallocate the
475  *    backing storage.
476  *
477  * 3. Once the buffer is attached to all devices userspace can initiate DMA
478  *    access to the shared buffer. In the kernel this is done by calling
479  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
480  *
481  * 4. Once a driver is done with a shared buffer it needs to call
482  *    dma_buf_detach() (after cleaning up any mappings) and then release the
483  *    reference acquired with dma_buf_get by calling dma_buf_put().
484  *
485  * For the detailed semantics exporters are expected to implement see
486  * &dma_buf_ops.
487  */
488 
489 /**
490  * dma_buf_export - Creates a new dma_buf, and associates an anon file
491  * with this buffer, so it can be exported.
492  * Also connect the allocator specific data and ops to the buffer.
493  * Additionally, provide a name string for exporter; useful in debugging.
494  *
495  * @exp_info:	[in]	holds all the export related information provided
496  *			by the exporter. see &struct dma_buf_export_info
497  *			for further details.
498  *
499  * Returns, on success, a newly created dma_buf object, which wraps the
500  * supplied private data and operations for dma_buf_ops. On either missing
501  * ops, or error in allocating struct dma_buf, will return negative error.
502  *
503  * For most cases the easiest way to create @exp_info is through the
504  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
505  */
506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
507 {
508 	struct dma_buf *dmabuf;
509 	struct dma_resv *resv = exp_info->resv;
510 	struct file *file;
511 	size_t alloc_size = sizeof(struct dma_buf);
512 	int ret;
513 
514 	if (!exp_info->resv)
515 		alloc_size += sizeof(struct dma_resv);
516 	else
517 		/* prevent &dma_buf[1] == dma_buf->resv */
518 		alloc_size += 1;
519 
520 	if (WARN_ON(!exp_info->priv
521 			  || !exp_info->ops
522 			  || !exp_info->ops->map_dma_buf
523 			  || !exp_info->ops->unmap_dma_buf
524 			  || !exp_info->ops->release)) {
525 		return ERR_PTR(-EINVAL);
526 	}
527 
528 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
529 		    (exp_info->ops->pin || exp_info->ops->unpin)))
530 		return ERR_PTR(-EINVAL);
531 
532 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
533 		return ERR_PTR(-EINVAL);
534 
535 	if (!try_module_get(exp_info->owner))
536 		return ERR_PTR(-ENOENT);
537 
538 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
539 	if (!dmabuf) {
540 		ret = -ENOMEM;
541 		goto err_module;
542 	}
543 
544 	dmabuf->priv = exp_info->priv;
545 	dmabuf->ops = exp_info->ops;
546 	dmabuf->size = exp_info->size;
547 	dmabuf->exp_name = exp_info->exp_name;
548 	dmabuf->owner = exp_info->owner;
549 	spin_lock_init(&dmabuf->name_lock);
550 	init_waitqueue_head(&dmabuf->poll);
551 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
552 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
553 
554 	if (!resv) {
555 		resv = (struct dma_resv *)&dmabuf[1];
556 		dma_resv_init(resv);
557 	}
558 	dmabuf->resv = resv;
559 
560 	file = dma_buf_getfile(dmabuf, exp_info->flags);
561 	if (IS_ERR(file)) {
562 		ret = PTR_ERR(file);
563 		goto err_dmabuf;
564 	}
565 
566 	file->f_mode |= FMODE_LSEEK;
567 	dmabuf->file = file;
568 
569 	mutex_init(&dmabuf->lock);
570 	INIT_LIST_HEAD(&dmabuf->attachments);
571 
572 	mutex_lock(&db_list.lock);
573 	list_add(&dmabuf->list_node, &db_list.head);
574 	mutex_unlock(&db_list.lock);
575 
576 	return dmabuf;
577 
578 err_dmabuf:
579 	kfree(dmabuf);
580 err_module:
581 	module_put(exp_info->owner);
582 	return ERR_PTR(ret);
583 }
584 EXPORT_SYMBOL_GPL(dma_buf_export);
585 
586 /**
587  * dma_buf_fd - returns a file descriptor for the given dma_buf
588  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
589  * @flags:      [in]    flags to give to fd
590  *
591  * On success, returns an associated 'fd'. Else, returns error.
