xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision f43e47c090dc7fe32d5410d8740c3a004eb2676f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/sync_file.h>
24 #include <linux/poll.h>
25 #include <linux/dma-resv.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 
30 #include <uapi/linux/dma-buf.h>
31 #include <uapi/linux/magic.h>
32 
33 #include "dma-buf-sysfs-stats.h"
34 
35 static inline int is_dma_buf_file(struct file *);
36 
37 struct dma_buf_list {
38 	struct list_head head;
39 	struct mutex lock;
40 };
41 
42 static struct dma_buf_list db_list;
43 
44 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
45 {
46 	struct dma_buf *dmabuf;
47 	char name[DMA_BUF_NAME_LEN];
48 	size_t ret = 0;
49 
50 	dmabuf = dentry->d_fsdata;
51 	spin_lock(&dmabuf->name_lock);
52 	if (dmabuf->name)
53 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
54 	spin_unlock(&dmabuf->name_lock);
55 
56 	return dynamic_dname(buffer, buflen, "/%s:%s",
57 			     dentry->d_name.name, ret > 0 ? name : "");
58 }
59 
60 static void dma_buf_release(struct dentry *dentry)
61 {
62 	struct dma_buf *dmabuf;
63 
64 	dmabuf = dentry->d_fsdata;
65 	if (unlikely(!dmabuf))
66 		return;
67 
68 	BUG_ON(dmabuf->vmapping_counter);
69 
70 	/*
71 	 * If you hit this BUG() it could mean:
72 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
73 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
74 	 */
75 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
76 
77 	dma_buf_stats_teardown(dmabuf);
78 	dmabuf->ops->release(dmabuf);
79 
80 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
81 		dma_resv_fini(dmabuf->resv);
82 
83 	WARN_ON(!list_empty(&dmabuf->attachments));
84 	module_put(dmabuf->owner);
85 	kfree(dmabuf->name);
86 	kfree(dmabuf);
87 }
88 
89 static int dma_buf_file_release(struct inode *inode, struct file *file)
90 {
91 	struct dma_buf *dmabuf;
92 
93 	if (!is_dma_buf_file(file))
94 		return -EINVAL;
95 
96 	dmabuf = file->private_data;
97 
98 	mutex_lock(&db_list.lock);
99 	list_del(&dmabuf->list_node);
100 	mutex_unlock(&db_list.lock);
101 
102 	return 0;
103 }
104 
105 static const struct dentry_operations dma_buf_dentry_ops = {
106 	.d_dname = dmabuffs_dname,
107 	.d_release = dma_buf_release,
108 };
109 
110 static struct vfsmount *dma_buf_mnt;
111 
112 static int dma_buf_fs_init_context(struct fs_context *fc)
113 {
114 	struct pseudo_fs_context *ctx;
115 
116 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
117 	if (!ctx)
118 		return -ENOMEM;
119 	ctx->dops = &dma_buf_dentry_ops;
120 	return 0;
121 }
122 
123 static struct file_system_type dma_buf_fs_type = {
124 	.name = "dmabuf",
125 	.init_fs_context = dma_buf_fs_init_context,
126 	.kill_sb = kill_anon_super,
127 };
128 
129 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
130 {
131 	struct dma_buf *dmabuf;
132 
133 	if (!is_dma_buf_file(file))
134 		return -EINVAL;
135 
136 	dmabuf = file->private_data;
137 
138 	/* check if buffer supports mmap */
139 	if (!dmabuf->ops->mmap)
140 		return -EINVAL;
141 
142 	/* check for overflowing the buffer's size */
143 	if (vma->vm_pgoff + vma_pages(vma) >
144 	    dmabuf->size >> PAGE_SHIFT)
145 		return -EINVAL;
146 
147 	return dmabuf->ops->mmap(dmabuf, vma);
148 }
149 
150 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
151 {
152 	struct dma_buf *dmabuf;
153 	loff_t base;
154 
155 	if (!is_dma_buf_file(file))
156 		return -EBADF;
157 
158 	dmabuf = file->private_data;
159 
160 	/* only support discovering the end of the buffer,
161 	   but also allow SEEK_SET to maintain the idiomatic
162 	   SEEK_END(0), SEEK_CUR(0) pattern */
163 	if (whence == SEEK_END)
164 		base = dmabuf->size;
165 	else if (whence == SEEK_SET)
166 		base = 0;
167 	else
168 		return -EINVAL;
169 
170 	if (offset != 0)
171 		return -EINVAL;
172 
173 	return base + offset;
174 }
175 
176 /**
177  * DOC: implicit fence polling
178  *
179  * To support cross-device and cross-driver synchronization of buffer access
180  * implicit fences (represented internally in the kernel with &struct dma_fence)
181  * can be attached to a &dma_buf. The glue for that and a few related things are
182  * provided in the &dma_resv structure.
183  *
184  * Userspace can query the state of these implicitly tracked fences using poll()
185  * and related system calls:
186  *
187  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
188  *   most recent write or exclusive fence.
189  *
190  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
191  *   all attached fences, shared and exclusive ones.
192  *
193  * Note that this only signals the completion of the respective fences, i.e. the
194  * DMA transfers are complete. Cache flushing and any other necessary
195  * preparations before CPU access can begin still need to happen.
196  *
197  * As an alternative to poll(), the set of fences on DMA buffer can be
198  * exported as a &sync_file using &dma_buf_sync_file_export.
