1 /* 2 * Framework for buffer objects that can be shared across devices/subsystems. 3 * 4 * Copyright(C) 2011 Linaro Limited. All rights reserved. 5 * Author: Sumit Semwal <sumit.semwal@ti.com> 6 * 7 * Many thanks to linaro-mm-sig list, and specially 8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 10 * refining of this idea. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 19 * more details. 20 * 21 * You should have received a copy of the GNU General Public License along with 22 * this program. If not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/dma-buf.h> 28 #include <linux/dma-fence.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/export.h> 31 #include <linux/debugfs.h> 32 #include <linux/module.h> 33 #include <linux/seq_file.h> 34 #include <linux/poll.h> 35 #include <linux/reservation.h> 36 #include <linux/mm.h> 37 38 #include <uapi/linux/dma-buf.h> 39 40 static inline int is_dma_buf_file(struct file *); 41 42 struct dma_buf_list { 43 struct list_head head; 44 struct mutex lock; 45 }; 46 47 static struct dma_buf_list db_list; 48 49 static int dma_buf_release(struct inode *inode, struct file *file) 50 { 51 struct dma_buf *dmabuf; 52 53 if (!is_dma_buf_file(file)) 54 return -EINVAL; 55 56 dmabuf = file->private_data; 57 58 BUG_ON(dmabuf->vmapping_counter); 59 60 /* 61 * Any fences that a dma-buf poll can wait on should be signaled 62 * before releasing dma-buf. This is the responsibility of each 63 * driver that uses the reservation objects. 64 * 65 * If you hit this BUG() it means someone dropped their ref to the 66 * dma-buf while still having pending operation to the buffer. 67 */ 68 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 69 70 dmabuf->ops->release(dmabuf); 71 72 mutex_lock(&db_list.lock); 73 list_del(&dmabuf->list_node); 74 mutex_unlock(&db_list.lock); 75 76 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1]) 77 reservation_object_fini(dmabuf->resv); 78 79 module_put(dmabuf->owner); 80 kfree(dmabuf); 81 return 0; 82 } 83 84 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 85 { 86 struct dma_buf *dmabuf; 87 88 if (!is_dma_buf_file(file)) 89 return -EINVAL; 90 91 dmabuf = file->private_data; 92 93 /* check for overflowing the buffer's size */ 94 if (vma->vm_pgoff + vma_pages(vma) > 95 dmabuf->size >> PAGE_SHIFT) 96 return -EINVAL; 97 98 return dmabuf->ops->mmap(dmabuf, vma); 99 } 100 101 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 102 { 103 struct dma_buf *dmabuf; 104 loff_t base; 105 106 if (!is_dma_buf_file(file)) 107 return -EBADF; 108 109 dmabuf = file->private_data; 110 111 /* only support discovering the end of the buffer, 112 but also allow SEEK_SET to maintain the idiomatic 113 SEEK_END(0), SEEK_CUR(0) pattern */ 114 if (whence == SEEK_END) 115 base = dmabuf->size; 116 else if (whence == SEEK_SET) 117 base = 0; 118 else 119 return -EINVAL; 120 121 if (offset != 0) 122 return -EINVAL; 123 124 return base + offset; 125 } 126 127 /** 128 * DOC: fence polling 129 * 130 * To support cross-device and cross-driver synchronization of buffer access 131 * implicit fences (represented internally in the kernel with &struct fence) can 132 * be attached to a &dma_buf. The glue for that and a few related things are 133 * provided in the &reservation_object structure. 134 * 135 * Userspace can query the state of these implicitly tracked fences using poll() 136 * and related system calls: 137 * 138 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 139 * most recent write or exclusive fence. 140 * 141 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 142 * all attached fences, shared and exclusive ones. 143 * 144 * Note that this only signals the completion of the respective fences, i.e. the 145 * DMA transfers are complete. Cache flushing and any other necessary 146 * preparations before CPU access can begin still need to happen. 