592  */
593 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
594 {
595 	int fd;
596 
597 	if (!dmabuf || !dmabuf->file)
598 		return -EINVAL;
599 
600 	fd = get_unused_fd_flags(flags);
601 	if (fd < 0)
602 		return fd;
603 
604 	fd_install(fd, dmabuf->file);
605 
606 	return fd;
607 }
608 EXPORT_SYMBOL_GPL(dma_buf_fd);
609 
610 /**
611  * dma_buf_get - returns the dma_buf structure related to an fd
612  * @fd:	[in]	fd associated with the dma_buf to be returned
613  *
614  * On success, returns the dma_buf structure associated with an fd; uses
615  * file's refcounting done by fget to increase refcount. returns ERR_PTR
616  * otherwise.
617  */
618 struct dma_buf *dma_buf_get(int fd)
619 {
620 	struct file *file;
621 
622 	file = fget(fd);
623 
624 	if (!file)
625 		return ERR_PTR(-EBADF);
626 
627 	if (!is_dma_buf_file(file)) {
628 		fput(file);
629 		return ERR_PTR(-EINVAL);
630 	}
631 
632 	return file->private_data;
633 }
634 EXPORT_SYMBOL_GPL(dma_buf_get);
635 
636 /**
637  * dma_buf_put - decreases refcount of the buffer
638  * @dmabuf:	[in]	buffer to reduce refcount of
639  *
640  * Uses file's refcounting done implicitly by fput().
641  *
642  * If, as a result of this call, the refcount becomes 0, the 'release' file
643  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
644  * in turn, and frees the memory allocated for dmabuf when exported.
645  */
646 void dma_buf_put(struct dma_buf *dmabuf)
647 {
648 	if (WARN_ON(!dmabuf || !dmabuf->file))
649 		return;
650 
651 	fput(dmabuf->file);
652 }
653 EXPORT_SYMBOL_GPL(dma_buf_put);
654 
655 /**
656  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
657  * calls attach() of dma_buf_ops to allow device-specific attach functionality
658  * @dmabuf:		[in]	buffer to attach device to.
659  * @dev:		[in]	device to be attached.
660  * @importer_ops:	[in]	importer operations for the attachment
661  * @importer_priv:	[in]	importer private pointer for the attachment
662  *
663  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
664  * must be cleaned up by calling dma_buf_detach().
665  *
666  * Returns:
667  *
668  * A pointer to newly created &dma_buf_attachment on success, or a negative
669  * error code wrapped into a pointer on failure.
670  *
671  * Note that this can fail if the backing storage of @dmabuf is in a place not
672  * accessible to @dev, and cannot be moved to a more suitable place. This is
673  * indicated with the error code -EBUSY.
674  */
675 struct dma_buf_attachment *
676 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
677 		       const struct dma_buf_attach_ops *importer_ops,
678 		       void *importer_priv)
679 {
680 	struct dma_buf_attachment *attach;
681 	int ret;
682 
683 	if (WARN_ON(!dmabuf || !dev))
684 		return ERR_PTR(-EINVAL);
685 
686 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
687 		return ERR_PTR(-EINVAL);
688 
689 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
690 	if (!attach)
691 		return ERR_PTR(-ENOMEM);
692 
693 	attach->dev = dev;
694 	attach->dmabuf = dmabuf;
695 	if (importer_ops)
696 		attach->peer2peer = importer_ops->allow_peer2peer;
697 	attach->importer_ops = importer_ops;
698 	attach->importer_priv = importer_priv;
699 
700 	if (dmabuf->ops->attach) {
701 		ret = dmabuf->ops->attach(dmabuf, attach);
702 		if (ret)
703 			goto err_attach;
704 	}
705 	dma_resv_lock(dmabuf->resv, NULL);
706 	list_add(&attach->node, &dmabuf->attachments);
707 	dma_resv_unlock(dmabuf->resv);
708 
709 	/* When either the importer or the exporter can't handle dynamic
710 	 * mappings we cache the mapping here to avoid issues with the
711 	 * reservation object lock.