199  */
200 
201 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
202 {
203 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
204 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&dcb->poll->lock, flags);
208 	wake_up_locked_poll(dcb->poll, dcb->active);
209 	dcb->active = 0;
210 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
211 	dma_fence_put(fence);
212 	/* Paired with get_file in dma_buf_poll */
213 	fput(dmabuf->file);
214 }
215 
216 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
217 				struct dma_buf_poll_cb_t *dcb)
218 {
219 	struct dma_resv_iter cursor;
220 	struct dma_fence *fence;
221 	int r;
222 
223 	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
224 				fence) {
225 		dma_fence_get(fence);
226 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
227 		if (!r)
228 			return true;
229 		dma_fence_put(fence);
230 	}
231 
232 	return false;
233 }
234 
235 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
236 {
237 	struct dma_buf *dmabuf;
238 	struct dma_resv *resv;
239 	__poll_t events;
240 
241 	dmabuf = file->private_data;
242 	if (!dmabuf || !dmabuf->resv)
243 		return EPOLLERR;
244 
245 	resv = dmabuf->resv;
246 
247 	poll_wait(file, &dmabuf->poll, poll);
248 
249 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
250 	if (!events)
251 		return 0;
252 
253 	dma_resv_lock(resv, NULL);
254 
255 	if (events & EPOLLOUT) {
256 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
257 
258 		/* Check that callback isn't busy */
259 		spin_lock_irq(&dmabuf->poll.lock);
260 		if (dcb->active)
261 			events &= ~EPOLLOUT;
262 		else
263 			dcb->active = EPOLLOUT;
264 		spin_unlock_irq(&dmabuf->poll.lock);
265 
266 		if (events & EPOLLOUT) {
267 			/* Paired with fput in dma_buf_poll_cb */
268 			get_file(dmabuf->file);
269 
270 			if (!dma_buf_poll_add_cb(resv, true, dcb))
271 				/* No callback queued, wake up any other waiters */
272 				dma_buf_poll_cb(NULL, &dcb->cb);
273 			else
274 				events &= ~EPOLLOUT;
275 		}
276 	}
277 
278 	if (events & EPOLLIN) {
279 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
280 
281 		/* Check that callback isn't busy */
282 		spin_lock_irq(&dmabuf->poll.lock);
283 		if (dcb->active)
284 			events &= ~EPOLLIN;
285 		else
286 			dcb->active = EPOLLIN;
287 		spin_unlock_irq(&dmabuf->poll.lock);
288 
289 		if (events & EPOLLIN) {
290 			/* Paired with fput in dma_buf_poll_cb */
291 			get_file(dmabuf->file);
292 
293 			if (!dma_buf_poll_add_cb(resv, false, dcb))
294 				/* No callback queued, wake up any other waiters */
295 				dma_buf_poll_cb(NULL, &dcb->cb);
296 			else
297 				events &= ~EPOLLIN;
298 		}
299 	}
300 
301 	dma_resv_unlock(resv);
302 	return events;
303 }
304 
305 /**
306  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
307  * It could support changing the name of the dma-buf if the same
308  * piece of memory is used for multiple purpose between different devices.
309  *
310  * @dmabuf: [in]     dmabuf buffer that will be renamed.
311  * @buf:    [in]     A piece of userspace memory that contains the name of
312  *                   the dma-buf.
313  *
314  * Returns 0 on success. If the dma-buf buffer is already attached to
315  * devices, return -EBUSY.
316  *
317  */
318 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
319 {
320 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
321 
322 	if (IS_ERR(name))
323 		return PTR_ERR(name);
324 
325 	spin_lock(&dmabuf->name_lock);
326 	kfree(dmabuf->name);
327 	dmabuf->name = name;
328 	spin_unlock(&dmabuf->name_lock);
329 
330 	return 0;
331 }
332 
333 #if IS_ENABLED(CONFIG_SYNC_FILE)
334 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
335 				     void __user *user_data)
336 {
337 	struct dma_buf_export_sync_file arg;
338 	enum dma_resv_usage usage;
339 	struct dma_fence *fence = NULL;
340 	struct sync_file *sync_file;
341 	int fd, ret;
342 
343 	if (copy_from_user(&arg, user_data, sizeof(arg)))
344 		return -EFAULT;
345 
346 	if (arg.flags & ~DMA_BUF_SYNC_RW)
347 		return -EINVAL;
348 
349 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
350 		return -EINVAL;
351 
352 	fd = get_unused_fd_flags(O_CLOEXEC);
353 	if (fd < 0)
354 		return fd;
355 
356 	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
357 	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
358 	if (ret)
359 		goto err_put_fd;
360 
361 	if (!fence)
362 		fence = dma_fence_get_stub();
363 
364 	sync_file = sync_file_create(fence);
365 
366 	dma_fence_put(fence);
367 
368 	if (!sync_file) {
369 		ret = -ENOMEM;
370 		goto err_put_fd;
371 	}
372 
373 	arg.fd = fd;
374 	if (copy_to_user(user_data, &arg, sizeof(arg))) {
375 		ret = -EFAULT;
376 		goto err_put_file;
377 	}
378 
379 	fd_install(fd, sync_file->file);
380 
381 	return 0;
382 
383 err_put_file:
384 	fput(sync_file->file);
385 err_put_fd:
386 	put_unused_fd(fd);
387 	return ret;
388 }
389 
390 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
391 				     const void __user *user_data)
392 {
393 	struct dma_buf_import_sync_file arg;
394 	struct dma_fence *fence;
395 	enum dma_resv_usage usage;
396 	int ret = 0;
397 
398 	if (copy_from_user(&arg, user_data, sizeof(arg)))
399 		return -EFAULT;
400 
401 	if (arg.flags & ~DMA_BUF_SYNC_RW)
402 		return -EINVAL;
403 
404 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
405 		return -EINVAL;
406 
407 	fence = sync_file_get_fence(arg.fd);
408 	if (!fence)
409 		return -EINVAL;
410 
411 	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
412 						   DMA_RESV_USAGE_READ;
413 
414 	dma_resv_lock(dmabuf->resv, NULL);
415 
416 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
417 	if (!ret)
418 		dma_resv_add_fence(dmabuf->resv, fence, usage);
419 
420 	dma_resv_unlock(dmabuf->resv);
421 
422 	dma_fence_put(fence);
423 
424 	return ret;
425 }
426 #endif
427 
428 static long dma_buf_ioctl(struct file *file,
429 			  unsigned int cmd, unsigned long arg)
430 {
431 	struct dma_buf *dmabuf;
432 	struct dma_buf_sync sync;
433 	enum dma_data_direction direction;
434 	int ret;
435 
436 	dmabuf = file->private_data;
437 
438 	switch (cmd) {
439 	case DMA_BUF_IOCTL_SYNC:
440 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
441 			return -EFAULT;
442 
443 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
444 			return -EINVAL;
445 
446 		switch (sync.flags & DMA_BUF_SYNC_RW) {
447 		case DMA_BUF_SYNC_READ:
448 			direction = DMA_FROM_DEVICE;
449 			break;
450 		case DMA_BUF_SYNC_WRITE:
451 			direction = DMA_TO_DEVICE;
452 			break;
453 		case DMA_BUF_SYNC_RW:
454 			direction = DMA_BIDIRECTIONAL;
455 			break;
456 		default:
457 			return -EINVAL;
458 		}
459 
460 		if (sync.flags & DMA_BUF_SYNC_END)
461 			ret = dma_buf_end_cpu_access(dmabuf, direction);
462 		else
463 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
464 
465 		return ret;
466 
467 	case DMA_BUF_SET_NAME_A:
468 	case DMA_BUF_SET_NAME_B:
469 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
470 
471 #if IS_ENABLED(CONFIG_SYNC_FILE)
472 	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
473 		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
474 	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
475 		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
476 #endif
477 
478 	default:
479 		return -ENOTTY;
480 	}
481 }
482 
483 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
484 {
485 	struct dma_buf *dmabuf = file->private_data;
486 
487 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
488 	/* Don't count the temporary reference taken inside procfs seq_show */
489 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
490 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
491 	spin_lock(&dmabuf->name_lock);
492 	if (dmabuf->name)
493 		seq_printf(m, "name:\t%s\n", dmabuf->name);
494 	spin_unlock(&dmabuf->name_lock);
495 }
496 
497 static const struct file_operations dma_buf_fops = {
498 	.release	= dma_buf_file_release,
499 	.mmap		= dma_buf_mmap_internal,
500 	.llseek		= dma_buf_llseek,
501 	.poll		= dma_buf_poll,
502 	.unlocked_ioctl	= dma_buf_ioctl,
503 	.compat_ioctl	= compat_ptr_ioctl,
504 	.show_fdinfo	= dma_buf_show_fdinfo,
505 };
506 
507 /*
508  * is_dma_buf_file - Check if struct file* is associated with dma_buf
509  */
510 static inline int is_dma_buf_file(struct file *file)
511 {
512 	return file->f_op == &dma_buf_fops;
513 }
514 
515 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
516 {
517 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
518 	struct file *file;
519 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
520 
521 	if (IS_ERR(inode))
522 		return ERR_CAST(inode);
523 
524 	inode->i_size = dmabuf->size;
525 	inode_set_bytes(inode, dmabuf->size);
526 
527 	/*
528 	 * The ->i_ino acquired from get_next_ino() is not unique thus
529 	 * not suitable for using it as dentry name by dmabuf stats.