147 */ 148 149 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 150 { 151 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 152 unsigned long flags; 153 154 spin_lock_irqsave(&dcb->poll->lock, flags); 155 wake_up_locked_poll(dcb->poll, dcb->active); 156 dcb->active = 0; 157 spin_unlock_irqrestore(&dcb->poll->lock, flags); 158 } 159 160 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 161 { 162 struct dma_buf *dmabuf; 163 struct reservation_object *resv; 164 struct reservation_object_list *fobj; 165 struct dma_fence *fence_excl; 166 __poll_t events; 167 unsigned shared_count, seq; 168 169 dmabuf = file->private_data; 170 if (!dmabuf || !dmabuf->resv) 171 return EPOLLERR; 172 173 resv = dmabuf->resv; 174 175 poll_wait(file, &dmabuf->poll, poll); 176 177 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 178 if (!events) 179 return 0; 180 181 retry: 182 seq = read_seqcount_begin(&resv->seq); 183 rcu_read_lock(); 184 185 fobj = rcu_dereference(resv->fence); 186 if (fobj) 187 shared_count = fobj->shared_count; 188 else 189 shared_count = 0; 190 fence_excl = rcu_dereference(resv->fence_excl); 191 if (read_seqcount_retry(&resv->seq, seq)) { 192 rcu_read_unlock(); 193 goto retry; 194 } 195 196 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 197 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 198 __poll_t pevents = EPOLLIN; 199 200 if (shared_count == 0) 201 pevents |= EPOLLOUT; 202 203 spin_lock_irq(&dmabuf->poll.lock); 204 if (dcb->active) { 205 dcb->active |= pevents; 206 events &= ~pevents; 207 } else 208 dcb->active = pevents; 209 spin_unlock_irq(&dmabuf->poll.lock); 210 211 if (events & pevents) { 212 if (!dma_fence_get_rcu(fence_excl)) { 213 /* force a recheck */ 214 events &= ~pevents; 215 dma_buf_poll_cb(NULL, &dcb->cb); 216 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 217 dma_buf_poll_cb)) { 218 events &= ~pevents; 219 dma_fence_put(fence_excl); 220 } else { 221 /* 222 * No callback queued, wake up any additional 223 * waiters. 224 */ 225 dma_fence_put(fence_excl); 226 dma_buf_poll_cb(NULL, &dcb->cb); 227 } 228 } 229 } 230 231 if ((events & EPOLLOUT) && shared_count > 0) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 233 int i; 234 235 /* Only queue a new callback if no event has fired yet */ 236 spin_lock_irq(&dmabuf->poll.lock); 237 if (dcb->active) 238 events &= ~EPOLLOUT; 239 else 240 dcb->active = EPOLLOUT; 241 spin_unlock_irq(&dmabuf->poll.lock); 242 243 if (!(events & EPOLLOUT)) 244 goto out; 245 246 for (i = 0; i < shared_count; ++i) { 247 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 248 249 if (!dma_fence_get_rcu(fence)) { 250 /* 251 * fence refcount dropped to zero, this means 252 * that fobj has been freed 253 * 254 * call dma_buf_poll_cb and force a recheck! 255 */ 256 events &= ~EPOLLOUT; 257 dma_buf_poll_cb(NULL, &dcb->cb); 258 break; 259 } 260 if (!dma_fence_add_callback(fence, &dcb->cb, 261 dma_buf_poll_cb)) { 262 dma_fence_put(fence); 263 events &= ~EPOLLOUT; 264 break; 265 } 266 dma_fence_put(fence); 267 } 268 269 /* No callback queued, wake up any additional waiters. */ 270 if (i == shared_count) 271 dma_buf_poll_cb(NULL, &dcb->cb); 272 } 273 274 out: 275 rcu_read_unlock(); 276 return events; 277 } 278 279 static long dma_buf_ioctl(struct file *file, 280 unsigned int cmd, unsigned long arg) 281 { 282 struct dma_buf *dmabuf; 283 struct dma_buf_sync sync; 284 enum dma_data_direction direction; 285 int ret; 286 287 dmabuf = file->private_data; 288 289 switch (cmd) { 290 case DMA_BUF_IOCTL_SYNC: 291 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 292 return -EFAULT; 293 294 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 295 return -EINVAL; 296 297 switch (sync.flags & DMA_BUF_SYNC_RW) { 298 case DMA_BUF_SYNC_READ: 299 direction = DMA_FROM_DEVICE; 300 break; 301 case DMA_BUF_SYNC_WRITE: 302 direction = DMA_TO_DEVICE; 303 break; 304 case DMA_BUF_SYNC_RW: 305 direction = DMA_BIDIRECTIONAL; 306 break; 307 default: 308 return -EINVAL; 309 } 310 311 if (sync.flags & DMA_BUF_SYNC_END) 312 ret = dma_buf_end_cpu_access(dmabuf, direction); 313 else 314 ret = dma_buf_begin_cpu_access(dmabuf, direction); 315 316 return ret; 317 default: 318 return -ENOTTY; 319 } 320 } 321 322 static const struct file_operations dma_buf_fops = { 323 .release = dma_buf_release, 324 .mmap = dma_buf_mmap_internal, 325 .llseek = dma_buf_llseek, 326 .poll = dma_buf_poll, 327 .unlocked_ioctl = dma_buf_ioctl, 328 #ifdef CONFIG_COMPAT 329 .compat_ioctl = dma_buf_ioctl, 330 #endif 331 }; 332 333 /* 334 * is_dma_buf_file - Check if struct file* is associated with dma_buf 335 */ 336 static inline int is_dma_buf_file(struct file *file) 337 { 338 return file->f_op == &dma_buf_fops; 339 } 340 341 /** 342 * DOC: dma buf device access 343 * 344 * For device DMA access to a shared DMA buffer the usual sequence of operations 345 * is fairly simple: 346 * 347 * 1. The exporter defines his exporter instance using 348 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 349 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 350 * as a file descriptor by calling dma_buf_fd(). 