1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/dma-fence-unwrap.h> 19 #include <linux/anon_inodes.h> 20 #include <linux/export.h> 21 #include <linux/debugfs.h> 22 #include <linux/module.h> 23 #include <linux/seq_file.h> 24 #include <linux/sync_file.h> 25 #include <linux/poll.h> 26 #include <linux/dma-resv.h> 27 #include <linux/mm.h> 28 #include <linux/mount.h> 29 #include <linux/pseudo_fs.h> 30 31 #include <uapi/linux/dma-buf.h> 32 #include <uapi/linux/magic.h> 33 34 #include "dma-buf-sysfs-stats.h" 35 36 static inline int is_dma_buf_file(struct file *); 37 38 struct dma_buf_list { 39 struct list_head head; 40 struct mutex lock; 41 }; 42 43 static struct dma_buf_list db_list; 44 45 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 46 { 47 struct dma_buf *dmabuf; 48 char name[DMA_BUF_NAME_LEN]; 49 size_t ret = 0; 50 51 dmabuf = dentry->d_fsdata; 52 spin_lock(&dmabuf->name_lock); 53 if (dmabuf->name) 54 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 55 spin_unlock(&dmabuf->name_lock); 56 57 return dynamic_dname(buffer, buflen, "/%s:%s", 58 dentry->d_name.name, ret > 0 ? name : ""); 59 } 60 61 static void dma_buf_release(struct dentry *dentry) 62 { 63 struct dma_buf *dmabuf; 64 65 dmabuf = dentry->d_fsdata; 66 if (unlikely(!dmabuf)) 67 return; 68 69 BUG_ON(dmabuf->vmapping_counter); 70 71 /* 72 * If you hit this BUG() it could mean: 73 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 74 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 75 */ 76 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 77 78 dma_buf_stats_teardown(dmabuf); 79 dmabuf->ops->release(dmabuf); 80 81 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 82 dma_resv_fini(dmabuf->resv); 83 84 WARN_ON(!list_empty(&dmabuf->attachments)); 85 module_put(dmabuf->owner); 86 kfree(dmabuf->name); 87 kfree(dmabuf); 88 } 89 90 static int dma_buf_file_release(struct inode *inode, struct file *file) 91 { 92 struct dma_buf *dmabuf; 93 94 if (!is_dma_buf_file(file)) 95 return -EINVAL; 96 97 dmabuf = file->private_data; 98 99 mutex_lock(&db_list.lock); 100 list_del(&dmabuf->list_node); 101 mutex_unlock(&db_list.lock); 102 103 return 0; 104 } 105 106 static const struct dentry_operations dma_buf_dentry_ops = { 107 .d_dname = dmabuffs_dname, 108 .d_release = dma_buf_release, 109 }; 110 111 static struct vfsmount *dma_buf_mnt; 112 113 static int dma_buf_fs_init_context(struct fs_context *fc) 114 { 115 struct pseudo_fs_context *ctx; 116 117 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 118 if (!ctx) 119 return -ENOMEM; 120 ctx->dops = &dma_buf_dentry_ops; 121 return 0; 122 } 123 124 static struct file_system_type dma_buf_fs_type = { 125 .name = "dmabuf", 126 .init_fs_context = dma_buf_fs_init_context, 127 .kill_sb = kill_anon_super, 128 }; 129 130 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 131 { 132 struct dma_buf *dmabuf; 133 int ret; 134 135 if (!is_dma_buf_file(file)) 136 return -EINVAL; 137 138 dmabuf = file->private_data; 139 140 /* check if buffer supports mmap */ 141 if (!dmabuf->ops->mmap) 142 return -EINVAL; 143 144 /* check for overflowing the buffer's size */ 145 if (vma->vm_pgoff + vma_pages(vma) > 146 dmabuf->size >> PAGE_SHIFT) 147 return -EINVAL; 148 149 dma_resv_lock(dmabuf->resv, NULL); 150 ret = dmabuf->ops->mmap(dmabuf, vma); 151 dma_resv_unlock(dmabuf->resv); 152 153 return ret; 154 } 155 156 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 157 { 158 struct dma_buf *dmabuf; 159 loff_t base; 160 161 if (!is_dma_buf_file(file)) 162 return -EBADF; 163 164 dmabuf = file->private_data; 165 166 /* only support discovering the end of the buffer, 167 but also allow SEEK_SET to maintain the idiomatic 168 SEEK_END(0), SEEK_CUR(0) pattern */ 169 if (whence == SEEK_END) 170 base = dmabuf->size; 171 else if (whence == SEEK_SET) 172 base = 0; 173 else 174 return -EINVAL; 175 176 if (offset != 0) 177 return -EINVAL; 178 179 return base + offset; 180 } 181 182 /** 183 * DOC: implicit fence polling 184 * 185 * To support cross-device and cross-driver synchronization of buffer access 186 * implicit fences (represented internally in the kernel with &struct dma_fence) 187 * can be attached to a &dma_buf. The glue for that and a few related things are 188 * provided in the &dma_resv structure. 