xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision f17f06a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	dma_resv_lock(dmabuf->resv, NULL);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	dma_resv_unlock(dmabuf->resv);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 	.d_dname = dmabuffs_dname,
59 };
60 
61 static struct vfsmount *dma_buf_mnt;
62 
63 static int dma_buf_fs_init_context(struct fs_context *fc)
64 {
65 	struct pseudo_fs_context *ctx;
66 
67 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 	if (!ctx)
69 		return -ENOMEM;
70 	ctx->dops = &dma_buf_dentry_ops;
71 	return 0;
72 }
73 
74 static struct file_system_type dma_buf_fs_type = {
75 	.name = "dmabuf",
76 	.init_fs_context = dma_buf_fs_init_context,
77 	.kill_sb = kill_anon_super,
78 };
79 
80 static int dma_buf_release(struct inode *inode, struct file *file)
81 {
82 	struct dma_buf *dmabuf;
83 
84 	if (!is_dma_buf_file(file))
85 		return -EINVAL;
86 
87 	dmabuf = file->private_data;
88 
89 	BUG_ON(dmabuf->vmapping_counter);
90 
91 	/*
92 	 * Any fences that a dma-buf poll can wait on should be signaled
93 	 * before releasing dma-buf. This is the responsibility of each
94 	 * driver that uses the reservation objects.
95 	 *
96 	 * If you hit this BUG() it means someone dropped their ref to the
97 	 * dma-buf while still having pending operation to the buffer.
98 	 */
99 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100 
101 	dmabuf->ops->release(dmabuf);
102 
103 	mutex_lock(&db_list.lock);
104 	list_del(&dmabuf->list_node);
105 	mutex_unlock(&db_list.lock);
106 
107 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 		dma_resv_fini(dmabuf->resv);
109 
110 	module_put(dmabuf->owner);
111 	kfree(dmabuf->name);
112 	kfree(dmabuf);
113 	return 0;
114 }
115 
116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
117 {
118 	struct dma_buf *dmabuf;
119 
120 	if (!is_dma_buf_file(file))
121 		return -EINVAL;
122 
123 	dmabuf = file->private_data;
124 
125 	/* check if buffer supports mmap */
126 	if (!dmabuf->ops->mmap)
127 		return -EINVAL;
128 
129 	/* check for overflowing the buffer's size */
130 	if (vma->vm_pgoff + vma_pages(vma) >
131 	    dmabuf->size >> PAGE_SHIFT)
132 		return -EINVAL;
133 
134 	return dmabuf->ops->mmap(dmabuf, vma);
135 }
136 
137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
138 {
139 	struct dma_buf *dmabuf;
140 	loff_t base;
141 
142 	if (!is_dma_buf_file(file))
143 		return -EBADF;
144 
145 	dmabuf = file->private_data;
146 
147 	/* only support discovering the end of the buffer,
148 	   but also allow SEEK_SET to maintain the idiomatic
149 	   SEEK_END(0), SEEK_CUR(0) pattern */
150 	if (whence == SEEK_END)
151 		base = dmabuf->size;
152 	else if (whence == SEEK_SET)
153 		base = 0;
154 	else
155 		return -EINVAL;
156 
157 	if (offset != 0)
158 		return -EINVAL;
159 
160 	return base + offset;
161 }
162 
163 /**
164  * DOC: fence polling
165  *
166  * To support cross-device and cross-driver synchronization of buffer access
167  * implicit fences (represented internally in the kernel with &struct fence) can
168  * be attached to a &dma_buf. The glue for that and a few related things are
169  * provided in the &dma_resv structure.
170  *
171  * Userspace can query the state of these implicitly tracked fences using poll()
172  * and related system calls:
173  *
174  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
175  *   most recent write or exclusive fence.
176  *
177  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
178  *   all attached fences, shared and exclusive ones.
179  *
180  * Note that this only signals the completion of the respective fences, i.e. the
181  * DMA transfers are complete. Cache flushing and any other necessary
182  * preparations before CPU access can begin still need to happen.
