1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/sync_file.h> 24 #include <linux/poll.h> 25 #include <linux/dma-resv.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/pseudo_fs.h> 29 30 #include <uapi/linux/dma-buf.h> 31 #include <uapi/linux/magic.h> 32 33 #include "dma-buf-sysfs-stats.h" 34 35 static inline int is_dma_buf_file(struct file *); 36 37 struct dma_buf_list { 38 struct list_head head; 39 struct mutex lock; 40 }; 41 42 static struct dma_buf_list db_list; 43 44 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 45 { 46 struct dma_buf *dmabuf; 47 char name[DMA_BUF_NAME_LEN]; 48 size_t ret = 0; 49 50 dmabuf = dentry->d_fsdata; 51 spin_lock(&dmabuf->name_lock); 52 if (dmabuf->name) 53 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 54 spin_unlock(&dmabuf->name_lock); 55 56 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 57 dentry->d_name.name, ret > 0 ? name : ""); 58 } 59 60 static void dma_buf_release(struct dentry *dentry) 61 { 62 struct dma_buf *dmabuf; 63 64 dmabuf = dentry->d_fsdata; 65 if (unlikely(!dmabuf)) 66 return; 67 68 BUG_ON(dmabuf->vmapping_counter); 69 70 /* 71 * If you hit this BUG() it could mean: 72 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 73 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 74 */ 75 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 76 77 dma_buf_stats_teardown(dmabuf); 78 dmabuf->ops->release(dmabuf); 79 80 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 81 dma_resv_fini(dmabuf->resv); 82 83 WARN_ON(!list_empty(&dmabuf->attachments)); 84 module_put(dmabuf->owner); 85 kfree(dmabuf->name); 86 kfree(dmabuf); 87 } 88 89 static int dma_buf_file_release(struct inode *inode, struct file *file) 90 { 91 struct dma_buf *dmabuf; 92 93 if (!is_dma_buf_file(file)) 94 return -EINVAL; 95 96 dmabuf = file->private_data; 97 98 mutex_lock(&db_list.lock); 99 list_del(&dmabuf->list_node); 100 mutex_unlock(&db_list.lock); 101 102 return 0; 103 } 104 105 static const struct dentry_operations dma_buf_dentry_ops = { 106 .d_dname = dmabuffs_dname, 107 .d_release = dma_buf_release, 108 }; 109 110 static struct vfsmount *dma_buf_mnt; 111 112 static int dma_buf_fs_init_context(struct fs_context *fc) 113 { 114 struct pseudo_fs_context *ctx; 115 116 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 117 if (!ctx) 118 return -ENOMEM; 119 ctx->dops = &dma_buf_dentry_ops; 120 return 0; 121 } 122 123 static struct file_system_type dma_buf_fs_type = { 124 .name = "dmabuf", 125 .init_fs_context = dma_buf_fs_init_context, 126 .kill_sb = kill_anon_super, 127 }; 128 129 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 130 { 131 struct dma_buf *dmabuf; 132 133 if (!is_dma_buf_file(file)) 134 return -EINVAL; 135 136 dmabuf = file->private_data; 137 138 /* check if buffer supports mmap */ 139 if (!dmabuf->ops->mmap) 140 return -EINVAL; 141 142 /* check for overflowing the buffer's size */ 143 if (vma->vm_pgoff + vma_pages(vma) > 144 dmabuf->size >> PAGE_SHIFT) 145 return -EINVAL; 146 147 return dmabuf->ops->mmap(dmabuf, vma); 148 } 149 150 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 151 { 152 struct dma_buf *dmabuf; 153 loff_t base; 154 155 if (!is_dma_buf_file(file)) 156 return -EBADF; 157 158 dmabuf = file->private_data; 159 160 /* only support discovering the end of the buffer, 161 but also allow SEEK_SET to maintain the idiomatic 162 SEEK_END(0), SEEK_CUR(0) pattern */ 163 if (whence == SEEK_END) 164 base = dmabuf->size; 165 else if (whence == SEEK_SET) 166 base = 0; 167 else 168 return -EINVAL; 169 170 if (offset != 0) 171 return -EINVAL; 172 173 return base + offset; 174 } 175 176 /** 177 * DOC: implicit fence polling 178 * 179 * To support cross-device and cross-driver synchronization of buffer access 180 * implicit fences (represented internally in the kernel with &struct dma_fence) 181 * can be attached to a &dma_buf. The glue for that and a few related things are 182 * provided in the &dma_resv structure. 183 * 184 * Userspace can query the state of these implicitly tracked fences using poll() 185 * and related system calls: 186 * 187 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 188 * most recent write or exclusive fence. 189 * 190 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 191 * all attached fences, shared and exclusive ones. 192 * 193 * Note that this only signals the completion of the respective fences, i.e. the 194 * DMA transfers are complete. Cache flushing and any other necessary 195 * preparations before CPU access can begin still need to happen. 196 * 197 * As an alternative to poll(), the set of fences on DMA buffer can be 198 * exported as a &sync_file using &dma_buf_sync_file_export. 199 */ 200 201 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 202 { 203 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 204 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 205 unsigned long flags; 206 207 spin_lock_irqsave(&dcb->poll->lock, flags); 208 wake_up_locked_poll(dcb->poll, dcb->active); 209 dcb->active = 0; 210 spin_unlock_irqrestore(&dcb->poll->lock, flags); 211 dma_fence_put(fence); 212 /* Paired with get_file in dma_buf_poll */ 213 fput(dmabuf->file); 214 } 215 216 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 217 struct dma_buf_poll_cb_t *dcb) 218 { 219 struct dma_resv_iter cursor; 220 struct dma_fence *fence; 221 int r; 222 223 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 224 fence) { 225 dma_fence_get(fence); 226 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 227 if (!r) 228 return true; 229 dma_fence_put(fence); 230 } 231 232 return false; 233 } 234 235 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 236 { 237 struct dma_buf *dmabuf; 238 struct dma_resv *resv; 239 __poll_t