189 * 190 * Userspace can query the state of these implicitly tracked fences using poll() 191 * and related system calls: 192 * 193 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 194 * most recent write or exclusive fence. 195 * 196 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 197 * all attached fences, shared and exclusive ones. 198 * 199 * Note that this only signals the completion of the respective fences, i.e. the 200 * DMA transfers are complete. Cache flushing and any other necessary 201 * preparations before CPU access can begin still need to happen. 202 * 203 * As an alternative to poll(), the set of fences on DMA buffer can be 204 * exported as a &sync_file using &dma_buf_sync_file_export. 205 */ 206 207 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 208 { 209 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 210 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 211 unsigned long flags; 212 213 spin_lock_irqsave(&dcb->poll->lock, flags); 214 wake_up_locked_poll(dcb->poll, dcb->active); 215 dcb->active = 0; 216 spin_unlock_irqrestore(&dcb->poll->lock, flags); 217 dma_fence_put(fence); 218 /* Paired with get_file in dma_buf_poll */ 219 fput(dmabuf->file); 220 } 221 222 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 223 struct dma_buf_poll_cb_t *dcb) 224 { 225 struct dma_resv_iter cursor; 226 struct dma_fence *fence; 227 int r; 228 229 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 230 fence) { 231 dma_fence_get(fence); 232 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 233 if (!r) 234 return true; 235 dma_fence_put(fence); 236 } 237 238 return false; 239 } 240 241 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 242 { 243 struct dma_buf *dmabuf; 244 struct dma_resv *resv; 245 __poll_t events; 246 247 dmabuf = file->private_data; 248 if (!dmabuf || !dmabuf->resv) 249 return EPOLLERR; 250 251 resv = dmabuf->resv; 252 253 poll_wait(file, &dmabuf->poll, poll); 254 255 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 256 if (!events) 257 return 0; 258 259 dma_resv_lock(resv, NULL); 260 261 if (events & EPOLLOUT) { 262 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 263 264 /* Check that callback isn't busy */ 265 spin_lock_irq(&dmabuf->poll.lock); 266 if (dcb->active) 267 events &= ~EPOLLOUT; 268 else 269 dcb->active = EPOLLOUT; 270 spin_unlock_irq(&dmabuf->poll.lock); 271 272 if (events & EPOLLOUT) { 273 /* Paired with fput in dma_buf_poll_cb */ 274 get_file(dmabuf->file); 275 276 if (!dma_buf_poll_add_cb(resv, true, dcb)) 277 /* No callback queued, wake up any other waiters */ 278 dma_buf_poll_cb(NULL, &dcb->cb); 279 else 280 events &= ~EPOLLOUT; 281 } 282 } 283 284 if (events & EPOLLIN) { 285 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 286 287 /* Check that callback isn't busy */ 288 spin_lock_irq(&dmabuf->poll.lock); 289 if (dcb->active) 290 events &= ~EPOLLIN; 291 else 292 dcb->active = EPOLLIN; 293 spin_unlock_irq(&dmabuf->poll.lock); 294 295 if (events & EPOLLIN) { 296 /* Paired with fput in dma_buf_poll_cb */ 297 get_file(dmabuf->file); 298 299 if (!dma_buf_poll_add_cb(resv, false, dcb)) 300 /* No callback queued, wake up any other waiters */ 301 dma_buf_poll_cb(NULL, &dcb->cb); 302 else 303 events &= ~EPOLLIN; 304 } 305 } 306 307 dma_resv_unlock(resv); 308 return events; 309 } 310 311 /** 312 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 313 * It could support changing the name of the dma-buf if the same 314 * piece of memory is used for multiple purpose between different devices. 315 * 316 * @dmabuf: [in] dmabuf buffer that will be renamed. 317 * @buf: [in] A piece of userspace memory that contains the name of 318 * the dma-buf. 319 * 320 * Returns 0 on success. If the dma-buf buffer is already attached to 321 * devices, return -EBUSY. 