183  */
184 
185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
186 {
187 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&dcb->poll->lock, flags);
191 	wake_up_locked_poll(dcb->poll, dcb->active);
192 	dcb->active = 0;
193 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
194 }
195 
196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
197 {
198 	struct dma_buf *dmabuf;
199 	struct dma_resv *resv;
200 	struct dma_resv_list *fobj;
201 	struct dma_fence *fence_excl;
202 	__poll_t events;
203 	unsigned shared_count, seq;
204 
205 	dmabuf = file->private_data;
206 	if (!dmabuf || !dmabuf->resv)
207 		return EPOLLERR;
208 
209 	resv = dmabuf->resv;
210 
211 	poll_wait(file, &dmabuf->poll, poll);
212 
213 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
214 	if (!events)
215 		return 0;
216 
217 retry:
218 	seq = read_seqcount_begin(&resv->seq);
219 	rcu_read_lock();
220 
221 	fobj = rcu_dereference(resv->fence);
222 	if (fobj)
223 		shared_count = fobj->shared_count;
224 	else
225 		shared_count = 0;
226 	fence_excl = rcu_dereference(resv->fence_excl);
227 	if (read_seqcount_retry(&resv->seq, seq)) {
228 		rcu_read_unlock();
229 		goto retry;
230 	}
231 
232 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
233 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
234 		__poll_t pevents = EPOLLIN;
235 
236 		if (shared_count == 0)
237 			pevents |= EPOLLOUT;
238 
239 		spin_lock_irq(&dmabuf->poll.lock);
240 		if (dcb->active) {
241 			dcb->active |= pevents;
242 			events &= ~pevents;
243 		} else
244 			dcb->active = pevents;
245 		spin_unlock_irq(&dmabuf->poll.lock);
246 
247 		if (events & pevents) {
248 			if (!dma_fence_get_rcu(fence_excl)) {
249 				/* force a recheck */
250 				events &= ~pevents;
251 				dma_buf_poll_cb(NULL, &dcb->cb);
252 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
253 							   dma_buf_poll_cb)) {
254 				events &= ~pevents;
255 				dma_fence_put(fence_excl);
256 			} else {
257 				/*
258 				 * No callback queued, wake up any additional
259 				 * waiters.
260 				 */
261 				dma_fence_put(fence_excl);
262 				dma_buf_poll_cb(NULL, &dcb->cb);
263 			}
264 		}
265 	}
266 
267 	if ((events & EPOLLOUT) && shared_count > 0) {
268 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
269 		int i;
270 
271 		/* Only queue a new callback if no event has fired yet */
272 		spin_lock_irq(&dmabuf->poll.lock);
273 		if (dcb->active)
274 			events &= ~EPOLLOUT;
275 		else
276 			dcb->active = EPOLLOUT;
277 		spin_unlock_irq(&dmabuf->poll.lock);
278 
279 		if (!(events & EPOLLOUT))
280 			goto out;
281 
282 		for (i = 0; i < shared_count; ++i) {
283 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
284 
285 			if (!dma_fence_get_rcu(fence)) {
286 				/*
287 				 * fence refcount dropped to zero, this means
288 				 * that fobj has been freed
289 				 *
290 				 * call dma_buf_poll_cb and force a recheck!
291 				 */
292 				events &= ~EPOLLOUT;
293 				dma_buf_poll_cb(NULL, &dcb->cb);
294 				break;
295 			}
296 			if (!dma_fence_add_callback(fence, &dcb->cb,
297 						    dma_buf_poll_cb)) {
298 				dma_fence_put(fence);
299 				events &= ~EPOLLOUT;
300 				break;
301 			}
302 			dma_fence_put(fence);
303 		}
304 
305 		/* No callback queued, wake up any additional waiters. */
306 		if (i == shared_count)
307 			dma_buf_poll_cb(NULL, &dcb->cb);
308 	}
309 
310 out:
311 	rcu_read_unlock();
312 	return events;
313 }
314 
315 /**
316  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
317  * The name of the dma-buf buffer can only be set when the dma-buf is not
318  * attached to any devices. It could theoritically support changing the
319  * name of the dma-buf if the same piece of memory is used for multiple
320  * purpose between different devices.
321  *
322  * @dmabuf [in]     dmabuf buffer that will be renamed.
323  * @buf:   [in]     A piece of userspace memory that contains the name of
324  *                  the dma-buf.
325  *
326  * Returns 0 on success. If the dma-buf buffer is already attached to
327  * devices, return -EBUSY.
328  *
329  */
330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
331 {
332 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
333 	long ret = 0;
334 
335 	if (IS_ERR(name))
336 		return PTR_ERR(name);
337 
338 	dma_resv_lock(dmabuf->resv, NULL);
339 	if (!list_empty(&dmabuf->attachments)) {
340 		ret = -EBUSY;
341 		kfree(name);
342 		goto out_unlock;
343 	}
344 	kfree(dmabuf->name);
345 	dmabuf->name = name;
346 
347 out_unlock:
348 	dma_resv_unlock(dmabuf->resv);
349 	return ret;
350 }
351 
352 static long dma_buf_ioctl(struct file *file,
353 			  unsigned int cmd, unsigned long arg)
354 {
355 	struct dma_buf *dmabuf;
356 	struct dma_buf_sync sync;