events; 240 241 dmabuf = file->private_data; 242 if (!dmabuf || !dmabuf->resv) 243 return EPOLLERR; 244 245 resv = dmabuf->resv; 246 247 poll_wait(file, &dmabuf->poll, poll); 248 249 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 250 if (!events) 251 return 0; 252 253 dma_resv_lock(resv, NULL); 254 255 if (events & EPOLLOUT) { 256 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 257 258 /* Check that callback isn't busy */ 259 spin_lock_irq(&dmabuf->poll.lock); 260 if (dcb->active) 261 events &= ~EPOLLOUT; 262 else 263 dcb->active = EPOLLOUT; 264 spin_unlock_irq(&dmabuf->poll.lock); 265 266 if (events & EPOLLOUT) { 267 /* Paired with fput in dma_buf_poll_cb */ 268 get_file(dmabuf->file); 269 270 if (!dma_buf_poll_add_cb(resv, true, dcb)) 271 /* No callback queued, wake up any other waiters */ 272 dma_buf_poll_cb(NULL, &dcb->cb); 273 else 274 events &= ~EPOLLOUT; 275 } 276 } 277 278 if (events & EPOLLIN) { 279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 280 281 /* Check that callback isn't busy */ 282 spin_lock_irq(&dmabuf->poll.lock); 283 if (dcb->active) 284 events &= ~EPOLLIN; 285 else 286 dcb->active = EPOLLIN; 287 spin_unlock_irq(&dmabuf->poll.lock); 288 289 if (events & EPOLLIN) { 290 /* Paired with fput in dma_buf_poll_cb */ 291 get_file(dmabuf->file); 292 293 if (!dma_buf_poll_add_cb(resv, false, dcb)) 294 /* No callback queued, wake up any other waiters */ 295 dma_buf_poll_cb(NULL, &dcb->cb); 296 else 297 events &= ~EPOLLIN; 298 } 299 } 300 301 dma_resv_unlock(resv); 302 return events; 303 } 304 305 /** 306 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 307 * It could support changing the name of the dma-buf if the same 308 * piece of memory is used for multiple purpose between different devices. 309 * 310 * @dmabuf: [in] dmabuf buffer that will be renamed. 311 * @buf: [in] A piece of userspace memory that contains the name of 312 * the dma-buf. 313 * 314 * Returns 0 on success. If the dma-buf buffer is already attached to 315 * devices, return -EBUSY. 316 * 317 */ 318 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 319 { 320 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 321 322 if (IS_ERR(name)) 323 return PTR_ERR(name); 324 325 spin_lock(&dmabuf->name_lock); 326 kfree(dmabuf->name); 327 dmabuf->name = name; 328 spin_unlock(&dmabuf->name_lock); 329 330 return 0; 331 } 332 333 #if IS_ENABLED(CONFIG_SYNC_FILE) 334 static long dma_buf_export_sync_file(struct dma_buf *dmabuf, 335 void __user *user_data) 336 { 337 struct dma_buf_export_sync_file arg; 338 enum dma_resv_usage usage; 339 struct dma_fence *fence = NULL; 340 struct sync_file *sync_file; 341 int fd, ret; 342 343 if (copy_from_user(&arg, user_data, sizeof(arg))) 344 return -EFAULT; 345 346 if (arg.flags & ~DMA_BUF_SYNC_RW) 347 return -EINVAL; 348 349 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 350 return -EINVAL; 351 352 fd = get_unused_fd_flags(O_CLOEXEC); 353 if (fd < 0) 354 return fd; 355 356 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); 357 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); 358 if (ret) 359 goto err_put_fd; 360 361 if (!fence) 362 fence = dma_fence_get_stub(); 363 364 sync_file = sync_file_create(fence); 365 366 dma_fence_put(fence); 367 368 if (!sync_file) { 369 ret = -ENOMEM; 370 goto err_put_fd; 371 } 372 373 arg.fd = fd; 374 if (copy_to_user(user_data, &arg, sizeof(arg))) { 375 ret = -EFAULT; 376 goto err_put_file; 377 } 378 379 fd_install(fd, sync_file->file); 380 381 return 0; 382 383 err_put_file: 384 fput(sync_file->file); 385 err_put_fd: 386 put_unused_fd(fd); 387 return ret; 388 } 389 390 static long dma_buf_import_sync_file(struct dma_buf *dmabuf, 391 const void __user *user_data) 392 { 393 struct dma_buf_import_sync_file arg; 394 struct dma_fence *fence; 395 enum dma_resv_usage usage; 396 int ret = 0; 397 398 if (copy_from_user(&arg, user_data, sizeof(arg))) 399 return -EFAULT; 400 401 if (arg.flags & ~DMA_BUF_SYNC_RW) 402 return -EINVAL; 403 404 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 405 return -EINVAL; 406 407 fence = sync_file_get_fence(arg.fd); 408 if (!fence) 409 return -EINVAL; 410 411 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : 412 DMA_RESV_USAGE_READ; 413 414 dma_resv_lock(dmabuf->resv, NULL); 415 416 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 417 if (!ret) 418 dma_resv_add_fence(dmabuf->resv, fence, usage); 419 420 dma_resv_unlock(dmabuf->resv); 421 422 dma_fence_put(fence); 423 424 return ret; 425 } 426 #endif 427 428 static long dma_buf_ioctl(struct file *file, 429 unsigned int cmd, unsigned long arg) 430 { 431 struct dma_buf *dmabuf; 432 struct dma_buf_sync sync; 433 enum dma_data_direction direction; 434 int ret; 435 436 dmabuf = file->private_data; 437 438 switch (cmd) { 439 case DMA_BUF_IOCTL_SYNC: 440 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 441 return -EFAULT; 442 443 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 444 return -EINVAL; 445 446 switch (sync.flags & DMA_BUF_SYNC_RW) { 447 case DMA_BUF_SYNC_READ: 448 direction = DMA_FROM_DEVICE; 449 break; 450 case DMA_BUF_SYNC_WRITE: 451 direction = DMA_TO_DEVICE; 452 break; 453 case DMA_BUF_SYNC_RW: 454 direction = DMA_BIDIRECTIONAL; 455 break; 456 default: 457 return -EINVAL; 458 } 459 460 if (sync.flags & DMA_BUF_SYNC_END) 461 ret = dma_buf_end_cpu_access(dmabuf, direction); 462 else 463 ret = dma_buf_begin_cpu_access(dmabuf, direction); 464 465 return ret; 466 467 case DMA_BUF_SET_NAME_A: 468 case DMA_BUF_SET_NAME_B: 469 return dma_buf_set_name(dmabuf, (const char __user *)arg); 470 471 #if IS_ENABLED(CONFIG_SYNC_FILE) 472 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: 473 return dma_buf_export_sync_file(dmabuf, (void __user *)arg); 474 