712 	 */
713 	if (dma_buf_attachment_is_dynamic(attach) !=
714 	    dma_buf_is_dynamic(dmabuf)) {
715 		struct sg_table *sgt;
716 
717 		if (dma_buf_is_dynamic(attach->dmabuf)) {
718 			dma_resv_lock(attach->dmabuf->resv, NULL);
719 			ret = dma_buf_pin(attach);
720 			if (ret)
721 				goto err_unlock;
722 		}
723 
724 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
725 		if (!sgt)
726 			sgt = ERR_PTR(-ENOMEM);
727 		if (IS_ERR(sgt)) {
728 			ret = PTR_ERR(sgt);
729 			goto err_unpin;
730 		}
731 		if (dma_buf_is_dynamic(attach->dmabuf))
732 			dma_resv_unlock(attach->dmabuf->resv);
733 		attach->sgt = sgt;
734 		attach->dir = DMA_BIDIRECTIONAL;
735 	}
736 
737 	return attach;
738 
739 err_attach:
740 	kfree(attach);
741 	return ERR_PTR(ret);
742 
743 err_unpin:
744 	if (dma_buf_is_dynamic(attach->dmabuf))
745 		dma_buf_unpin(attach);
746 
747 err_unlock:
748 	if (dma_buf_is_dynamic(attach->dmabuf))
749 		dma_resv_unlock(attach->dmabuf->resv);
750 
751 	dma_buf_detach(dmabuf, attach);
752 	return ERR_PTR(ret);
753 }
754 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
755 
756 /**
757  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
758  * @dmabuf:	[in]	buffer to attach device to.
759  * @dev:	[in]	device to be attached.
760  *
761  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
762  * mapping.
763  */
764 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
765 					  struct device *dev)
766 {
767 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
768 }
769 EXPORT_SYMBOL_GPL(dma_buf_attach);
770 
771 /**
772  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
773  * optionally calls detach() of dma_buf_ops for device-specific detach
774  * @dmabuf:	[in]	buffer to detach from.
775  * @attach:	[in]	attachment to be detached; is free'd after this call.
776  *
777  * Clean up a device attachment obtained by calling dma_buf_attach().
778  */
779 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
780 {
781 	if (WARN_ON(!dmabuf || !attach))
782 		return;
783 
784 	if (attach->sgt) {
785 		if (dma_buf_is_dynamic(attach->dmabuf))
786 			dma_resv_lock(attach->dmabuf->resv, NULL);
787 
788 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
789 
790 		if (dma_buf_is_dynamic(attach->dmabuf)) {
791 			dma_buf_unpin(attach);
792 			dma_resv_unlock(attach->dmabuf->resv);
793 		}
794 	}
795 
796 	dma_resv_lock(dmabuf->resv, NULL);
797 	list_del(&attach->node);
798 	dma_resv_unlock(dmabuf->resv);
799 	if (dmabuf->ops->detach)
800 		dmabuf->ops->detach(dmabuf, attach);
801 
802 	kfree(attach);
803 }
804 EXPORT_SYMBOL_GPL(dma_buf_detach);
805 
806 /**
807  * dma_buf_pin - Lock down the DMA-buf
808  *
809  * @attach:	[in]	attachment which should be pinned
810  *
811  * Returns:
812  * 0 on success, negative error code on failure.
813  */
814 int dma_buf_pin(struct dma_buf_attachment *attach)
815 {
816 	struct dma_buf *dmabuf = attach->dmabuf;
817 	int ret = 0;
818 
819 	dma_resv_assert_held(dmabuf->resv);
820 
821 	if (dmabuf->ops->pin)
822 		ret = dmabuf->ops->pin(attach);
823 
824 	return ret;
825 }
826 EXPORT_SYMBOL_GPL(dma_buf_pin);
827 
828 /**
829  * dma_buf_unpin - Remove lock from DMA-buf
830  *
831  * @attach:	[in]	attachment which should be unpinned
832  */
833 void dma_buf_unpin(struct dma_buf_attachment *attach)
834 {
835 	struct dma_buf *dmabuf = attach->dmabuf;
836 
837 	dma_resv_assert_held(dmabuf->resv);
838 
839 	if (dmabuf->ops->unpin)
840 		dmabuf->ops->unpin(attach);
841 }
842 EXPORT_SYMBOL_GPL(dma_buf_unpin);
843 
844 /**
845  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
846  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
847  * dma_buf_ops.
848  * @attach:	[in]	attachment whose scatterlist is to be returned
849  * @direction:	[in]	direction of DMA transfer
850  *
851  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
852  * on error. May return -EINTR if it is interrupted by a signal.
853  *
854  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
855  * the underlying backing storage is pinned for as long as a mapping exists,
856  * therefore users/importers should not hold onto a mapping for undue amounts of
857  * time.