357 	enum dma_data_direction direction;
358 	int ret;
359 
360 	dmabuf = file->private_data;
361 
362 	switch (cmd) {
363 	case DMA_BUF_IOCTL_SYNC:
364 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
365 			return -EFAULT;
366 
367 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
368 			return -EINVAL;
369 
370 		switch (sync.flags & DMA_BUF_SYNC_RW) {
371 		case DMA_BUF_SYNC_READ:
372 			direction = DMA_FROM_DEVICE;
373 			break;
374 		case DMA_BUF_SYNC_WRITE:
375 			direction = DMA_TO_DEVICE;
376 			break;
377 		case DMA_BUF_SYNC_RW:
378 			direction = DMA_BIDIRECTIONAL;
379 			break;
380 		default:
381 			return -EINVAL;
382 		}
383 
384 		if (sync.flags & DMA_BUF_SYNC_END)
385 			ret = dma_buf_end_cpu_access(dmabuf, direction);
386 		else
387 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
388 
389 		return ret;
390 
391 	case DMA_BUF_SET_NAME:
392 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
393 
394 	default:
395 		return -ENOTTY;
396 	}
397 }
398 
399 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
400 {
401 	struct dma_buf *dmabuf = file->private_data;
402 
403 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
404 	/* Don't count the temporary reference taken inside procfs seq_show */
405 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
406 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
407 	dma_resv_lock(dmabuf->resv, NULL);
408 	if (dmabuf->name)
409 		seq_printf(m, "name:\t%s\n", dmabuf->name);
410 	dma_resv_unlock(dmabuf->resv);
411 }
412 
413 static const struct file_operations dma_buf_fops = {
414 	.release	= dma_buf_release,
415 	.mmap		= dma_buf_mmap_internal,
416 	.llseek		= dma_buf_llseek,
417 	.poll		= dma_buf_poll,
418 	.unlocked_ioctl	= dma_buf_ioctl,
419 	.compat_ioctl	= compat_ptr_ioctl,
420 	.show_fdinfo	= dma_buf_show_fdinfo,
421 };
422 
423 /*
424  * is_dma_buf_file - Check if struct file* is associated with dma_buf
425  */
426 static inline int is_dma_buf_file(struct file *file)
427 {
428 	return file->f_op == &dma_buf_fops;
429 }
430 
431 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
432 {
433 	struct file *file;
434 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
435 
436 	if (IS_ERR(inode))
437 		return ERR_CAST(inode);
438 
439 	inode->i_size = dmabuf->size;
440 	inode_set_bytes(inode, dmabuf->size);
441 
442 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
443 				 flags, &dma_buf_fops);
444 	if (IS_ERR(file))
445 		goto err_alloc_file;
446 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
447 	file->private_data = dmabuf;
448 	file->f_path.dentry->d_fsdata = dmabuf;
449 
450 	return file;
451 
452 err_alloc_file:
453 	iput(inode);
454 	return file;
455 }
456 
457 /**
458  * DOC: dma buf device access
459  *
460  * For device DMA access to a shared DMA buffer the usual sequence of operations
461  * is fairly simple:
462  *
463  * 1. The exporter defines his exporter instance using
464  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
465  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
466  *    as a file descriptor by calling dma_buf_fd().
467  *
468  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
469  *    to share with: First the filedescriptor is converted to a &dma_buf using
470  *    dma_buf_get(). Then the buffer is attached to the device using
471  *    dma_buf_attach().
472  *
473  *    Up to this stage the exporter is still free to migrate or reallocate the
474  *    backing storage.
475  *
476  * 3. Once the buffer is attached to all devices userspace can initiate DMA
477  *    access to the shared buffer. In the kernel this is done by calling
478  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
479  *
480  * 4. Once a driver is done with a shared buffer it needs to call
481  *    dma_buf_detach() (after cleaning up any mappings) and then release the
482  *    reference acquired with dma_buf_get by calling dma_buf_put().
483  *
484  * For the detailed semantics exporters are expected to implement see
485  * &dma_buf_ops.
486  */
487 
488 /**
489  * dma_buf_export - Creates a new dma_buf, and associates an anon file
490  * with this buffer, so it can be exported.
491  * Also connect the allocator specific data and ops to the buffer.
492  * Additionally, provide a name string for exporter; useful in debugging.
493  *
494  * @exp_info:	[in]	holds all the export related information provided
495  *			by the exporter. see &struct dma_buf_export_info
496  *			for further details.
497  *
498  * Returns, on success, a newly created dma_buf object, which wraps the
499  * supplied private data and operations for dma_buf_ops. On either missing
500  * ops, or error in allocating struct dma_buf, will return negative error.