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: 475 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); 476 #endif 477 478 default: 479 return -ENOTTY; 480 } 481 } 482 483 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 484 { 485 struct dma_buf *dmabuf = file->private_data; 486 487 seq_printf(m, "size:\t%zu\n", dmabuf->size); 488 /* Don't count the temporary reference taken inside procfs seq_show */ 489 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 490 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 491 spin_lock(&dmabuf->name_lock); 492 if (dmabuf->name) 493 seq_printf(m, "name:\t%s\n", dmabuf->name); 494 spin_unlock(&dmabuf->name_lock); 495 } 496 497 static const struct file_operations dma_buf_fops = { 498 .release = dma_buf_file_release, 499 .mmap = dma_buf_mmap_internal, 500 .llseek = dma_buf_llseek, 501 .poll = dma_buf_poll, 502 .unlocked_ioctl = dma_buf_ioctl, 503 .compat_ioctl = compat_ptr_ioctl, 504 .show_fdinfo = dma_buf_show_fdinfo, 505 }; 506 507 /* 508 * is_dma_buf_file - Check if struct file* is associated with dma_buf 509 */ 510 static inline int is_dma_buf_file(struct file *file) 511 { 512 return file->f_op == &dma_buf_fops; 513 } 514 515 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 516 { 517 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 518 struct file *file; 519 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 520 521 if (IS_ERR(inode)) 522 return ERR_CAST(inode); 523 524 inode->i_size = dmabuf->size; 525 inode_set_bytes(inode, dmabuf->size); 526 527 /* 528 * The ->i_ino acquired from get_next_ino() is not unique thus 529 * not suitable for using it as dentry name by dmabuf stats. 530 * Override ->i_ino with the unique and dmabuffs specific 531 * value. 532 */ 533 inode->i_ino = atomic64_add_return(1, &dmabuf_inode); 534 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 535 flags, &dma_buf_fops); 536 if (IS_ERR(file)) 537 goto err_alloc_file; 538 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 539 file->private_data = dmabuf; 540 file->f_path.dentry->d_fsdata = dmabuf; 541 542 return file; 543 544 err_alloc_file: 545 iput(inode); 546 return file; 547 } 548 549 /** 550 * DOC: dma buf device access 551 * 552 * For device DMA access to a shared DMA buffer the usual sequence of operations 553 * is fairly simple: 554 * 555 * 1. The exporter defines his exporter instance using 556 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 557 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 558 * as a file descriptor by calling dma_buf_fd(). 559 * 560 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 561 * to share with: First the file descriptor is converted to a &dma_buf using 562 * dma_buf_get(). Then the buffer is attached to the device using 563 * dma_buf_attach(). 564 * 565 * Up to this stage the exporter is still free to migrate or reallocate the 566 * backing storage. 567 * 568 * 3. Once the buffer is attached to all devices userspace can initiate DMA 569 * access to the shared buffer. In the kernel this is done by calling 570 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 571 * 572 * 4. Once a driver is done with a shared buffer it needs to call 573 * dma_buf_detach() (after cleaning up any mappings) and then release the 574 * reference acquired with dma_buf_get() by calling dma_buf_put(). 575 * 576 * For the detailed semantics exporters are expected to implement see 577 * &dma_buf_ops. 578 */ 579 580 /** 581 * dma_buf_export - Creates a new dma_buf, and associates an anon file 582 * with this buffer, so it can be exported. 583 * Also connect the allocator specific data and ops to the buffer. 584 * Additionally, provide a name string for exporter; useful in debugging. 585 * 586 * @exp_info: [in] holds all the export related information provided 587 * by the exporter. see &struct dma_buf_export_info 588 * for further details. 589 * 590 * Returns, on success, a newly created struct dma_buf object, which wraps the 591 * supplied private data and operations for struct dma_buf_ops. On either 592 * missing ops, or error in allocating struct dma_buf, will return negative 593 * error. 594 * 595 * For most cases the easiest way to create @exp_info is through the 596 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 597 */ 598 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 599 { 600 struct dma_buf *dmabuf; 601 struct dma_resv *resv = exp_info->resv; 602 struct file *file; 603 size_t alloc_size = sizeof(struct dma_buf); 604 int ret; 605 606 if (!exp_info->resv) 607 alloc_size += sizeof(struct dma_resv); 608 else 609 /* prevent &dma_buf[1] == dma_buf->resv */ 610 alloc_size += 1; 611 612 if (WARN_ON(!exp_info->priv 613 || !exp_info->ops 614 || !exp_info->ops->map_dma_buf 615 || !exp_info->ops->unmap_dma_buf 616 || !exp_info->ops->release)) { 617 return ERR_PTR(-EINVAL); 618 } 619 620 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 621 (exp_info->ops->pin || exp_info->ops->unpin))) 622 return ERR_PTR(-EINVAL); 623 624 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 625 return ERR_PTR(-EINVAL); 626 627 if (!try_module_get(exp_info->owner)) 628 return ERR_PTR(-ENOENT); 629 630 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 631 if (!dmabuf) { 632 ret = -ENOMEM; 633 goto err_module; 634 } 635 636 dmabuf->priv = exp_info->priv; 637 dmabuf->ops = exp_info->ops; 638 dmabuf->size = exp_info->size; 639 dmabuf->exp_name = exp_info->exp_name; 640 dmabuf->owner = exp_info->owner; 641 spin_lock_init(&dmabuf->name_lock); 642 init_waitqueue_head(&dmabuf->poll); 643 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 644 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 645 646 if (!resv) { 647 resv = (struct dma_resv *)&dmabuf[1]; 648 