858  */
859 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
860 					enum dma_data_direction direction)
861 {
862 	struct sg_table *sg_table;
863 	int r;
864 
865 	might_sleep();
866 
867 	if (WARN_ON(!attach || !attach->dmabuf))
868 		return ERR_PTR(-EINVAL);
869 
870 	if (dma_buf_attachment_is_dynamic(attach))
871 		dma_resv_assert_held(attach->dmabuf->resv);
872 
873 	if (attach->sgt) {
874 		/*
875 		 * Two mappings with different directions for the same
876 		 * attachment are not allowed.
877 		 */
878 		if (attach->dir != direction &&
879 		    attach->dir != DMA_BIDIRECTIONAL)
880 			return ERR_PTR(-EBUSY);
881 
882 		return attach->sgt;
883 	}
884 
885 	if (dma_buf_is_dynamic(attach->dmabuf)) {
886 		dma_resv_assert_held(attach->dmabuf->resv);
887 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
888 			r = dma_buf_pin(attach);
889 			if (r)
890 				return ERR_PTR(r);
891 		}
892 	}
893 
894 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
895 	if (!sg_table)
896 		sg_table = ERR_PTR(-ENOMEM);
897 
898 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
899 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
900 		dma_buf_unpin(attach);
901 
902 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
903 		attach->sgt = sg_table;
904 		attach->dir = direction;
905 	}
906 
907 	return sg_table;
908 }
909 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
910 
911 /**
912  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
913  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
914  * dma_buf_ops.
915  * @attach:	[in]	attachment to unmap buffer from
916  * @sg_table:	[in]	scatterlist info of the buffer to unmap
917  * @direction:  [in]    direction of DMA transfer
918  *
919  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
920  */
921 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
922 				struct sg_table *sg_table,
923 				enum dma_data_direction direction)
924 {
925 	might_sleep();
926 
927 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
928 		return;
929 
930 	if (dma_buf_attachment_is_dynamic(attach))
931 		dma_resv_assert_held(attach->dmabuf->resv);
932 
933 	if (attach->sgt == sg_table)
934 		return;
935 
936 	if (dma_buf_is_dynamic(attach->dmabuf))
937 		dma_resv_assert_held(attach->dmabuf->resv);
938 
939 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
940 
941 	if (dma_buf_is_dynamic(attach->dmabuf) &&
942 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
943 		dma_buf_unpin(attach);
944 }
945 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
946 
947 /**
948  * dma_buf_move_notify - notify attachments that DMA-buf is moving
949  *
950  * @dmabuf:	[in]	buffer which is moving
951  *
952  * Informs all attachmenst that they need to destroy and recreated all their
953  * mappings.
954  */
955 void dma_buf_move_notify(struct dma_buf *dmabuf)
956 {
957 	struct dma_buf_attachment *attach;
958 
959 	dma_resv_assert_held(dmabuf->resv);
960 
961 	list_for_each_entry(attach, &dmabuf->attachments, node)
962 		if (attach->importer_ops)
963 			attach->importer_ops->move_notify(attach);
964 }
965 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
966 
967 /**
968  * DOC: cpu access
969  *
970  * There are mutliple reasons for supporting CPU access to a dma buffer object:
971  *
972  * - Fallback operations in the kernel, for example when a device is connected
973  *   over USB and the kernel needs to shuffle the data around first before
974  *   sending it away. Cache coherency is handled by braketing any transactions
975  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
976  *   access.
977  *
978  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
979  *   vmap interface is introduced. Note that on very old 32-bit architectures
980  *   vmalloc space might be limited and result in vmap calls failing.
981  *
982  *   Interfaces::
983  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
984  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
985  *
986  *   The vmap call can fail if there is no vmap support in the exporter, or if
987  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
988  *   that the dma-buf layer keeps a reference count for all vmap access and
989  *   calls down into the exporter's vmap function only when no vmapping exists,
990  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
991  *   provided by taking the dma_buf->lock mutex.
992  *
993  * - For full compatibility on the importer side with existing userspace
994  *   interfaces, which might already support mmap'ing buffers. This is needed in
995  *   many processing pipelines (e.g. feeding a software rendered image into a
996  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
997  *   framework already supported this and for DMA buffer file descriptors to
998  *   replace ION buffers mmap support was needed.
999  *
1000  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1001  *   fd. But like for CPU access there's a need to braket the actual access,
1002  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1003  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1004  *   be restarted.