351 * 352 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 353 * to share with: First the filedescriptor is converted to a &dma_buf using 354 * dma_buf_get(). Then the buffer is attached to the device using 355 * dma_buf_attach(). 356 * 357 * Up to this stage the exporter is still free to migrate or reallocate the 358 * backing storage. 359 * 360 * 3. Once the buffer is attached to all devices userspace can initiate DMA 361 * access to the shared buffer. In the kernel this is done by calling 362 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 363 * 364 * 4. Once a driver is done with a shared buffer it needs to call 365 * dma_buf_detach() (after cleaning up any mappings) and then release the 366 * reference acquired with dma_buf_get by calling dma_buf_put(). 367 * 368 * For the detailed semantics exporters are expected to implement see 369 * &dma_buf_ops. 370 */ 371 372 /** 373 * dma_buf_export - Creates a new dma_buf, and associates an anon file 374 * with this buffer, so it can be exported. 375 * Also connect the allocator specific data and ops to the buffer. 376 * Additionally, provide a name string for exporter; useful in debugging. 377 * 378 * @exp_info: [in] holds all the export related information provided 379 * by the exporter. see &struct dma_buf_export_info 380 * for further details. 381 * 382 * Returns, on success, a newly created dma_buf object, which wraps the 383 * supplied private data and operations for dma_buf_ops. On either missing 384 * ops, or error in allocating struct dma_buf, will return negative error. 385 * 386 * For most cases the easiest way to create @exp_info is through the 387 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 388 */ 389 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 390 { 391 struct dma_buf *dmabuf; 392 struct reservation_object *resv = exp_info->resv; 393 struct file *file; 394 size_t alloc_size = sizeof(struct dma_buf); 395 int ret; 396 397 if (!exp_info->resv) 398 alloc_size += sizeof(struct reservation_object); 399 else 400 /* prevent &dma_buf[1] == dma_buf->resv */ 401 alloc_size += 1; 402 403 if (WARN_ON(!exp_info->priv 404 || !exp_info->ops 405 || !exp_info->ops->map_dma_buf 406 || !exp_info->ops->unmap_dma_buf 407 || !exp_info->ops->release 408 || !exp_info->ops->map 409 || !exp_info->ops->mmap)) { 410 return ERR_PTR(-EINVAL); 411 } 412 413 if (!try_module_get(exp_info->owner)) 414 return ERR_PTR(-ENOENT); 415 416 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 417 if (!dmabuf) { 418 ret = -ENOMEM; 419 goto err_module; 420 } 421 422 dmabuf->priv = exp_info->priv; 423 dmabuf->ops = exp_info->ops; 424 dmabuf->size = exp_info->size; 425 dmabuf->exp_name = exp_info->exp_name; 426 dmabuf->owner = exp_info->owner; 427 init_waitqueue_head(&dmabuf->poll); 428 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 429 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 430 431 if (!resv) { 432 resv = (struct reservation_object *)&dmabuf[1]; 433 reservation_object_init(resv); 434 } 435 dmabuf->resv = resv; 436 437 file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf, 438 exp_info->flags); 439 if (IS_ERR(file)) { 440 ret = PTR_ERR(file); 441 goto err_dmabuf; 442 } 443 444 file->f_mode |= FMODE_LSEEK; 445 dmabuf->file = file; 446 447 mutex_init(&dmabuf->lock); 448 INIT_LIST_HEAD(&dmabuf->attachments); 449 450 mutex_lock(&db_list.lock); 451 list_add(&dmabuf->list_node, &db_list.head); 452 mutex_unlock(&db_list.lock); 453 454 return dmabuf; 455 456 err_dmabuf: 457 kfree(dmabuf); 458 err_module: 459 module_put(exp_info->owner); 460 return ERR_PTR(ret); 461 } 462 EXPORT_SYMBOL_GPL(dma_buf_export); 463 464 /** 465 * dma_buf_fd - returns a file descriptor for the given dma_buf 466 * @dmabuf: [in] pointer to dma_buf for which fd is required. 467 * @flags: [in] flags to give to fd 468 * 469 * On success, returns an associated 'fd'. Else, returns error. 