dma_resv_init(resv); 649 } 650 dmabuf->resv = resv; 651 652 file = dma_buf_getfile(dmabuf, exp_info->flags); 653 if (IS_ERR(file)) { 654 ret = PTR_ERR(file); 655 goto err_dmabuf; 656 } 657 658 file->f_mode |= FMODE_LSEEK; 659 dmabuf->file = file; 660 661 mutex_init(&dmabuf->lock); 662 INIT_LIST_HEAD(&dmabuf->attachments); 663 664 mutex_lock(&db_list.lock); 665 list_add(&dmabuf->list_node, &db_list.head); 666 mutex_unlock(&db_list.lock); 667 668 ret = dma_buf_stats_setup(dmabuf); 669 if (ret) 670 goto err_sysfs; 671 672 return dmabuf; 673 674 err_sysfs: 675 /* 676 * Set file->f_path.dentry->d_fsdata to NULL so that when 677 * dma_buf_release() gets invoked by dentry_ops, it exits 678 * early before calling the release() dma_buf op. 679 */ 680 file->f_path.dentry->d_fsdata = NULL; 681 fput(file); 682 err_dmabuf: 683 kfree(dmabuf); 684 err_module: 685 module_put(exp_info->owner); 686 return ERR_PTR(ret); 687 } 688 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 689 690 /** 691 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 692 * @dmabuf: [in] pointer to dma_buf for which fd is required. 693 * @flags: [in] flags to give to fd 694 * 695 * On success, returns an associated 'fd'. Else, returns error. 696 */ 697 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 698 { 699 int fd; 700 701 if (!dmabuf || !dmabuf->file) 702 return -EINVAL; 703 704 fd = get_unused_fd_flags(flags); 705 if (fd < 0) 706 return fd; 707 708 fd_install(fd, dmabuf->file); 709 710 return fd; 711 } 712 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 713 714 /** 715 * dma_buf_get - returns the struct dma_buf related to an fd 716 * @fd: [in] fd associated with the struct dma_buf to be returned 717 * 718 * On success, returns the struct dma_buf associated with an fd; uses 719 * file's refcounting done by fget to increase refcount. returns ERR_PTR 720 * otherwise. 721 */ 722 struct dma_buf *dma_buf_get(int fd) 723 { 724 struct file *file; 725 726 file = fget(fd); 727 728 if (!file) 729 return ERR_PTR(-EBADF); 730 731 if (!is_dma_buf_file(file)) { 732 fput(file); 733 return ERR_PTR(-EINVAL); 734 } 735 736 return file->private_data; 737 } 738 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 739 740 /** 741 * dma_buf_put - decreases refcount of the buffer 742 * @dmabuf: [in] buffer to reduce refcount of 743 * 744 * Uses file's refcounting done implicitly by fput(). 745 * 746 * If, as a result of this call, the refcount becomes 0, the 'release' file 747 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 748 * in turn, and frees the memory allocated for dmabuf when exported. 749 */ 750 void dma_buf_put(struct dma_buf *dmabuf) 751 { 752 if (WARN_ON(!dmabuf || !dmabuf->file)) 753 return; 754 755 fput(dmabuf->file); 756 } 757 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 758 759 static void mangle_sg_table(struct sg_table *sg_table) 760 { 761 #ifdef CONFIG_DMABUF_DEBUG 762 int i; 763 struct scatterlist *sg; 764 765 /* To catch abuse of the underlying struct page by importers mix 766 * up the bits, but take care to preserve the low SG_ bits to 767 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 768 * before passing the sgt back to the exporter. */ 769 for_each_sgtable_sg(sg_table, sg, i) 770 sg->page_link ^= ~0xffUL; 771 #endif 772 773 } 774 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 775 enum dma_data_direction direction) 776 { 777 struct sg_table *sg_table; 778 signed long ret; 779 780 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 781 if (IS_ERR_OR_NULL(sg_table)) 782 return sg_table; 783 784 if (!dma_buf_attachment_is_dynamic(attach)) { 785 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 786 DMA_RESV_USAGE_KERNEL, true, 787 MAX_SCHEDULE_TIMEOUT); 788 if (ret < 0) { 789 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 790 direction); 791 return ERR_PTR(ret); 792 } 793 } 794 795 mangle_sg_table(sg_table); 796 return sg_table; 797 } 798 799 /** 800 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 801 * @dmabuf: [in] buffer to attach device to. 802 * @dev: [in] device to be attached. 803 * @importer_ops: [in] importer operations for the attachment 804 * @importer_priv: [in] importer private pointer for the attachment 805 * 806 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 807 * must be cleaned up by calling dma_buf_detach(). 808 * 809 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 810 * functionality. 811 * 812 * Returns: 813 * 814 * A pointer to newly created &dma_buf_attachment on success, or a negative 815 * error code wrapped into a pointer on failure. 816 * 817 * Note that this can fail if the backing storage of @dmabuf is in a place not 818 * accessible to @dev, and cannot be moved to a more suitable place. This is 819 * indicated with the error code -EBUSY. 820 */ 821 struct dma_buf_attachment * 822 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 823 const struct dma_buf_attach_ops *importer_ops, 824 void *importer_priv) 825 { 826 struct dma_buf_attachment *attach; 827 int ret; 828 829 if (WARN_ON(!dmabuf || !dev)) 830 return ERR_PTR(-EINVAL); 831 832 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 833 return ERR_PTR(-EINVAL); 834 835 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 836 if (!attach) 837 return ERR_PTR(-ENOMEM); 838 839 attach->dev = dev; 840 attach->dmabuf = dmabuf; 841 if (importer_ops) 842 attach->peer2peer = importer_ops->allow_peer2peer; 843 attach->importer_ops = importer_ops; 844 attach->importer_priv = importer_priv; 845 846 if (dmabuf->ops->attach) { 847 ret = dmabuf->ops->attach(dmabuf, attach); 848 if (ret) 849 goto err_attach; 850 } 851 dma_resv_lock(dmabuf->resv, NULL); 852 list_add(&attach->node, &dmabuf->attachments); 853 dma_resv_unlock(dmabuf->resv); 