1005  *
1006  *   Some systems might need some sort of cache coherency management e.g. when
1007  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1008  *   To circumvent this problem there are begin/end coherency markers, that
1009  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1010  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1011  *   sequence would be used like following:
1012  *
1013  *     - mmap dma-buf fd
1014  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1015  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1016  *       want (with the new data being consumed by say the GPU or the scanout
1017  *       device)
1018  *     - munmap once you don't need the buffer any more
1019  *
1020  *    For correctness and optimal performance, it is always required to use
1021  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1022  *    mapped address. Userspace cannot rely on coherent access, even when there
1023  *    are systems where it just works without calling these ioctls.
1024  *
1025  * - And as a CPU fallback in userspace processing pipelines.
1026  *
1027  *   Similar to the motivation for kernel cpu access it is again important that
1028  *   the userspace code of a given importing subsystem can use the same
1029  *   interfaces with a imported dma-buf buffer object as with a native buffer
1030  *   object. This is especially important for drm where the userspace part of
1031  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1032  *   use a different way to mmap a buffer rather invasive.
1033  *
1034  *   The assumption in the current dma-buf interfaces is that redirecting the
1035  *   initial mmap is all that's needed. A survey of some of the existing
1036  *   subsystems shows that no driver seems to do any nefarious thing like
1037  *   syncing up with outstanding asynchronous processing on the device or
1038  *   allocating special resources at fault time. So hopefully this is good
1039  *   enough, since adding interfaces to intercept pagefaults and allow pte
1040  *   shootdowns would increase the complexity quite a bit.
1041  *
1042  *   Interface::
1043  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1044  *		       unsigned long);
1045  *
1046  *   If the importing subsystem simply provides a special-purpose mmap call to
1047  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1048  *   equally achieve that for a dma-buf object.
1049  */
1050 
1051 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1052 				      enum dma_data_direction direction)
1053 {
1054 	bool write = (direction == DMA_BIDIRECTIONAL ||
1055 		      direction == DMA_TO_DEVICE);
1056 	struct dma_resv *resv = dmabuf->resv;
1057 	long ret;
1058 
1059 	/* Wait on any implicit rendering fences */
1060 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
1061 						  MAX_SCHEDULE_TIMEOUT);
1062 	if (ret < 0)
1063 		return ret;
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1070  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1071  * preparations. Coherency is only guaranteed in the specified range for the
1072  * specified access direction.
1073  * @dmabuf:	[in]	buffer to prepare cpu access for.
1074  * @direction:	[in]	length of range for cpu access.
1075  *
1076  * After the cpu access is complete the caller should call
1077  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1078  * it guaranteed to be coherent with other DMA access.
1079  *
1080  * Can return negative error values, returns 0 on success.
1081  */
1082 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1083 			     enum dma_data_direction direction)
1084 {
1085 	int ret = 0;
1086 
1087 	if (WARN_ON(!dmabuf))
1088 		return -EINVAL;
1089 
1090 	if (dmabuf->ops->begin_cpu_access)
1091 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1092 
1093 	/* Ensure that all fences are waited upon - but we first allow
1094 	 * the native handler the chance to do so more efficiently if it
1095 	 * chooses. A double invocation here will be reasonably cheap no-op.
1096 	 */
1097 	if (ret == 0)
1098 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1099 
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1103 
1104 /**
1105  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1106  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1107  * actions. Coherency is only guaranteed in the specified range for the
1108  * specified access direction.
1109  * @dmabuf:	[in]	buffer to complete cpu access for.
1110  * @direction:	[in]	length of range for cpu access.
1111  *
1112  * This terminates CPU access started with dma_buf_begin_cpu_access().
1113  *
1114  * Can return negative error values, returns 0 on success.
1115  */
1116 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1117 			   enum dma_data_direction direction)
1118 {
1119 	int ret = 0;
1120 
1121 	WARN_ON(!dmabuf);
1122 
1123 	if (dmabuf->ops->end_cpu_access)
1124 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1125 
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1129 
1130 
1131 /**
1132  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1133  * @dmabuf:	[in]	buffer that should back the vma
1134  * @vma:	[in]	vma for the mmap
1135  * @pgoff:	[in]	offset in pages where this mmap should start within the
1136  *			dma-buf buffer.
1137  *
1138  * This function adjusts the passed in vma so that it points at the file of the
1139  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1140  * checking on the size of the vma. Then it calls the exporters mmap function to
1141  * set up the mapping.