322 * 323 */ 324 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 325 { 326 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 327 328 if (IS_ERR(name)) 329 return PTR_ERR(name); 330 331 spin_lock(&dmabuf->name_lock); 332 kfree(dmabuf->name); 333 dmabuf->name = name; 334 spin_unlock(&dmabuf->name_lock); 335 336 return 0; 337 } 338 339 #if IS_ENABLED(CONFIG_SYNC_FILE) 340 static long dma_buf_export_sync_file(struct dma_buf *dmabuf, 341 void __user *user_data) 342 { 343 struct dma_buf_export_sync_file arg; 344 enum dma_resv_usage usage; 345 struct dma_fence *fence = NULL; 346 struct sync_file *sync_file; 347 int fd, ret; 348 349 if (copy_from_user(&arg, user_data, sizeof(arg))) 350 return -EFAULT; 351 352 if (arg.flags & ~DMA_BUF_SYNC_RW) 353 return -EINVAL; 354 355 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 356 return -EINVAL; 357 358 fd = get_unused_fd_flags(O_CLOEXEC); 359 if (fd < 0) 360 return fd; 361 362 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); 363 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); 364 if (ret) 365 goto err_put_fd; 366 367 if (!fence) 368 fence = dma_fence_get_stub(); 369 370 sync_file = sync_file_create(fence); 371 372 dma_fence_put(fence); 373 374 if (!sync_file) { 375 ret = -ENOMEM; 376 goto err_put_fd; 377 } 378 379 arg.fd = fd; 380 if (copy_to_user(user_data, &arg, sizeof(arg))) { 381 ret = -EFAULT; 382 goto err_put_file; 383 } 384 385 fd_install(fd, sync_file->file); 386 387 return 0; 388 389 err_put_file: 390 fput(sync_file->file); 391 err_put_fd: 392 put_unused_fd(fd); 393 return ret; 394 } 395 396 static long dma_buf_import_sync_file(struct dma_buf *dmabuf, 397 const void __user *user_data) 398 { 399 struct dma_buf_import_sync_file arg; 400 struct dma_fence *fence, *f; 401 enum dma_resv_usage usage; 402 struct dma_fence_unwrap iter; 403 unsigned int num_fences; 404 int ret = 0; 405 406 if (copy_from_user(&arg, user_data, sizeof(arg))) 407 return -EFAULT; 408 409 if (arg.flags & ~DMA_BUF_SYNC_RW) 410 return -EINVAL; 411 412 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 413 return -EINVAL; 414 415 fence = sync_file_get_fence(arg.fd); 416 if (!fence) 417 return -EINVAL; 418 419 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : 420 DMA_RESV_USAGE_READ; 421 422 num_fences = 0; 423 dma_fence_unwrap_for_each(f, &iter, fence) 424 ++num_fences; 425 426 if (num_fences > 0) { 427 dma_resv_lock(dmabuf->resv, NULL); 428 429 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences); 430 if (!ret) { 431 dma_fence_unwrap_for_each(f, &iter, fence) 432 dma_resv_add_fence(dmabuf->resv, f, usage); 433 } 434 435 dma_resv_unlock(dmabuf->resv); 436 } 437 438 dma_fence_put(fence); 439 440 return ret; 441 } 442 #endif 443 444 static long dma_buf_ioctl(struct file *file, 445 unsigned int cmd, unsigned long arg) 446 { 447 struct dma_buf *dmabuf; 448 struct dma_buf_sync sync; 449 enum dma_data_direction direction; 450 int ret; 451 452 dmabuf = file->private_data; 453 454 switch (cmd) { 455 case DMA_BUF_IOCTL_SYNC: 456 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 457 return -EFAULT; 458 459 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 460 return -EINVAL; 461 462 switch (sync.flags & DMA_BUF_SYNC_RW) { 463 case DMA_BUF_SYNC_READ: 464 direction = DMA_FROM_DEVICE; 465 break; 466 case DMA_BUF_SYNC_WRITE: 467 direction = DMA_TO_DEVICE; 468 break; 469 case DMA_BUF_SYNC_RW: 470 direction = DMA_BIDIRECTIONAL; 471 break; 472 default: 473 return -EINVAL; 474 } 475 476 if (sync.flags & DMA_BUF_SYNC_END) 477 ret = dma_buf_end_cpu_access(dmabuf, direction); 478 else 479 ret = dma_buf_begin_cpu_access(dmabuf, direction); 480 481 return ret; 482 483 case DMA_BUF_SET_NAME_A: 484 case DMA_BUF_SET_NAME_B: 485 return dma_buf_set_name(dmabuf, (const char __user *)arg); 486 487 #if IS_ENABLED(CONFIG_SYNC_FILE) 488 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: 489 return dma_buf_export_sync_file(dmabuf, (void __user *)arg); 490 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: 491 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); 492 #endif 493 494 default: 495 return -ENOTTY; 496 } 497 } 498 499 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 500 { 501 struct dma_buf *dmabuf = file->private_data; 502 503 seq_printf(m, "size:\t%zu\n", dmabuf->size); 504 /* Don't count the temporary reference taken inside procfs seq_show */ 505 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 506 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 507 spin_lock(&dmabuf->name_lock); 508 if (dmabuf->name) 509 seq_printf(m, "name:\t%s\n", dmabuf->name); 510 spin_unlock(&dmabuf->name_lock); 511 } 