470 */ 471 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 472 { 473 int fd; 474 475 if (!dmabuf || !dmabuf->file) 476 return -EINVAL; 477 478 fd = get_unused_fd_flags(flags); 479 if (fd < 0) 480 return fd; 481 482 fd_install(fd, dmabuf->file); 483 484 return fd; 485 } 486 EXPORT_SYMBOL_GPL(dma_buf_fd); 487 488 /** 489 * dma_buf_get - returns the dma_buf structure related to an fd 490 * @fd: [in] fd associated with the dma_buf to be returned 491 * 492 * On success, returns the dma_buf structure associated with an fd; uses 493 * file's refcounting done by fget to increase refcount. returns ERR_PTR 494 * otherwise. 495 */ 496 struct dma_buf *dma_buf_get(int fd) 497 { 498 struct file *file; 499 500 file = fget(fd); 501 502 if (!file) 503 return ERR_PTR(-EBADF); 504 505 if (!is_dma_buf_file(file)) { 506 fput(file); 507 return ERR_PTR(-EINVAL); 508 } 509 510 return file->private_data; 511 } 512 EXPORT_SYMBOL_GPL(dma_buf_get); 513 514 /** 515 * dma_buf_put - decreases refcount of the buffer 516 * @dmabuf: [in] buffer to reduce refcount of 517 * 518 * Uses file's refcounting done implicitly by fput(). 519 * 520 * If, as a result of this call, the refcount becomes 0, the 'release' file 521 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 522 * in turn, and frees the memory allocated for dmabuf when exported. 523 */ 524 void dma_buf_put(struct dma_buf *dmabuf) 525 { 526 if (WARN_ON(!dmabuf || !dmabuf->file)) 527 return; 528 529 fput(dmabuf->file); 530 } 531 EXPORT_SYMBOL_GPL(dma_buf_put); 532 533 /** 534 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally, 535 * calls attach() of dma_buf_ops to allow device-specific attach functionality 536 * @dmabuf: [in] buffer to attach device to. 537 * @dev: [in] device to be attached. 538 * 539 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 540 * must be cleaned up by calling dma_buf_detach(). 541 * 542 * Returns: 543 * 544 * A pointer to newly created &dma_buf_attachment on success, or a negative 545 * error code wrapped into a pointer on failure. 546 * 547 * Note that this can fail if the backing storage of @dmabuf is in a place not 548 * accessible to @dev, and cannot be moved to a more suitable place. This is 549 * indicated with the error code -EBUSY. 550 */ 551 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 552 struct device *dev) 553 { 554 struct dma_buf_attachment *attach; 555 int ret; 556 557 if (WARN_ON(!dmabuf || !dev)) 558 return ERR_PTR(-EINVAL); 559 560 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 561 if (!attach) 562 return ERR_PTR(-ENOMEM); 563 564 attach->dev = dev; 565 attach->dmabuf = dmabuf; 566 567 mutex_lock(&dmabuf->lock); 568 569 if (dmabuf->ops->attach) { 570 ret = dmabuf->ops->attach(dmabuf, attach); 571 if (ret) 572 goto err_attach; 573 } 574 list_add(&attach->node, &dmabuf->attachments); 575 576 mutex_unlock(&dmabuf->lock); 577 return attach; 578 579 err_attach: 580 kfree(attach); 581 mutex_unlock(&dmabuf->lock); 582 return ERR_PTR(ret); 583 } 584 EXPORT_SYMBOL_GPL(dma_buf_attach); 585 586 /** 587 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 588 * optionally calls detach() of dma_buf_ops for device-specific detach 589 * @dmabuf: [in] buffer to detach from. 590 * @attach: [in] attachment to be detached; is free'd after this call. 591 * 592 * Clean up a device attachment obtained by calling dma_buf_attach(). 593 */ 594 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 595 { 596 if (WARN_ON(!dmabuf || !attach)) 597 return; 598 599 mutex_lock(&dmabuf->lock); 600 list_del(&attach->node); 601 if (dmabuf->ops->detach) 602 dmabuf->ops->detach(dmabuf, attach); 603 604 mutex_unlock(&dmabuf->lock); 605 kfree(attach); 606 } 607 EXPORT_SYMBOL_GPL(dma_buf_detach); 608 609 /** 610 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 611 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 612 * dma_buf_ops. 613 * @attach: [in] attachment whose scatterlist is to be returned 614 * @direction: [in] direction of DMA transfer 615 * 616 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 617 * on error. May return -EINTR if it is interrupted by a signal. 