530 	 * Override ->i_ino with the unique and dmabuffs specific
531 	 * value.
532 	 */
533 	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
534 	flags &= O_ACCMODE | O_NONBLOCK;
535 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
536 				 flags, &dma_buf_fops);
537 	if (IS_ERR(file))
538 		goto err_alloc_file;
539 	file->private_data = dmabuf;
540 	file->f_path.dentry->d_fsdata = dmabuf;
541 
542 	return file;
543 
544 err_alloc_file:
545 	iput(inode);
546 	return file;
547 }
548 
549 /**
550  * DOC: dma buf device access
551  *
552  * For device DMA access to a shared DMA buffer the usual sequence of operations
553  * is fairly simple:
554  *
555  * 1. The exporter defines his exporter instance using
556  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
557  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
558  *    as a file descriptor by calling dma_buf_fd().
559  *
560  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
561  *    to share with: First the file descriptor is converted to a &dma_buf using
562  *    dma_buf_get(). Then the buffer is attached to the device using
563  *    dma_buf_attach().
564  *
565  *    Up to this stage the exporter is still free to migrate or reallocate the
566  *    backing storage.
567  *
568  * 3. Once the buffer is attached to all devices userspace can initiate DMA
569  *    access to the shared buffer. In the kernel this is done by calling
570  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
571  *
572  * 4. Once a driver is done with a shared buffer it needs to call
573  *    dma_buf_detach() (after cleaning up any mappings) and then release the
574  *    reference acquired with dma_buf_get() by calling dma_buf_put().
575  *
576  * For the detailed semantics exporters are expected to implement see
577  * &dma_buf_ops.
578  */
579 
580 /**
581  * dma_buf_export - Creates a new dma_buf, and associates an anon file
582  * with this buffer, so it can be exported.
583  * Also connect the allocator specific data and ops to the buffer.
584  * Additionally, provide a name string for exporter; useful in debugging.
585  *
586  * @exp_info:	[in]	holds all the export related information provided
587  *			by the exporter. see &struct dma_buf_export_info
588  *			for further details.
589  *
590  * Returns, on success, a newly created struct dma_buf object, which wraps the
591  * supplied private data and operations for struct dma_buf_ops. On either
592  * missing ops, or error in allocating struct dma_buf, will return negative
593  * error.
594  *
595  * For most cases the easiest way to create @exp_info is through the
596  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
597  */
598 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
599 {
600 	struct dma_buf *dmabuf;
601 	struct dma_resv *resv = exp_info->resv;
602 	struct file *file;
603 	size_t alloc_size = sizeof(struct dma_buf);
604 	int ret;
605 
606 	if (!exp_info->resv)
607 		alloc_size += sizeof(struct dma_resv);
608 	else
609 		/* prevent &dma_buf[1] == dma_buf->resv */
610 		alloc_size += 1;
611 
612 	if (WARN_ON(!exp_info->priv
613 			  || !exp_info->ops
614 			  || !exp_info->ops->map_dma_buf
615 			  || !exp_info->ops->unmap_dma_buf
616 			  || !exp_info->ops->release)) {
617 		return ERR_PTR(-EINVAL);
618 	}
619 
620 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
621 		    (exp_info->ops->pin || exp_info->ops->unpin)))
622 		return ERR_PTR(-EINVAL);
623 
624 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
625 		return ERR_PTR(-EINVAL);
626 
627 	if (!try_module_get(exp_info->owner))
628 		return ERR_PTR(-ENOENT);
629 
630 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
631 	if (!dmabuf) {
632 		ret = -ENOMEM;
633 		goto err_module;
634 	}
635 
636 	dmabuf->priv = exp_info->priv;
637 	dmabuf->ops = exp_info->ops;
638 	dmabuf->size = exp_info->size;
639 	dmabuf->exp_name = exp_info->exp_name;
640 	dmabuf->owner = exp_info->owner;
641 	spin_lock_init(&dmabuf->name_lock);
642 	init_waitqueue_head(&dmabuf->poll);
643 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
644 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
645 
646 	if (!resv) {
647 		resv = (struct dma_resv *)&dmabuf[1];
648 		dma_resv_init(resv);
649 	}
650 	dmabuf->resv = resv;
651 
652 	file = dma_buf_getfile(dmabuf, exp_info->flags);
653 	if (IS_ERR(file)) {
654 		ret = PTR_ERR(file);
655 		goto err_dmabuf;
656 	}
657 
658 	dmabuf->file = file;
659 
660 	INIT_LIST_HEAD(&dmabuf->attachments);
661 
662 	mutex_lock(&db_list.lock);
663 	list_add(&dmabuf->list_node, &db_list.head);
664 	mutex_unlock(&db_list.lock);
665 
666 	ret = dma_buf_stats_setup(dmabuf);
667 	if (ret)
668 		goto err_sysfs;
669 
670 	return dmabuf;
671 
672 err_sysfs:
673 	/*
674 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
675 	 * dma_buf_release() gets invoked by dentry_ops, it exits
676 	 * early before calling the release() dma_buf op.