512 513 static const struct file_operations dma_buf_fops = { 514 .release = dma_buf_file_release, 515 .mmap = dma_buf_mmap_internal, 516 .llseek = dma_buf_llseek, 517 .poll = dma_buf_poll, 518 .unlocked_ioctl = dma_buf_ioctl, 519 .compat_ioctl = compat_ptr_ioctl, 520 .show_fdinfo = dma_buf_show_fdinfo, 521 }; 522 523 /* 524 * is_dma_buf_file - Check if struct file* is associated with dma_buf 525 */ 526 static inline int is_dma_buf_file(struct file *file) 527 { 528 return file->f_op == &dma_buf_fops; 529 } 530 531 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 532 { 533 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 534 struct file *file; 535 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 536 537 if (IS_ERR(inode)) 538 return ERR_CAST(inode); 539 540 inode->i_size = dmabuf->size; 541 inode_set_bytes(inode, dmabuf->size); 542 543 /* 544 * The ->i_ino acquired from get_next_ino() is not unique thus 545 * not suitable for using it as dentry name by dmabuf stats. 546 * Override ->i_ino with the unique and dmabuffs specific 547 * value. 548 */ 549 inode->i_ino = atomic64_add_return(1, &dmabuf_inode); 550 flags &= O_ACCMODE | O_NONBLOCK; 551 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 552 flags, &dma_buf_fops); 553 if (IS_ERR(file)) 554 goto err_alloc_file; 555 file->private_data = dmabuf; 556 file->f_path.dentry->d_fsdata = dmabuf; 557 558 return file; 559 560 err_alloc_file: 561 iput(inode); 562 return file; 563 } 564 565 /** 566 * DOC: dma buf device access 567 * 568 * For device DMA access to a shared DMA buffer the usual sequence of operations 569 * is fairly simple: 570 * 571 * 1. The exporter defines his exporter instance using 572 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 573 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 574 * as a file descriptor by calling dma_buf_fd(). 575 * 576 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 577 * to share with: First the file descriptor is converted to a &dma_buf using 578 * dma_buf_get(). Then the buffer is attached to the device using 579 * dma_buf_attach(). 580 * 581 * Up to this stage the exporter is still free to migrate or reallocate the 582 * backing storage. 583 * 584 * 3. Once the buffer is attached to all devices userspace can initiate DMA 585 * access to the shared buffer. In the kernel this is done by calling 586 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 587 * 588 * 4. Once a driver is done with a shared buffer it needs to call 589 * dma_buf_detach() (after cleaning up any mappings) and then release the 590 * reference acquired with dma_buf_get() by calling dma_buf_put(). 591 * 592 * For the detailed semantics exporters are expected to implement see 593 * &dma_buf_ops. 594 */ 595 596 /** 597 * dma_buf_export - Creates a new dma_buf, and associates an anon file 598 * with this buffer, so it can be exported. 599 * Also connect the allocator specific data and ops to the buffer. 600 * Additionally, provide a name string for exporter; useful in debugging. 601 * 602 * @exp_info: [in] holds all the export related information provided 603 * by the exporter. see &struct dma_buf_export_info 604 * for further details. 605 * 606 * Returns, on success, a newly created struct dma_buf object, which wraps the 607 * supplied private data and operations for struct dma_buf_ops. On either 608 * missing ops, or error in allocating struct dma_buf, will return negative 609 * error. 610 * 611 * For most cases the easiest way to create @exp_info is through the 612 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 613 */ 614 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 615 { 616 struct dma_buf *dmabuf; 617 struct dma_resv *resv = exp_info->resv; 618 struct file *file; 619 size_t alloc_size = sizeof(struct dma_buf); 620 int ret; 621 622 if (!exp_info->resv) 623 alloc_size += sizeof(struct dma_resv); 624 else 625 /* prevent &dma_buf[1] == dma_buf->resv */ 626 alloc_size += 1; 627 628 if (WARN_ON(!exp_info->priv 629 || !exp_info->ops 630 || !exp_info->ops->map_dma_buf 631 || !exp_info->ops->unmap_dma_buf 632 || !exp_info->ops->release)) { 633 return ERR_PTR(-EINVAL); 634 } 635 636 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 637 (exp_info->ops->pin || exp_info->ops->unpin))) 638 return ERR_PTR(-EINVAL); 639 640 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 641 return ERR_PTR(-EINVAL); 642 643 if (!try_module_get(exp_info->owner)) 644 return ERR_PTR(-ENOENT); 645 646 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 647 if (!dmabuf) { 648 ret = -ENOMEM; 649 goto err_module; 650 } 651 652 dmabuf->priv = exp_info->priv; 653 dmabuf->ops = exp_info->ops; 654 dmabuf->size = exp_info->size; 655 dmabuf->exp_name = exp_info->exp_name; 656 dmabuf->owner = exp_info->owner; 657 spin_lock_init(&dmabuf->name_lock); 658 init_waitqueue_head(&dmabuf->poll); 659 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 660 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 661 662 if (!resv) { 663 resv = (struct dma_resv *)&dmabuf[1]; 664 dma_resv_init(resv); 665 } 666 dmabuf->resv = resv; 667 668 file = dma_buf_getfile(dmabuf, exp_info->flags); 669 if (IS_ERR(file)) { 670 ret = PTR_ERR(file); 671 goto err_dmabuf; 672 } 673 674 dmabuf->file = file; 675 676 INIT_LIST_HEAD(&dmabuf->attachments); 677 678 mutex_lock(&db_list.lock); 679 list_add(&dmabuf->list_node, &db_list.head); 680 mutex_unlock(&db_list.lock); 681 682 ret = dma_buf_stats_setup(dmabuf); 683 if (ret) 684 goto err_sysfs; 685 686 return dmabuf; 687 688 err_sysfs: 689 /* 690 * Set file->f_path.dentry->d_fsdata to NULL so that when 691 * dma_buf_release() gets invoked by dentry_ops, it exits 692 * early before calling the release() dma_buf op. 693 */ 694 file->f_path.dentry->d_fsdata = NULL; 695 fput(file); 696 err_dmabuf: 697 kfree(dmabuf); 698 err_module: 699 module_put(exp_info->owner); 700 return ERR_PTR(ret); 701 } 702 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 703 704 /** 705 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 706 * @dmabuf: [in] pointer to dma_buf for which fd is required. 707 * @flags: [in] flags to give to fd 708 * 709 * On success, returns an associated 'fd'. Else, returns error. 710 */ 711 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 712 { 713 int fd; 714 715 if (!dmabuf || !dmabuf->file) 716 return -EINVAL; 717 718 fd = get_unused_fd_flags(flags); 719 if (fd < 0) 720 return fd; 721 722 fd_install(fd, dmabuf->file); 723 724 return fd; 725 } 726 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 727 728 /** 729 * dma_buf_get - returns the struct dma_buf related to an fd 730 * @fd: [in] fd associated with the struct dma_buf to be returned 731 * 732 * On success, returns the struct dma_buf associated with an fd; uses 733 * file's refcounting done by fget to increase refcount. returns ERR_PTR 734 * otherwise. 735 */ 736 struct dma_buf *dma_buf_get(int fd) 737 { 738 struct file *file; 739 740 file = fget(fd); 741 742 if (!file) 743 return ERR_PTR(-EBADF); 744 745 if (!is_dma_buf_file(file)) { 746 fput(file); 747 return ERR_PTR(-EINVAL); 748 } 749 750 return file->private_data; 751 } 752 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 753 754 /** 755 * dma_buf_put - decreases refcount of the buffer 756 * @dmabuf: [in] buffer to reduce refcount of 757 * 758 * Uses file's refcounting done implicitly by fput(). 759 * 760 * If, as a result of this call, the refcount becomes 0, the 'release' file 761 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 762 * in turn, and frees the memory allocated for dmabuf when exported. 763 */ 764 void dma_buf_put(struct dma_buf *dmabuf) 765 { 766 if (WARN_ON(!dmabuf || !dmabuf->file)) 767 return; 768 769 fput(dmabuf->file); 770 } 771 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 772 773 static void mangle_sg_table(struct sg_table *sg_table) 774 { 775 #ifdef CONFIG_DMABUF_DEBUG 776 int i; 777 struct scatterlist *sg; 778 779 /* To catch abuse of the underlying struct page by importers mix 780 * up the bits, but take care to preserve the low SG_ bits to 781 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 782 * before passing the sgt back to the exporter. */ 783 for_each_sgtable_sg(sg_table, sg, i) 784 sg->page_link ^= ~0xffUL; 785 #endif 786 787 } 788 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 789 enum dma_data_direction direction) 790 { 791 struct sg_table *sg_table; 792 signed long ret; 793 794 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 795 if (IS_ERR_OR_NULL(sg_table)) 796 return sg_table; 797 798 if (!dma_buf_attachment_is_dynamic(attach)) { 799 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 800 DMA_RESV_USAGE_KERNEL, true, 801 MAX_SCHEDULE_TIMEOUT); 802 if (ret < 0) { 803 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 804 direction); 805 return ERR_PTR(ret); 806 } 807 } 808 809 mangle_sg_table(sg_table); 810 return sg_table; 811 } 812 813 /** 814 * DOC: locking convention 815 * 816 * In order to avoid deadlock situations between dma-buf exports and importers, 817 * all dma-buf API users must follow the common dma-buf locking convention. 