618 * 619 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 620 * the underlying backing storage is pinned for as long as a mapping exists, 621 * therefore users/importers should not hold onto a mapping for undue amounts of 622 * time. 623 */ 624 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 625 enum dma_data_direction direction) 626 { 627 struct sg_table *sg_table; 628 629 might_sleep(); 630 631 if (WARN_ON(!attach || !attach->dmabuf)) 632 return ERR_PTR(-EINVAL); 633 634 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 635 if (!sg_table) 636 sg_table = ERR_PTR(-ENOMEM); 637 638 return sg_table; 639 } 640 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 641 642 /** 643 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 644 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 645 * dma_buf_ops. 646 * @attach: [in] attachment to unmap buffer from 647 * @sg_table: [in] scatterlist info of the buffer to unmap 648 * @direction: [in] direction of DMA transfer 649 * 650 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 651 */ 652 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 653 struct sg_table *sg_table, 654 enum dma_data_direction direction) 655 { 656 might_sleep(); 657 658 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 659 return; 660 661 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 662 direction); 663 } 664 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 665 666 /** 667 * DOC: cpu access 668 * 669 * There are mutliple reasons for supporting CPU access to a dma buffer object: 670 * 671 * - Fallback operations in the kernel, for example when a device is connected 672 * over USB and the kernel needs to shuffle the data around first before 673 * sending it away. Cache coherency is handled by braketing any transactions 674 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 675 * access. 676 * 677 * To support dma_buf objects residing in highmem cpu access is page-based 678 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks 679 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which 680 * returns a pointer in kernel virtual address space. Afterwards the chunk 681 * needs to be unmapped again. There is no limit on how often a given chunk 682 * can be mapped and unmapped, i.e. the importer does not need to call 683 * begin_cpu_access again before mapping the same chunk again. 684 * 685 * Interfaces:: 686 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long); 687 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*); 688 * 689 * Implementing the functions is optional for exporters and for importers all 690 * the restrictions of using kmap apply. 691 * 692 * dma_buf kmap calls outside of the range specified in begin_cpu_access are 693 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on 694 * the partial chunks at the beginning and end but may return stale or bogus 695 * data outside of the range (in these partial chunks). 696 * 697 * For some cases the overhead of kmap can be too high, a vmap interface 698 * is introduced. This interface should be used very carefully, as vmalloc 699 * space is a limited resources on many architectures. 700 * 701 * Interfaces:: 702 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 703 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 704 * 705 * The vmap call can fail if there is no vmap support in the exporter, or if 706 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 707 * that the dma-buf layer keeps a reference count for all vmap access and 708 * calls down into the exporter's vmap function only when no vmapping exists, 709 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 710 * provided by taking the dma_buf->lock mutex. 711 * 712 * - For full compatibility on the importer side with existing userspace 713 * interfaces, which might already support mmap'ing buffers. This is needed in 714 * many processing pipelines (e.g. feeding a software rendered image into a 715 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 716 * framework already supported this and for DMA buffer file descriptors to 717 * replace ION buffers mmap support was needed. 718 * 719 * There is no special interfaces, userspace simply calls mmap on the dma-buf 720 * fd. But like for CPU access there's a need to braket the actual access, 721 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 722 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 723 * be restarted. 