677 	 */
678 	file->f_path.dentry->d_fsdata = NULL;
679 	fput(file);
680 err_dmabuf:
681 	kfree(dmabuf);
682 err_module:
683 	module_put(exp_info->owner);
684 	return ERR_PTR(ret);
685 }
686 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
687 
688 /**
689  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
690  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
691  * @flags:      [in]    flags to give to fd
692  *
693  * On success, returns an associated 'fd'. Else, returns error.
694  */
695 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
696 {
697 	int fd;
698 
699 	if (!dmabuf || !dmabuf->file)
700 		return -EINVAL;
701 
702 	fd = get_unused_fd_flags(flags);
703 	if (fd < 0)
704 		return fd;
705 
706 	fd_install(fd, dmabuf->file);
707 
708 	return fd;
709 }
710 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
711 
712 /**
713  * dma_buf_get - returns the struct dma_buf related to an fd
714  * @fd:	[in]	fd associated with the struct dma_buf to be returned
715  *
716  * On success, returns the struct dma_buf associated with an fd; uses
717  * file's refcounting done by fget to increase refcount. returns ERR_PTR
718  * otherwise.
719  */
720 struct dma_buf *dma_buf_get(int fd)
721 {
722 	struct file *file;
723 
724 	file = fget(fd);
725 
726 	if (!file)
727 		return ERR_PTR(-EBADF);
728 
729 	if (!is_dma_buf_file(file)) {
730 		fput(file);
731 		return ERR_PTR(-EINVAL);
732 	}
733 
734 	return file->private_data;
735 }
736 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
737 
738 /**
739  * dma_buf_put - decreases refcount of the buffer
740  * @dmabuf:	[in]	buffer to reduce refcount of
741  *
742  * Uses file's refcounting done implicitly by fput().
743  *
744  * If, as a result of this call, the refcount becomes 0, the 'release' file
745  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
746  * in turn, and frees the memory allocated for dmabuf when exported.
747  */
748 void dma_buf_put(struct dma_buf *dmabuf)
749 {
750 	if (WARN_ON(!dmabuf || !dmabuf->file))
751 		return;
752 
753 	fput(dmabuf->file);
754 }
755 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
756 
757 static void mangle_sg_table(struct sg_table *sg_table)
758 {
759 #ifdef CONFIG_DMABUF_DEBUG
760 	int i;
761 	struct scatterlist *sg;
762 
763 	/* To catch abuse of the underlying struct page by importers mix
764 	 * up the bits, but take care to preserve the low SG_ bits to
765 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
766 	 * before passing the sgt back to the exporter. */
767 	for_each_sgtable_sg(sg_table, sg, i)
768 		sg->page_link ^= ~0xffUL;
769 #endif
770 
771 }
772 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
773 				       enum dma_data_direction direction)
774 {
775 	struct sg_table *sg_table;
776 	signed long ret;
777 
778 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
779 	if (IS_ERR_OR_NULL(sg_table))
780 		return sg_table;
781 
782 	if (!dma_buf_attachment_is_dynamic(attach)) {
783 		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
784 					    DMA_RESV_USAGE_KERNEL, true,
785 					    MAX_SCHEDULE_TIMEOUT);
786 		if (ret < 0) {
787 			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
788 							   direction);
789 			return ERR_PTR(ret);
790 		}
791 	}
792 
793 	mangle_sg_table(sg_table);
794 	return sg_table;
795 }
796 
797 /**
798  * DOC: locking convention
799  *
800  * In order to avoid deadlock situations between dma-buf exports and importers,
801  * all dma-buf API users must follow the common dma-buf locking convention.
802  *
803  * Convention for importers
804  *
805  * 1. Importers must hold the dma-buf reservation lock when calling these
806  *    functions:
807  *
808  *     - dma_buf_pin()
809  *     - dma_buf_unpin()
810  *     - dma_buf_map_attachment()
811  *     - dma_buf_unmap_attachment()
812  *     - dma_buf_vmap()
813  *     - dma_buf_vunmap()
814  *
815  * 2. Importers must not hold the dma-buf reservation lock when calling these
816  *    functions:
817  *
818  *     - dma_buf_attach()
819  *     - dma_buf_dynamic_attach()
820  *     - dma_buf_detach()
821  *     - dma_buf_export(
822  *     - dma_buf_fd()
823  *     - dma_buf_get()
824  *     - dma_buf_put()
825  *     - dma_buf_mmap()
826  *     - dma_buf_begin_cpu_access()
827  *     - dma_buf_end_cpu_access()
828  *     - dma_buf_map_attachment_unlocked()
829  *     - dma_buf_unmap_attachment_unlocked()
830  *     - dma_buf_vmap_unlocked()
831  *     - dma_buf_vunmap_unlocked()
832  *
833  * Convention for exporters
834  *
835  * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
836  *    reservation and exporter can take the lock:
837  *
838  *     - &dma_buf_ops.attach()
839  *     - &dma_buf_ops.detach()
840  *     - &dma_buf_ops.release()
841  *     - &dma_buf_ops.begin_cpu_access()
842  *     - &dma_buf_ops.end_cpu_access()
843  *
844  * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
845  *    reservation and exporter can't take the lock:
846  *
847  *     - &dma_buf_ops.pin()
848  *     - &dma_buf_ops.unpin()
849  *     - &dma_buf_ops.map_dma_buf()
850  *     - &dma_buf_ops.unmap_dma_buf()
851  *     - &dma_buf_ops.mmap()
852  *     - &dma_buf_ops.vmap()
853  *     - &dma_buf_ops.vunmap()
854  *
855  * 3. Exporters must hold the dma-buf reservation lock when calling these
856  *    functions:
857  *
858  *     - dma_buf_move_notify()
859  */
860 
861 /**
862  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
863  * @dmabuf:		[in]	buffer to attach device to.
864  * @dev:		[in]	device to be attached.
865  * @importer_ops:	[in]	importer operations for the attachment
866  * @importer_priv:	[in]	importer private pointer for the attachment
867  *
868  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
869  * must be cleaned up by calling dma_buf_detach().
870  *
871  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
872  * functionality.
873  *
874  * Returns:
875  *
876  * A pointer to newly created &dma_buf_attachment on success, or a negative
877  * error code wrapped into a pointer on failure.