501  *
502  * For most cases the easiest way to create @exp_info is through the
503  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
504  */
505 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
506 {
507 	struct dma_buf *dmabuf;
508 	struct dma_resv *resv = exp_info->resv;
509 	struct file *file;
510 	size_t alloc_size = sizeof(struct dma_buf);
511 	int ret;
512 
513 	if (!exp_info->resv)
514 		alloc_size += sizeof(struct dma_resv);
515 	else
516 		/* prevent &dma_buf[1] == dma_buf->resv */
517 		alloc_size += 1;
518 
519 	if (WARN_ON(!exp_info->priv
520 			  || !exp_info->ops
521 			  || !exp_info->ops->map_dma_buf
522 			  || !exp_info->ops->unmap_dma_buf
523 			  || !exp_info->ops->release)) {
524 		return ERR_PTR(-EINVAL);
525 	}
526 
527 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
528 		    exp_info->ops->dynamic_mapping))
529 		return ERR_PTR(-EINVAL);
530 
531 	if (!try_module_get(exp_info->owner))
532 		return ERR_PTR(-ENOENT);
533 
534 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
535 	if (!dmabuf) {
536 		ret = -ENOMEM;
537 		goto err_module;
538 	}
539 
540 	dmabuf->priv = exp_info->priv;
541 	dmabuf->ops = exp_info->ops;
542 	dmabuf->size = exp_info->size;
543 	dmabuf->exp_name = exp_info->exp_name;
544 	dmabuf->owner = exp_info->owner;
545 	init_waitqueue_head(&dmabuf->poll);
546 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
547 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
548 
549 	if (!resv) {
550 		resv = (struct dma_resv *)&dmabuf[1];
551 		dma_resv_init(resv);
552 	}
553 	dmabuf->resv = resv;
554 
555 	file = dma_buf_getfile(dmabuf, exp_info->flags);
556 	if (IS_ERR(file)) {
557 		ret = PTR_ERR(file);
558 		goto err_dmabuf;
559 	}
560 
561 	file->f_mode |= FMODE_LSEEK;
562 	dmabuf->file = file;
563 
564 	mutex_init(&dmabuf->lock);
565 	INIT_LIST_HEAD(&dmabuf->attachments);
566 
567 	mutex_lock(&db_list.lock);
568 	list_add(&dmabuf->list_node, &db_list.head);
569 	mutex_unlock(&db_list.lock);
570 
571 	return dmabuf;
572 
573 err_dmabuf:
574 	kfree(dmabuf);
575 err_module:
576 	module_put(exp_info->owner);
577 	return ERR_PTR(ret);
578 }
579 EXPORT_SYMBOL_GPL(dma_buf_export);
580 
581 /**
582  * dma_buf_fd - returns a file descriptor for the given dma_buf
583  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
584  * @flags:      [in]    flags to give to fd
585  *
586  * On success, returns an associated 'fd'. Else, returns error.
587  */
588 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
589 {
590 	int fd;
591 
592 	if (!dmabuf || !dmabuf->file)
593 		return -EINVAL;
594 
595 	fd = get_unused_fd_flags(flags);
596 	if (fd < 0)
597 		return fd;
598 
599 	fd_install(fd, dmabuf->file);
600 
601 	return fd;
602 }
603 EXPORT_SYMBOL_GPL(dma_buf_fd);
604 
605 /**
606  * dma_buf_get - returns the dma_buf structure related to an fd
607  * @fd:	[in]	fd associated with the dma_buf to be returned
608  *
609  * On success, returns the dma_buf structure associated with an fd; uses
610  * file's refcounting done by fget to increase refcount. returns ERR_PTR
611  * otherwise.
612  */
613 struct dma_buf *dma_buf_get(int fd)
614 {
615 	struct file *file;
616 
617 	file = fget(fd);
618 
619 	if (!file)
620 		return ERR_PTR(-EBADF);
621 
622 	if (!is_dma_buf_file(file)) {
623 		fput(file);
624 		return ERR_PTR(-EINVAL);
625 	}
626 
627 	return file->private_data;
628 }
629 EXPORT_SYMBOL_GPL(dma_buf_get);
630 
631 /**
632  * dma_buf_put - decreases refcount of the buffer
633  * @dmabuf:	[in]	buffer to reduce refcount of
634  *
635  * Uses file's refcounting done implicitly by fput().
636  *
637  * If, as a result of this call, the refcount becomes 0, the 'release' file
638  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
639  * in turn, and frees the memory allocated for dmabuf when exported.
640  */
641 void dma_buf_put(struct dma_buf *dmabuf)
642 {
643 	if (WARN_ON(!dmabuf || !dmabuf->file))
644 		return;
645 
646 	fput(dmabuf->file);
647 }
648 EXPORT_SYMBOL_GPL(dma_buf_put);
649 
650 /**
651  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
652  * calls attach() of dma_buf_ops to allow device-specific attach functionality
653  * @dmabuf:		[in]	buffer to attach device to.
654  * @dev:		[in]	device to be attached.
655  * @dynamic_mapping:	[in]	calling convention for map/unmap
656  *
657  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
658  * must be cleaned up by calling dma_buf_detach().
659  *
660  * Returns:
661  *
662  * A pointer to newly created &dma_buf_attachment on success, or a negative
663  * error code wrapped into a pointer on failure.
664  *
665  * Note that this can fail if the backing storage of @dmabuf is in a place not
666  * accessible to @dev, and cannot be moved to a more suitable place. This is
667  * indicated with the error code -EBUSY.
668  */
669 struct dma_buf_attachment *
670 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
671 		       bool dynamic_mapping)
672 {
673 	struct dma_buf_attachment *attach;
674 	int ret;
675 
676 	if (WARN_ON(!dmabuf || !dev))
677 		return ERR_PTR(-EINVAL);
678 
679 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
680 	if (!attach)
681 		return ERR_PTR(-ENOMEM);
682 
683 	attach->dev = dev;
684 	attach->dmabuf = dmabuf;
685 	attach->dynamic_mapping = dynamic_mapping;
686 
687 	if (dmabuf->ops->attach) {
688 		ret = dmabuf->ops->attach(dmabuf, attach);
689 		if (ret)
690 			goto err_attach;
691 	}
692 	dma_resv_lock(dmabuf->resv, NULL);
693 	list_add(&attach->node, &dmabuf->attachments);
694 	dma_resv_unlock(dmabuf->resv);
695 
696 	/* When either the importer or the exporter can't handle dynamic
697 	 * mappings we cache the mapping here to avoid issues with the
698 	 * reservation object lock.