724 * 725 * Some systems might need some sort of cache coherency management e.g. when 726 * CPU and GPU domains are being accessed through dma-buf at the same time. 727 * To circumvent this problem there are begin/end coherency markers, that 728 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 729 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 730 * sequence would be used like following: 731 * 732 * - mmap dma-buf fd 733 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 734 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 735 * want (with the new data being consumed by say the GPU or the scanout 736 * device) 737 * - munmap once you don't need the buffer any more 738 * 739 * For correctness and optimal performance, it is always required to use 740 * SYNC_START and SYNC_END before and after, respectively, when accessing the 741 * mapped address. Userspace cannot rely on coherent access, even when there 742 * are systems where it just works without calling these ioctls. 743 * 744 * - And as a CPU fallback in userspace processing pipelines. 745 * 746 * Similar to the motivation for kernel cpu access it is again important that 747 * the userspace code of a given importing subsystem can use the same 748 * interfaces with a imported dma-buf buffer object as with a native buffer 749 * object. This is especially important for drm where the userspace part of 750 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 751 * use a different way to mmap a buffer rather invasive. 752 * 753 * The assumption in the current dma-buf interfaces is that redirecting the 754 * initial mmap is all that's needed. A survey of some of the existing 755 * subsystems shows that no driver seems to do any nefarious thing like 756 * syncing up with outstanding asynchronous processing on the device or 757 * allocating special resources at fault time. So hopefully this is good 758 * enough, since adding interfaces to intercept pagefaults and allow pte 759 * shootdowns would increase the complexity quite a bit. 760 * 761 * Interface:: 762 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 763 * unsigned long); 764 * 765 * If the importing subsystem simply provides a special-purpose mmap call to 766 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 767 * equally achieve that for a dma-buf object. 768 */ 769 770 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 771 enum dma_data_direction direction) 772 { 773 bool write = (direction == DMA_BIDIRECTIONAL || 774 direction == DMA_TO_DEVICE); 775 struct reservation_object *resv = dmabuf->resv; 776 long ret; 777 778 /* Wait on any implicit rendering fences */ 779 ret = reservation_object_wait_timeout_rcu(resv, write, true, 780 MAX_SCHEDULE_TIMEOUT); 781 if (ret < 0) 782 return ret; 783 784 return 0; 785 } 786 787 /** 788 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 789 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 790 * preparations. Coherency is only guaranteed in the specified range for the 791 * specified access direction. 792 * @dmabuf: [in] buffer to prepare cpu access for. 793 * @direction: [in] length of range for cpu access. 794 * 795 * After the cpu access is complete the caller should call 796 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 797 * it guaranteed to be coherent with other DMA access. 798 * 799 * Can return negative error values, returns 0 on success. 800 */ 801 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 802 enum dma_data_direction direction) 803 { 804 int ret = 0; 805 806 if (WARN_ON(!dmabuf)) 807 return -EINVAL; 808 809 if (dmabuf->ops->begin_cpu_access) 810 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 811 812 /* Ensure that all fences are waited upon - but we first allow 813 * the native handler the chance to do so more efficiently if it 814 * chooses. A double invocation here will be reasonably cheap no-op. 815 */ 816 if (ret == 0) 817 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 818 819 return ret; 820 } 821 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 822 823 /** 824 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 825 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 826 * actions. Coherency is only guaranteed in the specified range for the 827 * specified access direction. 828 * @dmabuf: [in] buffer to complete cpu access for. 829 * @direction: [in] length of range for cpu access. 830 * 831 * This terminates CPU access started with dma_buf_begin_cpu_access(). 832 * 833 * Can return negative error values, returns 0 on success. 