878  *
879  * Note that this can fail if the backing storage of @dmabuf is in a place not
880  * accessible to @dev, and cannot be moved to a more suitable place. This is
881  * indicated with the error code -EBUSY.
882  */
883 struct dma_buf_attachment *
884 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
885 		       const struct dma_buf_attach_ops *importer_ops,
886 		       void *importer_priv)
887 {
888 	struct dma_buf_attachment *attach;
889 	int ret;
890 
891 	if (WARN_ON(!dmabuf || !dev))
892 		return ERR_PTR(-EINVAL);
893 
894 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
895 		return ERR_PTR(-EINVAL);
896 
897 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
898 	if (!attach)
899 		return ERR_PTR(-ENOMEM);
900 
901 	attach->dev = dev;
902 	attach->dmabuf = dmabuf;
903 	if (importer_ops)
904 		attach->peer2peer = importer_ops->allow_peer2peer;
905 	attach->importer_ops = importer_ops;
906 	attach->importer_priv = importer_priv;
907 
908 	if (dmabuf->ops->attach) {
909 		ret = dmabuf->ops->attach(dmabuf, attach);
910 		if (ret)
911 			goto err_attach;
912 	}
913 	dma_resv_lock(dmabuf->resv, NULL);
914 	list_add(&attach->node, &dmabuf->attachments);
915 	dma_resv_unlock(dmabuf->resv);
916 
917 	/* When either the importer or the exporter can't handle dynamic
918 	 * mappings we cache the mapping here to avoid issues with the
919 	 * reservation object lock.
920 	 */
921 	if (dma_buf_attachment_is_dynamic(attach) !=
922 	    dma_buf_is_dynamic(dmabuf)) {
923 		struct sg_table *sgt;
924 
925 		dma_resv_lock(attach->dmabuf->resv, NULL);
926 		if (dma_buf_is_dynamic(attach->dmabuf)) {
927 			ret = dmabuf->ops->pin(attach);
928 			if (ret)
929 				goto err_unlock;
930 		}
931 
932 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
933 		if (!sgt)
934 			sgt = ERR_PTR(-ENOMEM);
935 		if (IS_ERR(sgt)) {
936 			ret = PTR_ERR(sgt);
937 			goto err_unpin;
938 		}
939 		dma_resv_unlock(attach->dmabuf->resv);
940 		attach->sgt = sgt;
941 		attach->dir = DMA_BIDIRECTIONAL;
942 	}
943 
944 	return attach;
945 
946 err_attach:
947 	kfree(attach);
948 	return ERR_PTR(ret);
949 
950 err_unpin:
951 	if (dma_buf_is_dynamic(attach->dmabuf))
952 		dmabuf->ops->unpin(attach);
953 
954 err_unlock:
955 	dma_resv_unlock(attach->dmabuf->resv);
956 
957 	dma_buf_detach(dmabuf, attach);
958 	return ERR_PTR(ret);
959 }
960 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
961 
962 /**
963  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
964  * @dmabuf:	[in]	buffer to attach device to.
965  * @dev:	[in]	device to be attached.
966  *
967  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
968  * mapping.
969  */
970 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
971 					  struct device *dev)
972 {
973 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
974 }
975 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
976 
977 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
978 			    struct sg_table *sg_table,
979 			    enum dma_data_direction direction)
980 {
981 	/* uses XOR, hence this unmangles */
982 	mangle_sg_table(sg_table);
983 
984 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
985 }
986 
987 /**
988  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
989  * @dmabuf:	[in]	buffer to detach from.
990  * @attach:	[in]	attachment to be detached; is free'd after this call.
991  *
992  * Clean up a device attachment obtained by calling dma_buf_attach().
993  *
994  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
995  */
996 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
997 {
998 	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
999 		return;
1000 
1001 	dma_resv_lock(dmabuf->resv, NULL);
1002 
1003 	if (attach->sgt) {
1004 
1005 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
1006 
1007 		if (dma_buf_is_dynamic(attach->dmabuf))
1008 			dmabuf->ops->unpin(attach);
1009 	}
1010 	list_del(&attach->node);
1011 
1012 	dma_resv_unlock(dmabuf->resv);
1013 
1014 	if (dmabuf->ops->detach)
1015 		dmabuf->ops->detach(dmabuf, attach);
1016 
1017 	kfree(attach);
1018 }
1019 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1020 
1021 /**
1022  * dma_buf_pin - Lock down the DMA-buf
1023  * @attach:	[in]	attachment which should be pinned
1024  *
1025  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1026  * call this, and only for limited use cases like scanout and not for temporary
1027  * pin operations. It is not permitted to allow userspace to pin arbitrary
1028  * amounts of buffers through this interface.
1029  *
1030  * Buffers must be unpinned by calling dma_buf_unpin().
1031  *
1032  * Returns:
1033  * 0 on success, negative error code on failure.
1034  */
1035 int dma_buf_pin(struct dma_buf_attachment *attach)
1036 {
1037 	struct dma_buf *dmabuf = attach->dmabuf;
1038 	int ret = 0;
1039 
1040 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1041 
1042 	dma_resv_assert_held(dmabuf->resv);
1043 
1044 	if (dmabuf->ops->pin)
1045 		ret = dmabuf->ops->pin(attach);
1046 
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1050 
1051 /**
1052  * dma_buf_unpin - Unpin a DMA-buf
1053  * @attach:	[in]	attachment which should be unpinned
1054  *
1055  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1056  * any mapping of @attach again and inform the importer through
1057  * &dma_buf_attach_ops.move_notify.
1058  */
1059 void dma_buf_unpin(struct dma_buf_attachment *attach)
1060 {
1061 	struct dma_buf *dmabuf = attach->dmabuf;
1062 
1063 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1064 
1065 	dma_resv_assert_held(dmabuf->resv);
1066 
1067 	if (dmabuf->ops->unpin)
1068 		dmabuf->ops->unpin(attach);
1069 }
1070 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1071 
1072 /**
1073  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1074  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1075  * dma_buf_ops.
1076  * @attach:	[in]	attachment whose scatterlist is to be returned
1077  * @direction:	[in]	direction of DMA transfer
1078  *
1079  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1080  * on error. May return -EINTR if it is interrupted by a signal.
1081  *
1082  * On success, the DMA addresses and lengths in the returned scatterlist are
1083  * PAGE_SIZE aligned.
1084  *
1085  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1086  * the underlying backing storage is pinned for as long as a mapping exists,
1087  * therefore users/importers should not hold onto a mapping for undue amounts of
1088  * time.
1089  *
1090  * Important: Dynamic importers must wait for the exclusive fence of the struct
1091  * dma_resv attached to the DMA-BUF first.