854 855 /* When either the importer or the exporter can't handle dynamic 856 * mappings we cache the mapping here to avoid issues with the 857 * reservation object lock. 858 */ 859 if (dma_buf_attachment_is_dynamic(attach) != 860 dma_buf_is_dynamic(dmabuf)) { 861 struct sg_table *sgt; 862 863 if (dma_buf_is_dynamic(attach->dmabuf)) { 864 dma_resv_lock(attach->dmabuf->resv, NULL); 865 ret = dmabuf->ops->pin(attach); 866 if (ret) 867 goto err_unlock; 868 } 869 870 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 871 if (!sgt) 872 sgt = ERR_PTR(-ENOMEM); 873 if (IS_ERR(sgt)) { 874 ret = PTR_ERR(sgt); 875 goto err_unpin; 876 } 877 if (dma_buf_is_dynamic(attach->dmabuf)) 878 dma_resv_unlock(attach->dmabuf->resv); 879 attach->sgt = sgt; 880 attach->dir = DMA_BIDIRECTIONAL; 881 } 882 883 return attach; 884 885 err_attach: 886 kfree(attach); 887 return ERR_PTR(ret); 888 889 err_unpin: 890 if (dma_buf_is_dynamic(attach->dmabuf)) 891 dmabuf->ops->unpin(attach); 892 893 err_unlock: 894 if (dma_buf_is_dynamic(attach->dmabuf)) 895 dma_resv_unlock(attach->dmabuf->resv); 896 897 dma_buf_detach(dmabuf, attach); 898 return ERR_PTR(ret); 899 } 900 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 901 902 /** 903 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 904 * @dmabuf: [in] buffer to attach device to. 905 * @dev: [in] device to be attached. 906 * 907 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 908 * mapping. 909 */ 910 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 911 struct device *dev) 912 { 913 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 914 } 915 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 916 917 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 918 struct sg_table *sg_table, 919 enum dma_data_direction direction) 920 { 921 /* uses XOR, hence this unmangles */ 922 mangle_sg_table(sg_table); 923 924 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 925 } 926 927 /** 928 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 929 * @dmabuf: [in] buffer to detach from. 930 * @attach: [in] attachment to be detached; is free'd after this call. 931 * 932 * Clean up a device attachment obtained by calling dma_buf_attach(). 933 * 934 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 935 */ 936 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 937 { 938 if (WARN_ON(!dmabuf || !attach)) 939 return; 940 941 if (attach->sgt) { 942 if (dma_buf_is_dynamic(attach->dmabuf)) 943 dma_resv_lock(attach->dmabuf->resv, NULL); 944 945 __unmap_dma_buf(attach, attach->sgt, attach->dir); 946 947 if (dma_buf_is_dynamic(attach->dmabuf)) { 948 dmabuf->ops->unpin(attach); 949 dma_resv_unlock(attach->dmabuf->resv); 950 } 951 } 952 953 dma_resv_lock(dmabuf->resv, NULL); 954 list_del(&attach->node); 955 dma_resv_unlock(dmabuf->resv); 956 if (dmabuf->ops->detach) 957 dmabuf->ops->detach(dmabuf, attach); 958 959 kfree(attach); 960 } 961 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 962 963 /** 964 * dma_buf_pin - Lock down the DMA-buf 965 * @attach: [in] attachment which should be pinned 966 * 967 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 968 * call this, and only for limited use cases like scanout and not for temporary 969 * pin operations. It is not permitted to allow userspace to pin arbitrary 970 * amounts of buffers through this interface. 971 * 972 * Buffers must be unpinned by calling dma_buf_unpin(). 973 * 974 * Returns: 975 * 0 on success, negative error code on failure. 976 */ 977 int dma_buf_pin(struct dma_buf_attachment *attach) 978 { 979 struct dma_buf *dmabuf = attach->dmabuf; 980 int ret = 0; 981 982 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 983 984 dma_resv_assert_held(dmabuf->resv); 985 986 if (dmabuf->ops->pin) 987 ret = dmabuf->ops->pin(attach); 988 989 return ret; 990 } 991 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 992 993 /** 994 * dma_buf_unpin - Unpin a DMA-buf 995 * @attach: [in] attachment which should be unpinned 996 * 997 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 998 * any mapping of @attach again and inform the importer through 999 * &dma_buf_attach_ops.move_notify. 1000 */ 1001 void dma_buf_unpin(struct dma_buf_attachment *attach) 1002 { 1003 struct dma_buf *dmabuf = attach->dmabuf; 1004 1005 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1006 1007 dma_resv_assert_held(dmabuf->resv); 1008 1009 if (dmabuf->ops->unpin) 1010 dmabuf->ops->unpin(attach); 1011 } 1012 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 1013 1014 /** 1015 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 1016 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1017 * dma_buf_ops. 1018 * @attach: [in] attachment whose scatterlist is to be returned 1019 * @direction: [in] direction of DMA transfer 1020 * 1021 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 1022 * on error. May return -EINTR if it is interrupted by a signal. 1023 * 1024 * On success, the DMA addresses and lengths in the returned scatterlist are 1025 * PAGE_SIZE aligned. 1026 * 1027 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 1028 * the underlying backing storage is pinned for as long as a mapping exists, 1029 * therefore users/importers should not hold onto a mapping for undue amounts of 1030 * time. 1031 * 1032 * Important: Dynamic importers must wait for the exclusive fence of the struct 1033 * dma_resv attached to the DMA-BUF first. 1034 */ 1035 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 1036 enum dma_data_direction direction) 1037 { 1038 struct sg_table *sg_table; 1039 int r; 1040 1041 might_sleep(); 1042 1043 if (WARN_ON(!attach || !attach->dmabuf)) 1044 return ERR_PTR(-EINVAL); 1045 1046 if (dma_buf_attachment_is_dynamic(attach)) 1047 dma_resv_assert_held(attach->dmabuf->resv); 1048 1049 if (attach->sgt) { 1050 /* 1051 * Two mappings with different directions for the same 1052 * attachment are not allowed. 