834 */ 835 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 836 enum dma_data_direction direction) 837 { 838 int ret = 0; 839 840 WARN_ON(!dmabuf); 841 842 if (dmabuf->ops->end_cpu_access) 843 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 844 845 return ret; 846 } 847 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 848 849 /** 850 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The 851 * same restrictions as for kmap and friends apply. 852 * @dmabuf: [in] buffer to map page from. 853 * @page_num: [in] page in PAGE_SIZE units to map. 854 * 855 * This call must always succeed, any necessary preparations that might fail 856 * need to be done in begin_cpu_access. 857 */ 858 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num) 859 { 860 WARN_ON(!dmabuf); 861 862 if (!dmabuf->ops->map) 863 return NULL; 864 return dmabuf->ops->map(dmabuf, page_num); 865 } 866 EXPORT_SYMBOL_GPL(dma_buf_kmap); 867 868 /** 869 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap. 870 * @dmabuf: [in] buffer to unmap page from. 871 * @page_num: [in] page in PAGE_SIZE units to unmap. 872 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap. 873 * 874 * This call must always succeed. 875 */ 876 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num, 877 void *vaddr) 878 { 879 WARN_ON(!dmabuf); 880 881 if (dmabuf->ops->unmap) 882 dmabuf->ops->unmap(dmabuf, page_num, vaddr); 883 } 884 EXPORT_SYMBOL_GPL(dma_buf_kunmap); 885 886 887 /** 888 * dma_buf_mmap - Setup up a userspace mmap with the given vma 889 * @dmabuf: [in] buffer that should back the vma 890 * @vma: [in] vma for the mmap 891 * @pgoff: [in] offset in pages where this mmap should start within the 892 * dma-buf buffer. 893 * 894 * This function adjusts the passed in vma so that it points at the file of the 895 * dma_buf operation. It also adjusts the starting pgoff and does bounds 896 * checking on the size of the vma. Then it calls the exporters mmap function to 897 * set up the mapping. 898 * 899 * Can return negative error values, returns 0 on success. 900 */ 901 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 902 unsigned long pgoff) 903 { 904 struct file *oldfile; 905 int ret; 906 907 if (WARN_ON(!dmabuf || !vma)) 908 return -EINVAL; 909 910 /* check for offset overflow */ 911 if (pgoff + vma_pages(vma) < pgoff) 912 return -EOVERFLOW; 913 914 /* check for overflowing the buffer's size */ 915 if (pgoff + vma_pages(vma) > 916 dmabuf->size >> PAGE_SHIFT) 917 return -EINVAL; 918 919 /* readjust the vma */ 920 get_file(dmabuf->file); 921 oldfile = vma->vm_file; 922 vma->vm_file = dmabuf->file; 923 vma->vm_pgoff = pgoff; 924 925 ret = dmabuf->ops->mmap(dmabuf, vma); 926 if (ret) { 927 /* restore old parameters on failure */ 928 vma->vm_file = oldfile; 929 fput(dmabuf->file); 930 } else { 931 if (oldfile) 932 fput(oldfile); 933 } 934 return ret; 935 936 } 937 EXPORT_SYMBOL_GPL(dma_buf_mmap); 938 939 /** 940 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 941 * address space. Same restrictions as for vmap and friends apply. 942 * @dmabuf: [in] buffer to vmap 943 * 944 * This call may fail due to lack of virtual mapping address space. 945 * These calls are optional in drivers. The intended use for them 946 * is for mapping objects linear in kernel space for high use objects. 947 * Please attempt to use kmap/kunmap before thinking about these interfaces. 948 * 949 * Returns NULL on error. 950 */ 951 void *dma_buf_vmap(struct dma_buf *dmabuf) 952 { 953 void *ptr; 954 955 if (WARN_ON(!dmabuf)) 956 return NULL; 957 958 if (!dmabuf->ops->vmap) 959 return NULL; 960 961 mutex_lock(&dmabuf->lock); 962 if (dmabuf->vmapping_counter) { 963 dmabuf->vmapping_counter++; 964 BUG_ON(!dmabuf->vmap_ptr); 965 ptr = dmabuf->vmap_ptr; 966 goto out_unlock; 967 } 968 969 BUG_ON(dmabuf->vmap_ptr); 970 971 ptr = dmabuf->ops->vmap(dmabuf); 972 if (WARN_ON_ONCE(IS_ERR(ptr))) 973 ptr = NULL; 974 if (!ptr) 975 goto out_unlock; 976 977 dmabuf->vmap_ptr = ptr; 978 dmabuf->vmapping_counter = 1; 979 980 out_unlock: 981 mutex_unlock(&dmabuf->lock); 982 return ptr; 983 } 984 EXPORT_SYMBOL_GPL(dma_buf_vmap); 985 986 /** 987 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 988 * @dmabuf: [in] buffer to vunmap 989 * @vaddr: [in] vmap to vunmap 990 */ 991 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 992 { 993 if (WARN_ON(!dmabuf)) 994 return; 995 996 BUG_ON(!dmabuf->vmap_ptr); 997 BUG_ON(dmabuf->vmapping_counter == 0); 998 BUG_ON(dmabuf->vmap_ptr != vaddr); 999 1000 mutex_lock(&dmabuf->lock); 1001 if (--dmabuf->vmapping_counter == 0) { 1002 if (dmabuf->ops->vunmap) 1003 dmabuf->ops->vunmap(dmabuf, vaddr); 1004 dmabuf->vmap_ptr = NULL; 1005 } 1006 mutex_unlock(&dmabuf->lock); 1007 } 1008 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1009 1010 #ifdef CONFIG_DEBUG_FS 1011 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1012 { 1013 int ret; 1014 struct dma_buf *buf_obj; 1015 struct dma_buf_attachment *attach_obj; 1016 struct reservation_object *robj; 1017 struct reservation_object_list *fobj; 1018 struct dma_fence *fence; 1019 unsigned seq; 1020 int count = 0, attach_count, shared_count, i; 1021 size_t size = 0; 1022 1023 ret = mutex_lock_interruptible(&db_list.lock); 1024 1025 if (ret) 1026 return ret; 1027 1028 seq_puts(s, "\nDma-buf Objects:\n"); 1029 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n", 1030 "size", "flags", "mode", "count"); 1031 1032 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1033 ret = mutex_lock_interruptible(&buf_obj->lock); 1034 1035 if (ret) { 1036 seq_puts(s, 1037 "\tERROR locking buffer object: skipping\n"); 1038 continue; 1039 } 1040 1041 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n", 1042 buf_obj->size, 1043 buf_obj->file->f_flags, buf_obj->file->f_mode, 1044 file_count(buf_obj->file), 1045 buf_obj->exp_name); 1046 1047 robj = buf_obj->resv; 1048 while (true) { 1049 seq = read_seqcount_begin(&robj->seq); 1050 rcu_read_lock(); 1051 fobj = rcu_dereference(robj->fence); 1052 shared_count = fobj ? fobj->shared_count : 0; 1053 fence = rcu_dereference(robj->fence_excl); 1054 if (!read_seqcount_retry(&robj->seq, seq)) 1055 break; 1056 rcu_read_unlock(); 1057 } 1058 1059 if (fence) 1060 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1061 fence->ops->get_driver_name(fence), 1062 fence->ops->get_timeline_name(fence), 1063 dma_fence_is_signaled(fence) ? "" : "un"); 1064 for (i = 0; i < shared_count; i++) { 1065 fence = rcu_dereference(fobj->shared[i]); 1066 if (!dma_fence_get_rcu(fence)) 1067 continue; 1068 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1069 fence->ops->get_driver_name(fence), 1070 fence->ops->get_timeline_name(fence), 1071 dma_fence_is_signaled(fence) ? "" : "un"); 1072 } 1073 rcu_read_unlock(); 1074 1075 seq_puts(s, "\tAttached Devices:\n"); 1076 attach_count = 0; 1077 1078 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1079 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1080 attach_count++; 1081 } 1082 1083 seq_printf(s, "Total %d devices attached\n\n", 1084 attach_count); 1085 1086 count++; 1087 size += buf_obj->size; 1088 mutex_unlock(&buf_obj->lock); 1089 } 1090 1091 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1092 1093 mutex_unlock(&db_list.lock); 1094 return 0; 1095 } 1096 1097 static int dma_buf_debug_open(struct inode *inode, struct file *file) 1098 { 1099 return single_open(file, dma_buf_debug_show, NULL); 1100 } 1101 1102 static const struct file_operations dma_buf_debug_fops = { 1103 .open = dma_buf_debug_open, 1104 .read = seq_read, 1105 .llseek = seq_lseek, 1106 .release = single_release, 1107 }; 1108 1109 static struct dentry *dma_buf_debugfs_dir; 1110 1111 static int dma_buf_init_debugfs(void) 1112 { 1113 struct dentry *d; 1114 int err = 0; 1115 1116 d = debugfs_create_dir("dma_buf", NULL); 1117 if (IS_ERR(d)) 1118 return PTR_ERR(d); 1119 1120 dma_buf_debugfs_dir = d; 1121 1122 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1123 NULL, &dma_buf_debug_fops); 1124 if (IS_ERR(d)) { 1125 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1126 debugfs_remove_recursive(dma_buf_debugfs_dir); 1127 dma_buf_debugfs_dir = NULL; 1128 err = PTR_ERR(d); 1129 } 1130 1131 return err; 1132 } 1133 1134 static void dma_buf_uninit_debugfs(void) 1135 { 1136 debugfs_remove_recursive(dma_buf_debugfs_dir); 1137 } 1138 #else 1139 static inline int dma_buf_init_debugfs(void) 1140 { 1141 return 0; 1142 } 1143 static inline void dma_buf_uninit_debugfs(void) 1144 { 1145 } 1146 #endif 1147 1148 static int __init dma_buf_init(void) 1149 { 1150 mutex_init(&db_list.lock); 1151 INIT_LIST_HEAD(&db_list.head); 1152 dma_buf_init_debugfs(); 1153 return 0; 1154 } 1155 subsys_initcall(dma_buf_init); 1156 1157 static void __exit dma_buf_deinit(void) 1158 { 1159 dma_buf_uninit_debugfs(); 1160 } 1161 __exitcall(dma_buf_deinit); 1162