818 * 819 * Convention for importers 820 * 821 * 1. Importers must hold the dma-buf reservation lock when calling these 822 * functions: 823 * 824 * - dma_buf_pin() 825 * - dma_buf_unpin() 826 * - dma_buf_map_attachment() 827 * - dma_buf_unmap_attachment() 828 * - dma_buf_vmap() 829 * - dma_buf_vunmap() 830 * 831 * 2. Importers must not hold the dma-buf reservation lock when calling these 832 * functions: 833 * 834 * - dma_buf_attach() 835 * - dma_buf_dynamic_attach() 836 * - dma_buf_detach() 837 * - dma_buf_export( 838 * - dma_buf_fd() 839 * - dma_buf_get() 840 * - dma_buf_put() 841 * - dma_buf_mmap() 842 * - dma_buf_begin_cpu_access() 843 * - dma_buf_end_cpu_access() 844 * - dma_buf_map_attachment_unlocked() 845 * - dma_buf_unmap_attachment_unlocked() 846 * - dma_buf_vmap_unlocked() 847 * - dma_buf_vunmap_unlocked() 848 * 849 * Convention for exporters 850 * 851 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf 852 * reservation and exporter can take the lock: 853 * 854 * - &dma_buf_ops.attach() 855 * - &dma_buf_ops.detach() 856 * - &dma_buf_ops.release() 857 * - &dma_buf_ops.begin_cpu_access() 858 * - &dma_buf_ops.end_cpu_access() 859 * 860 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf 861 * reservation and exporter can't take the lock: 862 * 863 * - &dma_buf_ops.pin() 864 * - &dma_buf_ops.unpin() 865 * - &dma_buf_ops.map_dma_buf() 866 * - &dma_buf_ops.unmap_dma_buf() 867 * - &dma_buf_ops.mmap() 868 * - &dma_buf_ops.vmap() 869 * - &dma_buf_ops.vunmap() 870 * 871 * 3. Exporters must hold the dma-buf reservation lock when calling these 872 * functions: 873 * 874 * - dma_buf_move_notify() 875 */ 876 877 /** 878 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 879 * @dmabuf: [in] buffer to attach device to. 880 * @dev: [in] device to be attached. 881 * @importer_ops: [in] importer operations for the attachment 882 * @importer_priv: [in] importer private pointer for the attachment 883 * 884 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 885 * must be cleaned up by calling dma_buf_detach(). 886 * 887 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 888 * functionality. 889 * 890 * Returns: 891 * 892 * A pointer to newly created &dma_buf_attachment on success, or a negative 893 * error code wrapped into a pointer on failure. 894 * 895 * Note that this can fail if the backing storage of @dmabuf is in a place not 896 * accessible to @dev, and cannot be moved to a more suitable place. This is 897 * indicated with the error code -EBUSY. 898 */ 899 struct dma_buf_attachment * 900 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 901 const struct dma_buf_attach_ops *importer_ops, 902 void *importer_priv) 903 { 904 struct dma_buf_attachment *attach; 905 int ret; 906 907 if (WARN_ON(!dmabuf || !dev)) 908 return ERR_PTR(-EINVAL); 909 910 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 911 return ERR_PTR(-EINVAL); 912 913 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 914 if (!attach) 915 return ERR_PTR(-ENOMEM); 916 917 attach->dev = dev; 918 attach->dmabuf = dmabuf; 919 if (importer_ops) 920 attach->peer2peer = importer_ops->allow_peer2peer; 921 attach->importer_ops = importer_ops; 922 attach->importer_priv = importer_priv; 923 924 if (dmabuf->ops->attach) { 925 ret = dmabuf->ops->attach(dmabuf, attach); 926 if (ret) 927 goto err_attach; 928 } 929 dma_resv_lock(dmabuf->resv, NULL); 930 list_add(&attach->node, &dmabuf->attachments); 931 dma_resv_unlock(dmabuf->resv); 932 933 /* When either the importer or the exporter can't handle dynamic 934 * mappings we cache the mapping here to avoid issues with the 935 * reservation object lock. 936 */ 937 if (dma_buf_attachment_is_dynamic(attach) != 938 dma_buf_is_dynamic(dmabuf)) { 939 struct sg_table *sgt; 940 941 dma_resv_lock(attach->dmabuf->resv, NULL); 942 if (dma_buf_is_dynamic(attach->dmabuf)) { 943 ret = dmabuf->ops->pin(attach); 944 if (ret) 945 goto err_unlock; 946 } 947 948 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 949 if (!sgt) 950 sgt = ERR_PTR(-ENOMEM); 951 if (IS_ERR(sgt)) { 952 ret = PTR_ERR(sgt); 953 goto err_unpin; 954 } 955 dma_resv_unlock(attach->dmabuf->resv); 956 attach->sgt = sgt; 957 attach->dir = DMA_BIDIRECTIONAL; 958 } 959 960 return attach; 961 962 err_attach: 963 kfree(attach); 964 return ERR_PTR(ret); 965 966 err_unpin: 967 if (dma_buf_is_dynamic(attach->dmabuf)) 968 dmabuf->ops->unpin(attach); 969 970 err_unlock: 971 dma_resv_unlock(attach->dmabuf->resv); 972 973 dma_buf_detach(dmabuf, attach); 974 return ERR_PTR(ret); 975 } 976 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 977 978 /** 979 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 980 * @dmabuf: [in] buffer to attach device to. 981 * @dev: [in] device to be attached. 982 * 983 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 984 * mapping. 985 */ 986 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 987 struct device *dev) 988 { 989 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 990 } 991 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 992 993 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 994 struct sg_table *sg_table, 995 enum dma_data_direction direction) 996 { 997 /* uses XOR, hence this unmangles */ 998 mangle_sg_table(sg_table); 999 1000 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 1001 } 1002 1003 /** 1004 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 1005 * @dmabuf: [in] buffer to detach from. 1006 * @attach: [in] attachment to be detached; is free'd after this call. 1007 * 1008 * Clean up a device attachment obtained by calling dma_buf_attach(). 1009 * 1010 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 1011 */ 1012 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 1013 { 1014 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf)) 1015 return; 1016 1017 dma_resv_lock(dmabuf->resv, NULL); 1018 1019 if (attach->sgt) { 1020 1021 __unmap_dma_buf(attach, attach->sgt, attach->dir); 1022 1023 if (dma_buf_is_dynamic(attach->dmabuf)) 1024 dmabuf->ops->unpin(attach); 1025 } 1026 list_del(&attach->node); 1027 1028 dma_resv_unlock(dmabuf->resv); 1029 1030 if (dmabuf->ops->detach) 1031 dmabuf->ops->detach(dmabuf, attach); 1032 1033 kfree(attach); 1034 } 1035 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 1036 1037 /** 1038 * dma_buf_pin - Lock down the DMA-buf 1039 * @attach: [in] attachment which should be pinned 1040 * 1041 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 1042 * call this, and only for limited use cases like scanout and not for temporary 1043 * pin operations. It is not permitted to allow userspace to pin arbitrary 1044 * amounts of buffers through this interface. 1045 * 1046 * Buffers must be unpinned by calling dma_buf_unpin(). 1047 * 1048 * Returns: 1049 * 0 on success, negative error code on failure. 1050 */ 1051 int dma_buf_pin(struct dma_buf_attachment *attach) 1052 { 1053 struct dma_buf *dmabuf = attach->dmabuf; 1054 int ret = 0; 1055 1056 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1057 1058 dma_resv_assert_held(dmabuf->resv); 1059 1060 if (dmabuf->ops->pin) 1061 ret = dmabuf->ops->pin(attach); 1062 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 1066 1067 /** 1068 * dma_buf_unpin - Unpin a DMA-buf 1069 * @attach: [in] attachment which should be unpinned 1070 * 1071 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 1072 * any mapping of @attach again and inform the importer through 1073 * &dma_buf_attach_ops.move_notify. 1074 */ 1075 void dma_buf_unpin(struct dma_buf_attachment *attach) 1076 { 1077 struct dma_buf *dmabuf = attach->dmabuf; 1078 1079 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1080 1081 dma_resv_assert_held(dmabuf->resv); 1082 1083 if (dmabuf->ops->unpin) 1084 dmabuf->ops->unpin(attach); 1085 } 1086 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 1087 1088 /** 1089 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 1090 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1091 * dma_buf_ops. 1092 * @attach: [in] attachment whose scatterlist is to be returned 1093 * @direction: [in] direction of DMA transfer 1094 * 1095 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 1096 * on error. May return -EINTR if it is interrupted by a signal. 