699 	 */
700 	if (dma_buf_attachment_is_dynamic(attach) !=
701 	    dma_buf_is_dynamic(dmabuf)) {
702 		struct sg_table *sgt;
703 
704 		if (dma_buf_is_dynamic(attach->dmabuf))
705 			dma_resv_lock(attach->dmabuf->resv, NULL);
706 
707 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
708 		if (!sgt)
709 			sgt = ERR_PTR(-ENOMEM);
710 		if (IS_ERR(sgt)) {
711 			ret = PTR_ERR(sgt);
712 			goto err_unlock;
713 		}
714 		if (dma_buf_is_dynamic(attach->dmabuf))
715 			dma_resv_unlock(attach->dmabuf->resv);
716 		attach->sgt = sgt;
717 		attach->dir = DMA_BIDIRECTIONAL;
718 	}
719 
720 	return attach;
721 
722 err_attach:
723 	kfree(attach);
724 	return ERR_PTR(ret);
725 
726 err_unlock:
727 	if (dma_buf_is_dynamic(attach->dmabuf))
728 		dma_resv_unlock(attach->dmabuf->resv);
729 
730 	dma_buf_detach(dmabuf, attach);
731 	return ERR_PTR(ret);
732 }
733 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
734 
735 /**
736  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
737  * @dmabuf:	[in]	buffer to attach device to.
738  * @dev:	[in]	device to be attached.
739  *
740  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
741  * mapping.
742  */
743 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
744 					  struct device *dev)
745 {
746 	return dma_buf_dynamic_attach(dmabuf, dev, false);
747 }
748 EXPORT_SYMBOL_GPL(dma_buf_attach);
749 
750 /**
751  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
752  * optionally calls detach() of dma_buf_ops for device-specific detach
753  * @dmabuf:	[in]	buffer to detach from.
754  * @attach:	[in]	attachment to be detached; is free'd after this call.
755  *
756  * Clean up a device attachment obtained by calling dma_buf_attach().
757  */
758 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
759 {
760 	if (WARN_ON(!dmabuf || !attach))
761 		return;
762 
763 	if (attach->sgt) {
764 		if (dma_buf_is_dynamic(attach->dmabuf))
765 			dma_resv_lock(attach->dmabuf->resv, NULL);
766 
767 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
768 
769 		if (dma_buf_is_dynamic(attach->dmabuf))
770 			dma_resv_unlock(attach->dmabuf->resv);
771 	}
772 
773 	dma_resv_lock(dmabuf->resv, NULL);
774 	list_del(&attach->node);
775 	dma_resv_unlock(dmabuf->resv);
776 	if (dmabuf->ops->detach)
777 		dmabuf->ops->detach(dmabuf, attach);
778 
779 	kfree(attach);
780 }
781 EXPORT_SYMBOL_GPL(dma_buf_detach);
782 
783 /**
784  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
785  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
786  * dma_buf_ops.
787  * @attach:	[in]	attachment whose scatterlist is to be returned
788  * @direction:	[in]	direction of DMA transfer
789  *
790  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
791  * on error. May return -EINTR if it is interrupted by a signal.
792  *
793  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
794  * the underlying backing storage is pinned for as long as a mapping exists,
795  * therefore users/importers should not hold onto a mapping for undue amounts of
796  * time.
797  */
798 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
799 					enum dma_data_direction direction)
800 {
801 	struct sg_table *sg_table;
802 
803 	might_sleep();
804 
805 	if (WARN_ON(!attach || !attach->dmabuf))
806 		return ERR_PTR(-EINVAL);
807 
808 	if (dma_buf_attachment_is_dynamic(attach))
809 		dma_resv_assert_held(attach->dmabuf->resv);
810 
811 	if (attach->sgt) {
812 		/*
813 		 * Two mappings with different directions for the same
814 		 * attachment are not allowed.
815 		 */
816 		if (attach->dir != direction &&
817 		    attach->dir != DMA_BIDIRECTIONAL)
818 			return ERR_PTR(-EBUSY);
819 
820 		return attach->sgt;
821 	}
822 
823 	if (dma_buf_is_dynamic(attach->dmabuf))
824 		dma_resv_assert_held(attach->dmabuf->resv);
825 
826 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
827 	if (!sg_table)
828 		sg_table = ERR_PTR(-ENOMEM);
829 
830 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
831 		attach->sgt = sg_table;
832 		attach->dir = direction;
833 	}
834 
835 	return sg_table;
836 }
837 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
838 
839 /**
840  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
841  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
842  * dma_buf_ops.