1092  */
1093 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1094 					enum dma_data_direction direction)
1095 {
1096 	struct sg_table *sg_table;
1097 	int r;
1098 
1099 	might_sleep();
1100 
1101 	if (WARN_ON(!attach || !attach->dmabuf))
1102 		return ERR_PTR(-EINVAL);
1103 
1104 	dma_resv_assert_held(attach->dmabuf->resv);
1105 
1106 	if (attach->sgt) {
1107 		/*
1108 		 * Two mappings with different directions for the same
1109 		 * attachment are not allowed.
1110 		 */
1111 		if (attach->dir != direction &&
1112 		    attach->dir != DMA_BIDIRECTIONAL)
1113 			return ERR_PTR(-EBUSY);
1114 
1115 		return attach->sgt;
1116 	}
1117 
1118 	if (dma_buf_is_dynamic(attach->dmabuf)) {
1119 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1120 			r = attach->dmabuf->ops->pin(attach);
1121 			if (r)
1122 				return ERR_PTR(r);
1123 		}
1124 	}
1125 
1126 	sg_table = __map_dma_buf(attach, direction);
1127 	if (!sg_table)
1128 		sg_table = ERR_PTR(-ENOMEM);
1129 
1130 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1131 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1132 		attach->dmabuf->ops->unpin(attach);
1133 
1134 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1135 		attach->sgt = sg_table;
1136 		attach->dir = direction;
1137 	}
1138 
1139 #ifdef CONFIG_DMA_API_DEBUG
1140 	if (!IS_ERR(sg_table)) {
1141 		struct scatterlist *sg;
1142 		u64 addr;
1143 		int len;
1144 		int i;
1145 
1146 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1147 			addr = sg_dma_address(sg);
1148 			len = sg_dma_len(sg);
1149 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1150 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1151 					 __func__, addr, len);
1152 			}
1153 		}
1154 	}
1155 #endif /* CONFIG_DMA_API_DEBUG */
1156 	return sg_table;
1157 }
1158 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1159 
1160 /**
1161  * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1162  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1163  * dma_buf_ops.
1164  * @attach:	[in]	attachment whose scatterlist is to be returned
1165  * @direction:	[in]	direction of DMA transfer
1166  *
1167  * Unlocked variant of dma_buf_map_attachment().
1168  */
1169 struct sg_table *
1170 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1171 				enum dma_data_direction direction)
1172 {
1173 	struct sg_table *sg_table;
1174 
1175 	might_sleep();
1176 
1177 	if (WARN_ON(!attach || !attach->dmabuf))
1178 		return ERR_PTR(-EINVAL);
1179 
1180 	dma_resv_lock(attach->dmabuf->resv, NULL);
1181 	sg_table = dma_buf_map_attachment(attach, direction);
1182 	dma_resv_unlock(attach->dmabuf->resv);
1183 
1184 	return sg_table;
1185 }
1186 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1187 
1188 /**
1189  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1190  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1191  * dma_buf_ops.
1192  * @attach:	[in]	attachment to unmap buffer from
1193  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1194  * @direction:  [in]    direction of DMA transfer
1195  *
1196  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1197  */
1198 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1199 				struct sg_table *sg_table,
1200 				enum dma_data_direction direction)
1201 {
1202 	might_sleep();
1203 
1204 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1205 		return;
1206 
1207 	dma_resv_assert_held(attach->dmabuf->resv);
1208 
1209 	if (attach->sgt == sg_table)
1210 		return;
1211 
1212 	__unmap_dma_buf(attach, sg_table, direction);
1213 
1214 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1215 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1216 		dma_buf_unpin(attach);
1217 }
1218 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1219 
1220 /**
1221  * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1222  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1223  * dma_buf_ops.
1224  * @attach:	[in]	attachment to unmap buffer from
1225  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1226  * @direction:	[in]	direction of DMA transfer
1227  *
1228  * Unlocked variant of dma_buf_unmap_attachment().
1229  */
1230 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1231 				       struct sg_table *sg_table,
1232 				       enum dma_data_direction direction)
1233 {
1234 	might_sleep();
1235 
1236 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1237 		return;
1238 
1239 	dma_resv_lock(attach->dmabuf->resv, NULL);
1240 	dma_buf_unmap_attachment(attach, sg_table, direction);
1241 	dma_resv_unlock(attach->dmabuf->resv);
1242 }
1243 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1244 
1245 /**
1246  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1247  *
1248  * @dmabuf:	[in]	buffer which is moving
1249  *
1250  * Informs all attachmenst that they need to destroy and recreated all their
1251  * mappings.
1252  */
1253 void dma_buf_move_notify(struct dma_buf *dmabuf)
1254 {
1255 	struct dma_buf_attachment *attach;
1256 
1257 	dma_resv_assert_held(dmabuf->resv);
1258 
1259 	list_for_each_entry(attach, &dmabuf->attachments, node)
1260 		if (attach->importer_ops)
1261 			attach->importer_ops->move_notify(attach);
1262 }
1263 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1264 
1265 /**
1266  * DOC: cpu access
1267  *
1268  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1269  *
1270  * - Fallback operations in the kernel, for example when a device is connected
1271  *   over USB and the kernel needs to shuffle the data around first before
1272  *   sending it away. Cache coherency is handled by braketing any transactions
1273  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1274  *   access.
1275  *
1276  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1277  *   vmap interface is introduced. Note that on very old 32-bit architectures
1278  *   vmalloc space might be limited and result in vmap calls failing.
1279  *
1280  *   Interfaces::
1281  *
1282  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1283  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1284  *
1285  *   The vmap call can fail if there is no vmap support in the exporter, or if
1286  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1287  *   count for all vmap access and calls down into the exporter's vmap function
1288  *   only when no vmapping exists, and only unmaps it once. Protection against
1289  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1290  *
1291  * - For full compatibility on the importer side with existing userspace
1292  *   interfaces, which might already support mmap'ing buffers. This is needed in
1293  *   many processing pipelines (e.g. feeding a software rendered image into a
1294  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1295  *   framework already supported this and for DMA buffer file descriptors to
1296  *   replace ION buffers mmap support was needed.
1297  *
1298  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1299  *   fd. But like for CPU access there's a need to braket the actual access,
1300  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1301  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1302  *   be restarted.