1142  *
1143  * Can return negative error values, returns 0 on success.
1144  */
1145 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1146 		 unsigned long pgoff)
1147 {
1148 	struct file *oldfile;
1149 	int ret;
1150 
1151 	if (WARN_ON(!dmabuf || !vma))
1152 		return -EINVAL;
1153 
1154 	/* check if buffer supports mmap */
1155 	if (!dmabuf->ops->mmap)
1156 		return -EINVAL;
1157 
1158 	/* check for offset overflow */
1159 	if (pgoff + vma_pages(vma) < pgoff)
1160 		return -EOVERFLOW;
1161 
1162 	/* check for overflowing the buffer's size */
1163 	if (pgoff + vma_pages(vma) >
1164 	    dmabuf->size >> PAGE_SHIFT)
1165 		return -EINVAL;
1166 
1167 	/* readjust the vma */
1168 	get_file(dmabuf->file);
1169 	oldfile = vma->vm_file;
1170 	vma->vm_file = dmabuf->file;
1171 	vma->vm_pgoff = pgoff;
1172 
1173 	ret = dmabuf->ops->mmap(dmabuf, vma);
1174 	if (ret) {
1175 		/* restore old parameters on failure */
1176 		vma->vm_file = oldfile;
1177 		fput(dmabuf->file);
1178 	} else {
1179 		if (oldfile)
1180 			fput(oldfile);
1181 	}
1182 	return ret;
1183 
1184 }
1185 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1186 
1187 /**
1188  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1189  * address space. Same restrictions as for vmap and friends apply.
1190  * @dmabuf:	[in]	buffer to vmap
1191  *
1192  * This call may fail due to lack of virtual mapping address space.
1193  * These calls are optional in drivers. The intended use for them
1194  * is for mapping objects linear in kernel space for high use objects.
1195  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1196  *
1197  * Returns NULL on error.
1198  */
1199 void *dma_buf_vmap(struct dma_buf *dmabuf)
1200 {
1201 	void *ptr;
1202 
1203 	if (WARN_ON(!dmabuf))
1204 		return NULL;
1205 
1206 	if (!dmabuf->ops->vmap)
1207 		return NULL;
1208 
1209 	mutex_lock(&dmabuf->lock);
1210 	if (dmabuf->vmapping_counter) {
1211 		dmabuf->vmapping_counter++;
1212 		BUG_ON(!dmabuf->vmap_ptr);
1213 		ptr = dmabuf->vmap_ptr;
1214 		goto out_unlock;
1215 	}
1216 
1217 	BUG_ON(dmabuf->vmap_ptr);
1218 
1219 	ptr = dmabuf->ops->vmap(dmabuf);
1220 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1221 		ptr = NULL;
1222 	if (!ptr)
1223 		goto out_unlock;
1224 
1225 	dmabuf->vmap_ptr = ptr;
1226 	dmabuf->vmapping_counter = 1;
1227 
1228 out_unlock:
1229 	mutex_unlock(&dmabuf->lock);
1230 	return ptr;
1231 }
1232 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1233 
1234 /**
1235  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1236  * @dmabuf:	[in]	buffer to vunmap
1237  * @vaddr:	[in]	vmap to vunmap
1238  */
1239 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1240 {
1241 	if (WARN_ON(!dmabuf))
1242 		return;
1243 
1244 	BUG_ON(!dmabuf->vmap_ptr);
1245 	BUG_ON(dmabuf->vmapping_counter == 0);
1246 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1247 
1248 	mutex_lock(&dmabuf->lock);
1249 	if (--dmabuf->vmapping_counter == 0) {
1250 		if (dmabuf->ops->vunmap)
1251 			dmabuf->ops->vunmap(dmabuf, vaddr);
1252 		dmabuf->vmap_ptr = NULL;
1253 	}
1254 	mutex_unlock(&dmabuf->lock);
1255 }
1256 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1257 
1258 #ifdef CONFIG_DEBUG_FS
1259 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1260 {
1261 	int ret;
1262 	struct dma_buf *buf_obj;
1263 	struct dma_buf_attachment *attach_obj;
1264 	struct dma_resv *robj;
1265 	struct dma_resv_list *fobj;
1266 	struct dma_fence *fence;
1267 	unsigned seq;
1268 	int count = 0, attach_count, shared_count, i;
1269 	size_t size = 0;
1270 
1271 	ret = mutex_lock_interruptible(&db_list.lock);
1272 
1273 	if (ret)
1274 		return ret;
1275 
1276 	seq_puts(s, "\nDma-buf Objects:\n");