843  * @attach:	[in]	attachment to unmap buffer from
844  * @sg_table:	[in]	scatterlist info of the buffer to unmap
845  * @direction:  [in]    direction of DMA transfer
846  *
847  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
848  */
849 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
850 				struct sg_table *sg_table,
851 				enum dma_data_direction direction)
852 {
853 	might_sleep();
854 
855 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
856 		return;
857 
858 	if (dma_buf_attachment_is_dynamic(attach))
859 		dma_resv_assert_held(attach->dmabuf->resv);
860 
861 	if (attach->sgt == sg_table)
862 		return;
863 
864 	if (dma_buf_is_dynamic(attach->dmabuf))
865 		dma_resv_assert_held(attach->dmabuf->resv);
866 
867 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
868 }
869 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
870 
871 /**
872  * DOC: cpu access
873  *
874  * There are mutliple reasons for supporting CPU access to a dma buffer object:
875  *
876  * - Fallback operations in the kernel, for example when a device is connected
877  *   over USB and the kernel needs to shuffle the data around first before
878  *   sending it away. Cache coherency is handled by braketing any transactions
879  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
880  *   access.
881  *
882  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
883  *   vmap interface is introduced. Note that on very old 32-bit architectures
884  *   vmalloc space might be limited and result in vmap calls failing.
885  *
886  *   Interfaces::
887  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
888  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
889  *
890  *   The vmap call can fail if there is no vmap support in the exporter, or if
891  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
892  *   that the dma-buf layer keeps a reference count for all vmap access and
893  *   calls down into the exporter's vmap function only when no vmapping exists,
894  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
895  *   provided by taking the dma_buf->lock mutex.
896  *
897  * - For full compatibility on the importer side with existing userspace
898  *   interfaces, which might already support mmap'ing buffers. This is needed in
899  *   many processing pipelines (e.g. feeding a software rendered image into a
900  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
901  *   framework already supported this and for DMA buffer file descriptors to
902  *   replace ION buffers mmap support was needed.
903  *
904  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
905  *   fd. But like for CPU access there's a need to braket the actual access,
906  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
907  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
908  *   be restarted.
909  *
910  *   Some systems might need some sort of cache coherency management e.g. when
911  *   CPU and GPU domains are being accessed through dma-buf at the same time.
912  *   To circumvent this problem there are begin/end coherency markers, that
913  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
914  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
915  *   sequence would be used like following:
916  *
917  *     - mmap dma-buf fd
918  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
919  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
920  *       want (with the new data being consumed by say the GPU or the scanout
921  *       device)
922  *     - munmap once you don't need the buffer any more
923  *
924  *    For correctness and optimal performance, it is always required to use
925  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
926  *    mapped address. Userspace cannot rely on coherent access, even when there
927  *    are systems where it just works without calling these ioctls.
928  *
929  * - And as a CPU fallback in userspace processing pipelines.
930  *
931  *   Similar to the motivation for kernel cpu access it is again important that
932  *   the userspace code of a given importing subsystem can use the same
933  *   interfaces with a imported dma-buf buffer object as with a native buffer
934  *   object. This is especially important for drm where the userspace part of
935  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
936  *   use a different way to mmap a buffer rather invasive.
937  *
938  *   The assumption in the current dma-buf interfaces is that redirecting the
939  *   initial mmap is all that's needed. A survey of some of the existing
940  *   subsystems shows that no driver seems to do any nefarious thing like
941  *   syncing up with outstanding asynchronous processing on the device or
942  *   allocating special resources at fault time. So hopefully this is good
943  *   enough, since adding interfaces to intercept pagefaults and allow pte
944  *   shootdowns would increase the complexity quite a bit.
945  *
946  *   Interface::
947  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
948  *		       unsigned long);
949  *
950  *   If the importing subsystem simply provides a special-purpose mmap call to
951  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
952  *   equally achieve that for a dma-buf object.
953  */
954 
955 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
956 				      enum dma_data_direction direction)
957 {
958 	bool write = (direction == DMA_BIDIRECTIONAL ||
959 		      direction == DMA_TO_DEVICE);
960 	struct dma_resv *resv = dmabuf->resv;
961 	long ret;
962 
963 	/* Wait on any implicit rendering fences */
964 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
965 						  MAX_SCHEDULE_TIMEOUT);
966 	if (ret < 0)
967 		return ret;
968 
969 	return 0;
970 }
971 
972 /**
973  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
974  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
975  * preparations. Coherency is only guaranteed in the specified range for the
976  * specified access direction.
977  * @dmabuf:	[in]	buffer to prepare cpu access for.
978  * @direction:	[in]	length of range for cpu access.
979  *
980  * After the cpu access is complete the caller should call
981  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
982  * it guaranteed to be coherent with other DMA access.
983  *
984  * Can return negative error values, returns 0 on success.
985  */
986 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
987 			     enum dma_data_direction direction)
988 {
989 	int ret = 0;
990 
991 	if (WARN_ON(!dmabuf))
992 		return -EINVAL;
993 
994 	if (dmabuf->ops->begin_cpu_access)
995 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
996 
997 	/* Ensure that all fences are waited upon - but we first allow
998 	 * the native handler the chance to do so more efficiently if it
999 	 * chooses. A double invocation here will be reasonably cheap no-op.