1053 */ 1054 if (attach->dir != direction && 1055 attach->dir != DMA_BIDIRECTIONAL) 1056 return ERR_PTR(-EBUSY); 1057 1058 return attach->sgt; 1059 } 1060 1061 if (dma_buf_is_dynamic(attach->dmabuf)) { 1062 dma_resv_assert_held(attach->dmabuf->resv); 1063 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 1064 r = attach->dmabuf->ops->pin(attach); 1065 if (r) 1066 return ERR_PTR(r); 1067 } 1068 } 1069 1070 sg_table = __map_dma_buf(attach, direction); 1071 if (!sg_table) 1072 sg_table = ERR_PTR(-ENOMEM); 1073 1074 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 1075 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1076 attach->dmabuf->ops->unpin(attach); 1077 1078 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 1079 attach->sgt = sg_table; 1080 attach->dir = direction; 1081 } 1082 1083 #ifdef CONFIG_DMA_API_DEBUG 1084 if (!IS_ERR(sg_table)) { 1085 struct scatterlist *sg; 1086 u64 addr; 1087 int len; 1088 int i; 1089 1090 for_each_sgtable_dma_sg(sg_table, sg, i) { 1091 addr = sg_dma_address(sg); 1092 len = sg_dma_len(sg); 1093 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 1094 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 1095 __func__, addr, len); 1096 } 1097 } 1098 } 1099 #endif /* CONFIG_DMA_API_DEBUG */ 1100 return sg_table; 1101 } 1102 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 1103 1104 /** 1105 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1106 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1107 * dma_buf_ops. 1108 * @attach: [in] attachment to unmap buffer from 1109 * @sg_table: [in] scatterlist info of the buffer to unmap 1110 * @direction: [in] direction of DMA transfer 1111 * 1112 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1113 */ 1114 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1115 struct sg_table *sg_table, 1116 enum dma_data_direction direction) 1117 { 1118 might_sleep(); 1119 1120 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1121 return; 1122 1123 if (dma_buf_attachment_is_dynamic(attach)) 1124 dma_resv_assert_held(attach->dmabuf->resv); 1125 1126 if (attach->sgt == sg_table) 1127 return; 1128 1129 if (dma_buf_is_dynamic(attach->dmabuf)) 1130 dma_resv_assert_held(attach->dmabuf->resv); 1131 1132 __unmap_dma_buf(attach, sg_table, direction); 1133 1134 if (dma_buf_is_dynamic(attach->dmabuf) && 1135 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1136 dma_buf_unpin(attach); 1137 } 1138 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1139 1140 /** 1141 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1142 * 1143 * @dmabuf: [in] buffer which is moving 1144 * 1145 * Informs all attachmenst that they need to destroy and recreated all their 1146 * mappings. 1147 */ 1148 void dma_buf_move_notify(struct dma_buf *dmabuf) 1149 { 1150 struct dma_buf_attachment *attach; 1151 1152 dma_resv_assert_held(dmabuf->resv); 1153 1154 list_for_each_entry(attach, &dmabuf->attachments, node) 1155 if (attach->importer_ops) 1156 attach->importer_ops->move_notify(attach); 1157 } 1158 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1159 1160 /** 1161 * DOC: cpu access 1162 * 1163 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1164 * 1165 * - Fallback operations in the kernel, for example when a device is connected 1166 * over USB and the kernel needs to shuffle the data around first before 1167 * sending it away. Cache coherency is handled by braketing any transactions 1168 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1169 * access. 1170 * 1171 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1172 * vmap interface is introduced. Note that on very old 32-bit architectures 1173 * vmalloc space might be limited and result in vmap calls failing. 1174 * 1175 * Interfaces:: 1176 * 1177 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1178 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1179 * 1180 * The vmap call can fail if there is no vmap support in the exporter, or if 1181 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1182 * count for all vmap access and calls down into the exporter's vmap function 1183 * only when no vmapping exists, and only unmaps it once. Protection against 1184 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1185 * 1186 * - For full compatibility on the importer side with existing userspace 1187 * interfaces, which might already support mmap'ing buffers. This is needed in 1188 * many processing pipelines (e.g. feeding a software rendered image into a 1189 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1190 * framework already supported this and for DMA buffer file descriptors to 1191 * replace ION buffers mmap support was needed. 1192 * 1193 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1194 * fd. But like for CPU access there's a need to braket the actual access, 1195 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1196 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1197 * be restarted. 1198 * 1199 * Some systems might need some sort of cache coherency management e.g. when 1200 * CPU and GPU domains are being accessed through dma-buf at the same time. 1201 * To circumvent this problem there are begin/end coherency markers, that 1202 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1203 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1204 * sequence would be used like following: 1205 * 1206 * - mmap dma-buf fd 1207 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1208 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1209 * want (with the new data being consumed by say the GPU or the scanout 1210 * device) 1211 * - munmap once you don't need the buffer any more 1212 * 1213 * For correctness and optimal performance, it is always required to use 1214 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1215 * mapped address. Userspace cannot rely on coherent access, even when there 1216 * are systems where it just works without calling these ioctls. 