1303  *
1304  *   Some systems might need some sort of cache coherency management e.g. when
1305  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1306  *   To circumvent this problem there are begin/end coherency markers, that
1307  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1308  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1309  *   sequence would be used like following:
1310  *
1311  *     - mmap dma-buf fd
1312  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1313  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1314  *       want (with the new data being consumed by say the GPU or the scanout
1315  *       device)
1316  *     - munmap once you don't need the buffer any more
1317  *
1318  *    For correctness and optimal performance, it is always required to use
1319  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1320  *    mapped address. Userspace cannot rely on coherent access, even when there
1321  *    are systems where it just works without calling these ioctls.
1322  *
1323  * - And as a CPU fallback in userspace processing pipelines.
1324  *
1325  *   Similar to the motivation for kernel cpu access it is again important that
1326  *   the userspace code of a given importing subsystem can use the same
1327  *   interfaces with a imported dma-buf buffer object as with a native buffer
1328  *   object. This is especially important for drm where the userspace part of
1329  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1330  *   use a different way to mmap a buffer rather invasive.
1331  *
1332  *   The assumption in the current dma-buf interfaces is that redirecting the
1333  *   initial mmap is all that's needed. A survey of some of the existing
1334  *   subsystems shows that no driver seems to do any nefarious thing like
1335  *   syncing up with outstanding asynchronous processing on the device or
1336  *   allocating special resources at fault time. So hopefully this is good
1337  *   enough, since adding interfaces to intercept pagefaults and allow pte
1338  *   shootdowns would increase the complexity quite a bit.
1339  *
1340  *   Interface::
1341  *
1342  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1343  *		       unsigned long);
1344  *
1345  *   If the importing subsystem simply provides a special-purpose mmap call to
1346  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1347  *   equally achieve that for a dma-buf object.
1348  */
1349 
1350 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1351 				      enum dma_data_direction direction)
1352 {
1353 	bool write = (direction == DMA_BIDIRECTIONAL ||
1354 		      direction == DMA_TO_DEVICE);
1355 	struct dma_resv *resv = dmabuf->resv;
1356 	long ret;
1357 
1358 	/* Wait on any implicit rendering fences */
1359 	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1360 				    true, MAX_SCHEDULE_TIMEOUT);
1361 	if (ret < 0)
1362 		return ret;
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1369  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1370  * preparations. Coherency is only guaranteed in the specified range for the
1371  * specified access direction.
1372  * @dmabuf:	[in]	buffer to prepare cpu access for.
1373  * @direction:	[in]	length of range for cpu access.
1374  *
1375  * After the cpu access is complete the caller should call
1376  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1377  * it guaranteed to be coherent with other DMA access.
1378  *
1379  * This function will also wait for any DMA transactions tracked through
1380  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1381  * synchronization this function will only ensure cache coherency, callers must
1382  * ensure synchronization with such DMA transactions on their own.
1383  *
1384  * Can return negative error values, returns 0 on success.
1385  */
1386 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1387 			     enum dma_data_direction direction)
1388 {
1389 	int ret = 0;
1390 
1391 	if (WARN_ON(!dmabuf))
1392 		return -EINVAL;
1393 
1394 	might_lock(&dmabuf->resv->lock.base);
1395 
1396 	if (dmabuf->ops->begin_cpu_access)
1397 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1398 
1399 	/* Ensure that all fences are waited upon - but we first allow
1400 	 * the native handler the chance to do so more efficiently if it
1401 	 * chooses. A double invocation here will be reasonably cheap no-op.
1402 	 */
1403 	if (ret == 0)
1404 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1405 
1406 	return ret;
1407 }
1408 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1409 
1410 /**
1411  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1412  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1413  * actions. Coherency is only guaranteed in the specified range for the
1414  * specified access direction.
1415  * @dmabuf:	[in]	buffer to complete cpu access for.
1416  * @direction:	[in]	length of range for cpu access.
1417  *
1418  * This terminates CPU access started with dma_buf_begin_cpu_access().
1419  *
1420  * Can return negative error values, returns 0 on success.
1421  */
1422 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1423 			   enum dma_data_direction direction)
1424 {
1425 	int ret = 0;
1426 
1427 	WARN_ON(!dmabuf);
1428 
1429 	might_lock(&dmabuf->resv->lock.base);
1430 
1431 	if (dmabuf->ops->end_cpu_access)
1432 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1437 
1438 
1439 /**
1440  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1441  * @dmabuf:	[in]	buffer that should back the vma
1442  * @vma:	[in]	vma for the mmap
1443  * @pgoff:	[in]	offset in pages where this mmap should start within the
1444  *			dma-buf buffer.
1445  *
1446  * This function adjusts the passed in vma so that it points at the file of the
1447  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1448  * checking on the size of the vma. Then it calls the exporters mmap function to
1449  * set up the mapping.
1450  *
1451  * Can return negative error values, returns 0 on success.
1452  */
1453 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1454 		 unsigned long pgoff)
1455 {
1456 	int ret;
1457 
1458 	if (WARN_ON(!dmabuf || !vma))
1459 		return -EINVAL;
1460 
1461 	/* check if buffer supports mmap */
1462 	if (!dmabuf->ops->mmap)
1463 		return -EINVAL;
1464 
1465 	/* check for offset overflow */
1466 	if (pgoff + vma_pages(vma) < pgoff)
1467 		return -EOVERFLOW;
1468 
1469 	/* check for overflowing the buffer's size */
1470 	if (pgoff + vma_pages(vma) >
1471 	    dmabuf->size >> PAGE_SHIFT)
1472 		return -EINVAL;
1473 
1474 	/* readjust the vma */
1475 	vma_set_file(vma, dmabuf->file);
1476 	vma->vm_pgoff = pgoff;
1477 
1478 	dma_resv_lock(dmabuf->resv, NULL);
1479 	ret = dmabuf->ops->mmap(dmabuf, vma);
1480 	dma_resv_unlock(dmabuf->resv);
1481 
1482 	return ret;
1483 }
1484 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1485 
1486 /**
1487  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1488  * address space. Same restrictions as for vmap and friends apply.
1489  * @dmabuf:	[in]	buffer to vmap
1490  * @map:	[out]	returns the vmap pointer
1491  *
1492  * This call may fail due to lack of virtual mapping address space.
1493  * These calls are optional in drivers. The intended use for them
1494  * is for mapping objects linear in kernel space for high use objects.
1495  *
1496  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1497  * dma_buf_end_cpu_access() around any cpu access performed through this
1498  * mapping.
1499  *
1500  * Returns 0 on success, or a negative errno code otherwise.