1000 	 */
1001 	if (ret == 0)
1002 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1003 
1004 	return ret;
1005 }
1006 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1007 
1008 /**
1009  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1010  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1011  * actions. Coherency is only guaranteed in the specified range for the
1012  * specified access direction.
1013  * @dmabuf:	[in]	buffer to complete cpu access for.
1014  * @direction:	[in]	length of range for cpu access.
1015  *
1016  * This terminates CPU access started with dma_buf_begin_cpu_access().
1017  *
1018  * Can return negative error values, returns 0 on success.
1019  */
1020 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1021 			   enum dma_data_direction direction)
1022 {
1023 	int ret = 0;
1024 
1025 	WARN_ON(!dmabuf);
1026 
1027 	if (dmabuf->ops->end_cpu_access)
1028 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1029 
1030 	return ret;
1031 }
1032 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1033 
1034 
1035 /**
1036  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1037  * @dmabuf:	[in]	buffer that should back the vma
1038  * @vma:	[in]	vma for the mmap
1039  * @pgoff:	[in]	offset in pages where this mmap should start within the
1040  *			dma-buf buffer.
1041  *
1042  * This function adjusts the passed in vma so that it points at the file of the
1043  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1044  * checking on the size of the vma. Then it calls the exporters mmap function to
1045  * set up the mapping.
1046  *
1047  * Can return negative error values, returns 0 on success.
1048  */
1049 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1050 		 unsigned long pgoff)
1051 {
1052 	struct file *oldfile;
1053 	int ret;
1054 
1055 	if (WARN_ON(!dmabuf || !vma))
1056 		return -EINVAL;
1057 
1058 	/* check if buffer supports mmap */
1059 	if (!dmabuf->ops->mmap)
1060 		return -EINVAL;
1061 
1062 	/* check for offset overflow */
1063 	if (pgoff + vma_pages(vma) < pgoff)
1064 		return -EOVERFLOW;
1065 
1066 	/* check for overflowing the buffer's size */
1067 	if (pgoff + vma_pages(vma) >
1068 	    dmabuf->size >> PAGE_SHIFT)
1069 		return -EINVAL;
1070 
1071 	/* readjust the vma */
1072 	get_file(dmabuf->file);
1073 	oldfile = vma->vm_file;
1074 	vma->vm_file = dmabuf->file;
1075 	vma->vm_pgoff = pgoff;
1076 
1077 	ret = dmabuf->ops->mmap(dmabuf, vma);
1078 	if (ret) {
1079 		/* restore old parameters on failure */
1080 		vma->vm_file = oldfile;
1081 		fput(dmabuf->file);
1082 	} else {
1083 		if (oldfile)
1084 			fput(oldfile);
1085 	}
1086 	return ret;
1087 
1088 }
1089 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1090 
1091 /**
1092  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1093  * address space. Same restrictions as for vmap and friends apply.
1094  * @dmabuf:	[in]	buffer to vmap
1095  *
1096  * This call may fail due to lack of virtual mapping address space.
1097  * These calls are optional in drivers. The intended use for them
1098  * is for mapping objects linear in kernel space for high use objects.
1099  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1100  *
1101  * Returns NULL on error.
1102  */
1103 void *dma_buf_vmap(struct dma_buf *dmabuf)
1104 {
1105 	void *ptr;
1106 
1107 	if (WARN_ON(!dmabuf))
1108 		return NULL;
1109 
1110 	if (!dmabuf->ops->vmap)
1111 		return NULL;
1112 
1113 	mutex_lock(&dmabuf->lock);
1114 	if (dmabuf->vmapping_counter) {
1115 		dmabuf->vmapping_counter++;
1116 		BUG_ON(!dmabuf->vmap_ptr);
1117 		ptr = dmabuf->vmap_ptr;
1118 		goto out_unlock;
1119 	}
1120 
1121 	BUG_ON(dmabuf->vmap_ptr);
1122 
1123 	ptr = dmabuf->ops->vmap(dmabuf);
1124 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1125 		ptr = NULL;
1126 	if (!ptr)
1127 		goto out_unlock;
1128 
1129 	dmabuf->vmap_ptr = ptr;
1130 	dmabuf->vmapping_counter = 1;
1131 
1132 out_unlock:
1133 	mutex_unlock(&dmabuf->lock);
1134 	return ptr;
1135 }
1136 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1137 
1138 /**
1139  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1140  * @dmabuf:	[in]	buffer to vunmap
1141  * @vaddr:	[in]	vmap to vunmap
1142  */
1143 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1144 {
1145 	if (WARN_ON(!dmabuf))
1146 		return;
1147 
1148 	BUG_ON(!dmabuf->vmap_ptr);
1149 	BUG_ON(dmabuf->vmapping_counter == 0);
1150 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1151 
1152 	mutex_lock(&dmabuf->lock);