1217 * 1218 * - And as a CPU fallback in userspace processing pipelines. 1219 * 1220 * Similar to the motivation for kernel cpu access it is again important that 1221 * the userspace code of a given importing subsystem can use the same 1222 * interfaces with a imported dma-buf buffer object as with a native buffer 1223 * object. This is especially important for drm where the userspace part of 1224 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1225 * use a different way to mmap a buffer rather invasive. 1226 * 1227 * The assumption in the current dma-buf interfaces is that redirecting the 1228 * initial mmap is all that's needed. A survey of some of the existing 1229 * subsystems shows that no driver seems to do any nefarious thing like 1230 * syncing up with outstanding asynchronous processing on the device or 1231 * allocating special resources at fault time. So hopefully this is good 1232 * enough, since adding interfaces to intercept pagefaults and allow pte 1233 * shootdowns would increase the complexity quite a bit. 1234 * 1235 * Interface:: 1236 * 1237 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1238 * unsigned long); 1239 * 1240 * If the importing subsystem simply provides a special-purpose mmap call to 1241 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1242 * equally achieve that for a dma-buf object. 1243 */ 1244 1245 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1246 enum dma_data_direction direction) 1247 { 1248 bool write = (direction == DMA_BIDIRECTIONAL || 1249 direction == DMA_TO_DEVICE); 1250 struct dma_resv *resv = dmabuf->resv; 1251 long ret; 1252 1253 /* Wait on any implicit rendering fences */ 1254 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1255 true, MAX_SCHEDULE_TIMEOUT); 1256 if (ret < 0) 1257 return ret; 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1264 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1265 * preparations. Coherency is only guaranteed in the specified range for the 1266 * specified access direction. 1267 * @dmabuf: [in] buffer to prepare cpu access for. 1268 * @direction: [in] length of range for cpu access. 1269 * 1270 * After the cpu access is complete the caller should call 1271 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1272 * it guaranteed to be coherent with other DMA access. 1273 * 1274 * This function will also wait for any DMA transactions tracked through 1275 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1276 * synchronization this function will only ensure cache coherency, callers must 1277 * ensure synchronization with such DMA transactions on their own. 1278 * 1279 * Can return negative error values, returns 0 on success. 1280 */ 1281 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1282 enum dma_data_direction direction) 1283 { 1284 int ret = 0; 1285 1286 if (WARN_ON(!dmabuf)) 1287 return -EINVAL; 1288 1289 might_lock(&dmabuf->resv->lock.base); 1290 1291 if (dmabuf->ops->begin_cpu_access) 1292 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1293 1294 /* Ensure that all fences are waited upon - but we first allow 1295 * the native handler the chance to do so more efficiently if it 1296 * chooses. A double invocation here will be reasonably cheap no-op. 1297 */ 1298 if (ret == 0) 1299 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1300 1301 return ret; 1302 } 1303 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1304 1305 /** 1306 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1307 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1308 * actions. Coherency is only guaranteed in the specified range for the 1309 * specified access direction. 1310 * @dmabuf: [in] buffer to complete cpu access for. 1311 * @direction: [in] length of range for cpu access. 1312 * 1313 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1314 * 1315 * Can return negative error values, returns 0 on success. 1316 */ 1317 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1318 enum dma_data_direction direction) 1319 { 1320 int ret = 0; 1321 1322 WARN_ON(!dmabuf); 1323 1324 might_lock(&dmabuf->resv->lock.base); 1325 1326 if (dmabuf->ops->end_cpu_access) 1327 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1328 1329 return ret; 1330 } 1331 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1332 1333 1334 /** 1335 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1336 * @dmabuf: [in] buffer that should back the vma 1337 * @vma: [in] vma for the mmap 1338 * @pgoff: [in] offset in pages where this mmap should start within the 1339 * dma-buf buffer. 1340 * 1341 * This function adjusts the passed in vma so that it points at the file of the 1342 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1343 * checking on the size of the vma. Then it calls the exporters mmap function to 1344 * set up the mapping. 1345 * 1346 * Can return negative error values, returns 0 on success. 1347 */ 1348 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1349 unsigned long pgoff) 1350 { 1351 if (WARN_ON(!dmabuf || !vma)) 1352 return -EINVAL; 1353 1354 /* check if buffer supports mmap */ 1355 if (!dmabuf->ops->mmap) 1356 return -EINVAL; 1357 1358 /* check for offset overflow */ 1359 if (pgoff + vma_pages(vma) < pgoff) 1360 return -EOVERFLOW; 1361 1362 /* check for overflowing the buffer's size */ 1363 if (pgoff + vma_pages(vma) > 1364 dmabuf->size >> PAGE_SHIFT) 1365 return -EINVAL; 1366 1367 /* readjust the vma */ 1368 vma_set_file(vma, dmabuf->file); 1369 vma->vm_pgoff = pgoff; 1370 1371 return dmabuf->ops->mmap(dmabuf, vma); 1372 } 1373 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1374 1375 /** 1376 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1377 * address space. Same restrictions as for vmap and friends apply. 