1277 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1278 		   "size", "flags", "mode", "count", "ino");
1279 
1280 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1281 
1282 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1283 		if (ret)
1284 			goto error_unlock;
1285 
1286 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1287 				buf_obj->size,
1288 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1289 				file_count(buf_obj->file),
1290 				buf_obj->exp_name,
1291 				file_inode(buf_obj->file)->i_ino,
1292 				buf_obj->name ?: "");
1293 
1294 		robj = buf_obj->resv;
1295 		while (true) {
1296 			seq = read_seqcount_begin(&robj->seq);
1297 			rcu_read_lock();
1298 			fobj = rcu_dereference(robj->fence);
1299 			shared_count = fobj ? fobj->shared_count : 0;
1300 			fence = rcu_dereference(robj->fence_excl);
1301 			if (!read_seqcount_retry(&robj->seq, seq))
1302 				break;
1303 			rcu_read_unlock();
1304 		}
1305 
1306 		if (fence)
1307 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1308 				   fence->ops->get_driver_name(fence),
1309 				   fence->ops->get_timeline_name(fence),
1310 				   dma_fence_is_signaled(fence) ? "" : "un");
1311 		for (i = 0; i < shared_count; i++) {
1312 			fence = rcu_dereference(fobj->shared[i]);
1313 			if (!dma_fence_get_rcu(fence))
1314 				continue;
1315 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1316 				   fence->ops->get_driver_name(fence),
1317 				   fence->ops->get_timeline_name(fence),
1318 				   dma_fence_is_signaled(fence) ? "" : "un");
1319 			dma_fence_put(fence);
1320 		}
1321 		rcu_read_unlock();
1322 
1323 		seq_puts(s, "\tAttached Devices:\n");
1324 		attach_count = 0;
1325 
1326 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1327 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1328 			attach_count++;
1329 		}
1330 		dma_resv_unlock(buf_obj->resv);
1331 
1332 		seq_printf(s, "Total %d devices attached\n\n",
1333 				attach_count);
1334 
1335 		count++;
1336 		size += buf_obj->size;
1337 	}
1338 
1339 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1340 
1341 	mutex_unlock(&db_list.lock);
1342 	return 0;
1343 
1344 error_unlock:
1345 	mutex_unlock(&db_list.lock);
1346 	return ret;
1347 }
1348 
1349 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1350 
1351 static struct dentry *dma_buf_debugfs_dir;
1352 
1353 static int dma_buf_init_debugfs(void)
1354 {
1355 	struct dentry *d;
1356 	int err = 0;
1357 
1358 	d = debugfs_create_dir("dma_buf", NULL);
1359 	if (IS_ERR(d))
1360 		return PTR_ERR(d);
1361 
1362 	dma_buf_debugfs_dir = d;
1363 
1364 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1365 				NULL, &dma_buf_debug_fops);
1366 	if (IS_ERR(d)) {
1367 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1368 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1369 		dma_buf_debugfs_dir = NULL;
1370 		err = PTR_ERR(d);
1371 	}
1372 
1373 	return err;
1374 }
1375 
1376 static void dma_buf_uninit_debugfs(void)
1377 {
1378 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1379 }
1380 #else
1381 static inline int dma_buf_init_debugfs(void)
1382 {
1383 	return 0;
1384 }
1385 static inline void dma_buf_uninit_debugfs(void)
1386 {
1387 }
1388 #endif
1389 
1390 static int __init dma_buf_init(void)
1391 {
1392 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1393 	if (IS_ERR(dma_buf_mnt))
1394 		return PTR_ERR(dma_buf_mnt);
1395 
1396 	mutex_init(&db_list.lock);
1397 	INIT_LIST_HEAD(&db_list.head);
1398 	dma_buf_init_debugfs();
1399 	return 0;
1400 }
1401 subsys_initcall(dma_buf_init);
1402 
1403 static void __exit dma_buf_deinit(void)
1404 {
1405 	dma_buf_uninit_debugfs();
1406 	kern_unmount(dma_buf_mnt);
1407 }
1408 __exitcall(dma_buf_deinit);
1409