1153 	if (--dmabuf->vmapping_counter == 0) {
1154 		if (dmabuf->ops->vunmap)
1155 			dmabuf->ops->vunmap(dmabuf, vaddr);
1156 		dmabuf->vmap_ptr = NULL;
1157 	}
1158 	mutex_unlock(&dmabuf->lock);
1159 }
1160 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1161 
1162 #ifdef CONFIG_DEBUG_FS
1163 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1164 {
1165 	int ret;
1166 	struct dma_buf *buf_obj;
1167 	struct dma_buf_attachment *attach_obj;
1168 	struct dma_resv *robj;
1169 	struct dma_resv_list *fobj;
1170 	struct dma_fence *fence;
1171 	unsigned seq;
1172 	int count = 0, attach_count, shared_count, i;
1173 	size_t size = 0;
1174 
1175 	ret = mutex_lock_interruptible(&db_list.lock);
1176 
1177 	if (ret)
1178 		return ret;
1179 
1180 	seq_puts(s, "\nDma-buf Objects:\n");
1181 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1182 		   "size", "flags", "mode", "count", "ino");
1183 
1184 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1185 
1186 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1187 		if (ret)
1188 			goto error_unlock;
1189 
1190 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1191 				buf_obj->size,
1192 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1193 				file_count(buf_obj->file),
1194 				buf_obj->exp_name,
1195 				file_inode(buf_obj->file)->i_ino,
1196 				buf_obj->name ?: "");
1197 
1198 		robj = buf_obj->resv;
1199 		while (true) {
1200 			seq = read_seqcount_begin(&robj->seq);
1201 			rcu_read_lock();
1202 			fobj = rcu_dereference(robj->fence);
1203 			shared_count = fobj ? fobj->shared_count : 0;
1204 			fence = rcu_dereference(robj->fence_excl);
1205 			if (!read_seqcount_retry(&robj->seq, seq))
1206 				break;
1207 			rcu_read_unlock();
1208 		}
1209 
1210 		if (fence)
1211 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1212 				   fence->ops->get_driver_name(fence),
1213 				   fence->ops->get_timeline_name(fence),
1214 				   dma_fence_is_signaled(fence) ? "" : "un");
1215 		for (i = 0; i < shared_count; i++) {
1216 			fence = rcu_dereference(fobj->shared[i]);
1217 			if (!dma_fence_get_rcu(fence))
1218 				continue;
1219 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1220 				   fence->ops->get_driver_name(fence),
1221 				   fence->ops->get_timeline_name(fence),
1222 				   dma_fence_is_signaled(fence) ? "" : "un");
1223 			dma_fence_put(fence);
1224 		}
1225 		rcu_read_unlock();
1226 
1227 		seq_puts(s, "\tAttached Devices:\n");
1228 		attach_count = 0;
1229 
1230 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1231 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1232 			attach_count++;
1233 		}
1234 		dma_resv_unlock(buf_obj->resv);
1235 
1236 		seq_printf(s, "Total %d devices attached\n\n",
1237 				attach_count);
1238 
1239 		count++;
1240 		size += buf_obj->size;
1241 	}
1242 
1243 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1244 
1245 	mutex_unlock(&db_list.lock);
1246 	return 0;
1247 
1248 error_unlock:
1249 	mutex_unlock(&db_list.lock);
1250 	return ret;
1251 }
1252 
1253 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1254 
1255 static struct dentry *dma_buf_debugfs_dir;
1256 
1257 static int dma_buf_init_debugfs(void)
1258 {
1259 	struct dentry *d;
1260 	int err = 0;
1261 
1262 	d = debugfs_create_dir("dma_buf", NULL);
1263 	if (IS_ERR(d))
1264 		return PTR_ERR(d);
1265 
1266 	dma_buf_debugfs_dir = d;
1267 
1268 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1269 				NULL, &dma_buf_debug_fops);
1270 	if (IS_ERR(d)) {
1271 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1272 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1273 		dma_buf_debugfs_dir = NULL;
1274 		err = PTR_ERR(d);
1275 	}
1276 
1277 	return err;
1278 }
1279 
1280 static void dma_buf_uninit_debugfs(void)
1281 {
1282 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1283 }
1284 #else
1285 static inline int dma_buf_init_debugfs(void)
1286 {
1287 	return 0;
1288 }
1289 static inline void dma_buf_uninit_debugfs(void)
1290 {
1291 }
1292 #endif
1293 
1294 static int __init dma_buf_init(void)
1295 {
1296 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1297 	if (IS_ERR(dma_buf_mnt))
1298 		return PTR_ERR(dma_buf_mnt);
1299 
1300 	mutex_init(&db_list.lock);
1301 	INIT_LIST_HEAD(&db_list.head);
1302 	dma_buf_init_debugfs();
1303 	return 0;
1304 }
1305 subsys_initcall(dma_buf_init);
1306 
1307 static void __exit dma_buf_deinit(void)
1308 {
1309 	dma_buf_uninit_debugfs();
1310 	kern_unmount(dma_buf_mnt);
1311 }
1312 __exitcall(dma_buf_deinit);
1313