1501  */
1502 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1503 {
1504 	struct iosys_map ptr;
1505 	int ret;
1506 
1507 	iosys_map_clear(map);
1508 
1509 	if (WARN_ON(!dmabuf))
1510 		return -EINVAL;
1511 
1512 	dma_resv_assert_held(dmabuf->resv);
1513 
1514 	if (!dmabuf->ops->vmap)
1515 		return -EINVAL;
1516 
1517 	if (dmabuf->vmapping_counter) {
1518 		dmabuf->vmapping_counter++;
1519 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1520 		*map = dmabuf->vmap_ptr;
1521 		return 0;
1522 	}
1523 
1524 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1525 
1526 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1527 	if (WARN_ON_ONCE(ret))
1528 		return ret;
1529 
1530 	dmabuf->vmap_ptr = ptr;
1531 	dmabuf->vmapping_counter = 1;
1532 
1533 	*map = dmabuf->vmap_ptr;
1534 
1535 	return 0;
1536 }
1537 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1538 
1539 /**
1540  * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1541  * address space. Same restrictions as for vmap and friends apply.
1542  * @dmabuf:	[in]	buffer to vmap
1543  * @map:	[out]	returns the vmap pointer
1544  *
1545  * Unlocked version of dma_buf_vmap()
1546  *
1547  * Returns 0 on success, or a negative errno code otherwise.
1548  */
1549 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1550 {
1551 	int ret;
1552 
1553 	iosys_map_clear(map);
1554 
1555 	if (WARN_ON(!dmabuf))
1556 		return -EINVAL;
1557 
1558 	dma_resv_lock(dmabuf->resv, NULL);
1559 	ret = dma_buf_vmap(dmabuf, map);
1560 	dma_resv_unlock(dmabuf->resv);
1561 
1562 	return ret;
1563 }
1564 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1565 
1566 /**
1567  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1568  * @dmabuf:	[in]	buffer to vunmap
1569  * @map:	[in]	vmap pointer to vunmap
1570  */
1571 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1572 {
1573 	if (WARN_ON(!dmabuf))
1574 		return;
1575 
1576 	dma_resv_assert_held(dmabuf->resv);
1577 
1578 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1579 	BUG_ON(dmabuf->vmapping_counter == 0);
1580 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1581 
1582 	if (--dmabuf->vmapping_counter == 0) {
1583 		if (dmabuf->ops->vunmap)
1584 			dmabuf->ops->vunmap(dmabuf, map);
1585 		iosys_map_clear(&dmabuf->vmap_ptr);
1586 	}
1587 }
1588 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1589 
1590 /**
1591  * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1592  * @dmabuf:	[in]	buffer to vunmap
1593  * @map:	[in]	vmap pointer to vunmap
1594  */
1595 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1596 {
1597 	if (WARN_ON(!dmabuf))
1598 		return;
1599 
1600 	dma_resv_lock(dmabuf->resv, NULL);
1601 	dma_buf_vunmap(dmabuf, map);
1602 	dma_resv_unlock(dmabuf->resv);
1603 }
1604 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1605 
1606 #ifdef CONFIG_DEBUG_FS
1607 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1608 {
1609 	struct dma_buf *buf_obj;
1610 	struct dma_buf_attachment *attach_obj;
1611 	int count = 0, attach_count;
1612 	size_t size = 0;
1613 	int ret;
1614 
1615 	ret = mutex_lock_interruptible(&db_list.lock);
1616 
1617 	if (ret)
1618 		return ret;
1619 
1620 	seq_puts(s, "\nDma-buf Objects:\n");
1621 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1622 		   "size", "flags", "mode", "count", "ino");
1623 
1624 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1625 
1626 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1627 		if (ret)
1628 			goto error_unlock;
1629 
1630 
1631 		spin_lock(&buf_obj->name_lock);
1632 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1633 				buf_obj->size,
1634 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1635 				file_count(buf_obj->file),
1636 				buf_obj->exp_name,
1637 				file_inode(buf_obj->file)->i_ino,
1638 				buf_obj->name ?: "<none>");
1639 		spin_unlock(&buf_obj->name_lock);
1640 
1641 		dma_resv_describe(buf_obj->resv, s);
1642 
1643 		seq_puts(s, "\tAttached Devices:\n");
1644 		attach_count = 0;
1645 
1646 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1647 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1648 			attach_count++;
1649 		}
1650 		dma_resv_unlock(buf_obj->resv);
1651 
1652 		seq_printf(s, "Total %d devices attached\n\n",
1653 				attach_count);
1654 
1655 		count++;
1656 		size += buf_obj->size;
1657 	}
1658 
1659 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1660 
1661 	mutex_unlock(&db_list.lock);
1662 	return 0;
1663 
1664 error_unlock:
1665 	mutex_unlock(&db_list.lock);
1666 	return ret;
1667 }
1668 
1669 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1670 
1671 static struct dentry *dma_buf_debugfs_dir;
1672 
1673 static int dma_buf_init_debugfs(void)
1674 {
1675 	struct dentry *d;
1676 	int err = 0;
1677 
1678 	d = debugfs_create_dir("dma_buf", NULL);
1679 	if (IS_ERR(d))
1680 		return PTR_ERR(d);
1681 
1682 	dma_buf_debugfs_dir = d;
1683 
1684 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1685 				NULL, &dma_buf_debug_fops);
1686 	if (IS_ERR(d)) {
1687 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1688 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1689 		dma_buf_debugfs_dir = NULL;
1690 		err = PTR_ERR(d);
1691 	}
1692 
1693 	return err;
1694 }
1695 
1696 static void dma_buf_uninit_debugfs(void)
1697 {
1698 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1699 }
1700 #else
1701 static inline int dma_buf_init_debugfs(void)
1702 {
1703 	return 0;
1704 }
1705 static inline void dma_buf_uninit_debugfs(void)
1706 {
1707 }
1708 #endif
1709 
1710 static int __init dma_buf_init(void)
1711 {
1712 	int ret;
1713 
1714 	ret = dma_buf_init_sysfs_statistics();
1715 	if (ret)
1716 		return ret;
1717 
1718 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1719 	if (IS_ERR(dma_buf_mnt))
1720 		return PTR_ERR(dma_buf_mnt);
1721 
1722 	mutex_init(&db_list.lock);
1723 	INIT_LIST_HEAD(&db_list.head);
1724 	dma_buf_init_debugfs();
1725 	return 0;
1726 }
1727 subsys_initcall(dma_buf_init);
1728 
1729 static void __exit dma_buf_deinit(void)
1730 {
1731 	dma_buf_uninit_debugfs();
1732 	kern_unmount(dma_buf_mnt);
1733 	dma_buf_uninit_sysfs_statistics();
1734 }
1735 __exitcall(dma_buf_deinit);
1736