1378 * @dmabuf: [in] buffer to vmap 1379 * @map: [out] returns the vmap pointer 1380 * 1381 * This call may fail due to lack of virtual mapping address space. 1382 * These calls are optional in drivers. The intended use for them 1383 * is for mapping objects linear in kernel space for high use objects. 1384 * 1385 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1386 * dma_buf_end_cpu_access() around any cpu access performed through this 1387 * mapping. 1388 * 1389 * Returns 0 on success, or a negative errno code otherwise. 1390 */ 1391 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1392 { 1393 struct iosys_map ptr; 1394 int ret = 0; 1395 1396 iosys_map_clear(map); 1397 1398 if (WARN_ON(!dmabuf)) 1399 return -EINVAL; 1400 1401 if (!dmabuf->ops->vmap) 1402 return -EINVAL; 1403 1404 mutex_lock(&dmabuf->lock); 1405 if (dmabuf->vmapping_counter) { 1406 dmabuf->vmapping_counter++; 1407 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1408 *map = dmabuf->vmap_ptr; 1409 goto out_unlock; 1410 } 1411 1412 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1413 1414 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1415 if (WARN_ON_ONCE(ret)) 1416 goto out_unlock; 1417 1418 dmabuf->vmap_ptr = ptr; 1419 dmabuf->vmapping_counter = 1; 1420 1421 *map = dmabuf->vmap_ptr; 1422 1423 out_unlock: 1424 mutex_unlock(&dmabuf->lock); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1428 1429 /** 1430 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1431 * @dmabuf: [in] buffer to vunmap 1432 * @map: [in] vmap pointer to vunmap 1433 */ 1434 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1435 { 1436 if (WARN_ON(!dmabuf)) 1437 return; 1438 1439 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1440 BUG_ON(dmabuf->vmapping_counter == 0); 1441 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1442 1443 mutex_lock(&dmabuf->lock); 1444 if (--dmabuf->vmapping_counter == 0) { 1445 if (dmabuf->ops->vunmap) 1446 dmabuf->ops->vunmap(dmabuf, map); 1447 iosys_map_clear(&dmabuf->vmap_ptr); 1448 } 1449 mutex_unlock(&dmabuf->lock); 1450 } 1451 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1452 1453 #ifdef CONFIG_DEBUG_FS 1454 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1455 { 1456 struct dma_buf *buf_obj; 1457 struct dma_buf_attachment *attach_obj; 1458 int count = 0, attach_count; 1459 size_t size = 0; 1460 int ret; 1461 1462 ret = mutex_lock_interruptible(&db_list.lock); 1463 1464 if (ret) 1465 return ret; 1466 1467 seq_puts(s, "\nDma-buf Objects:\n"); 1468 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1469 "size", "flags", "mode", "count", "ino"); 1470 1471 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1472 1473 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1474 if (ret) 1475 goto error_unlock; 1476 1477 1478 spin_lock(&buf_obj->name_lock); 1479 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1480 buf_obj->size, 1481 buf_obj->file->f_flags, buf_obj->file->f_mode, 1482 file_count(buf_obj->file), 1483 buf_obj->exp_name, 1484 file_inode(buf_obj->file)->i_ino, 1485 buf_obj->name ?: "<none>"); 1486 spin_unlock(&buf_obj->name_lock); 1487 1488 dma_resv_describe(buf_obj->resv, s); 1489 1490 seq_puts(s, "\tAttached Devices:\n"); 1491 attach_count = 0; 1492 1493 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1494 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1495 attach_count++; 1496 } 1497 dma_resv_unlock(buf_obj->resv); 1498 1499 seq_printf(s, "Total %d devices attached\n\n", 1500 attach_count); 1501 1502 count++; 1503 size += buf_obj->size; 1504 } 1505 1506 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1507 1508 mutex_unlock(&db_list.lock); 1509 return 0; 1510 1511 error_unlock: 1512 mutex_unlock(&db_list.lock); 1513 return ret; 1514 } 1515 1516 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1517 1518 static struct dentry *dma_buf_debugfs_dir; 1519 1520 static int dma_buf_init_debugfs(void) 1521 { 1522 struct dentry *d; 1523 int err = 0; 1524 1525 d = debugfs_create_dir("dma_buf", NULL); 1526 if (IS_ERR(d)) 1527 return PTR_ERR(d); 1528 1529 dma_buf_debugfs_dir = d; 1530 1531 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1532 NULL, &dma_buf_debug_fops); 1533 if (IS_ERR(d)) { 1534 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1535 debugfs_remove_recursive(dma_buf_debugfs_dir); 1536 dma_buf_debugfs_dir = NULL; 1537 err = PTR_ERR(d); 1538 } 1539 1540 return err; 1541 } 1542 1543 static void dma_buf_uninit_debugfs(void) 1544 { 1545 debugfs_remove_recursive(dma_buf_debugfs_dir); 1546 } 1547 #else 1548 static inline int dma_buf_init_debugfs(void) 1549 { 1550 return 0; 1551 } 1552 static inline void dma_buf_uninit_debugfs(void) 1553 { 1554 } 1555 #endif 1556 1557 static int __init dma_buf_init(void) 1558 { 1559 int ret; 1560 1561 ret = dma_buf_init_sysfs_statistics(); 1562 if (ret) 1563 return ret; 1564 1565 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1566 if (IS_ERR(dma_buf_mnt)) 1567 return PTR_ERR(dma_buf_mnt); 1568 1569 mutex_init(&db_list.lock); 1570 INIT_LIST_HEAD(&db_list.head); 1571 dma_buf_init_debugfs(); 1572 return 0; 1573 } 1574 subsys_initcall(dma_buf_init); 1575 1576 static void __exit dma_buf_deinit(void) 1577 { 1578 dma_buf_uninit_debugfs(); 1579 kern_unmount(dma_buf_mnt); 1580 dma_buf_uninit_sysfs_statistics(); 1581 } 1582 __exitcall(dma_buf_deinit); 1583