1097 * 1098 * On success, the DMA addresses and lengths in the returned scatterlist are 1099 * PAGE_SIZE aligned. 1100 * 1101 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 1102 * the underlying backing storage is pinned for as long as a mapping exists, 1103 * therefore users/importers should not hold onto a mapping for undue amounts of 1104 * time. 1105 * 1106 * Important: Dynamic importers must wait for the exclusive fence of the struct 1107 * dma_resv attached to the DMA-BUF first. 1108 */ 1109 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 1110 enum dma_data_direction direction) 1111 { 1112 struct sg_table *sg_table; 1113 int r; 1114 1115 might_sleep(); 1116 1117 if (WARN_ON(!attach || !attach->dmabuf)) 1118 return ERR_PTR(-EINVAL); 1119 1120 dma_resv_assert_held(attach->dmabuf->resv); 1121 1122 if (attach->sgt) { 1123 /* 1124 * Two mappings with different directions for the same 1125 * attachment are not allowed. 1126 */ 1127 if (attach->dir != direction && 1128 attach->dir != DMA_BIDIRECTIONAL) 1129 return ERR_PTR(-EBUSY); 1130 1131 return attach->sgt; 1132 } 1133 1134 if (dma_buf_is_dynamic(attach->dmabuf)) { 1135 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 1136 r = attach->dmabuf->ops->pin(attach); 1137 if (r) 1138 return ERR_PTR(r); 1139 } 1140 } 1141 1142 sg_table = __map_dma_buf(attach, direction); 1143 if (!sg_table) 1144 sg_table = ERR_PTR(-ENOMEM); 1145 1146 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 1147 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1148 attach->dmabuf->ops->unpin(attach); 1149 1150 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 1151 attach->sgt = sg_table; 1152 attach->dir = direction; 1153 } 1154 1155 #ifdef CONFIG_DMA_API_DEBUG 1156 if (!IS_ERR(sg_table)) { 1157 struct scatterlist *sg; 1158 u64 addr; 1159 int len; 1160 int i; 1161 1162 for_each_sgtable_dma_sg(sg_table, sg, i) { 1163 addr = sg_dma_address(sg); 1164 len = sg_dma_len(sg); 1165 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 1166 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 1167 __func__, addr, len); 1168 } 1169 } 1170 } 1171 #endif /* CONFIG_DMA_API_DEBUG */ 1172 return sg_table; 1173 } 1174 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 1175 1176 /** 1177 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment; 1178 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1179 * dma_buf_ops. 1180 * @attach: [in] attachment whose scatterlist is to be returned 1181 * @direction: [in] direction of DMA transfer 1182 * 1183 * Unlocked variant of dma_buf_map_attachment(). 1184 */ 1185 struct sg_table * 1186 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach, 1187 enum dma_data_direction direction) 1188 { 1189 struct sg_table *sg_table; 1190 1191 might_sleep(); 1192 1193 if (WARN_ON(!attach || !attach->dmabuf)) 1194 return ERR_PTR(-EINVAL); 1195 1196 dma_resv_lock(attach->dmabuf->resv, NULL); 1197 sg_table = dma_buf_map_attachment(attach, direction); 1198 dma_resv_unlock(attach->dmabuf->resv); 1199 1200 return sg_table; 1201 } 1202 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF); 1203 1204 /** 1205 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1206 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1207 * dma_buf_ops. 1208 * @attach: [in] attachment to unmap buffer from 1209 * @sg_table: [in] scatterlist info of the buffer to unmap 1210 * @direction: [in] direction of DMA transfer 1211 * 1212 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1213 */ 1214 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1215 struct sg_table *sg_table, 1216 enum dma_data_direction direction) 1217 { 1218 might_sleep(); 1219 1220 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1221 return; 1222 1223 dma_resv_assert_held(attach->dmabuf->resv); 1224 1225 if (attach->sgt == sg_table) 1226 return; 1227 1228 __unmap_dma_buf(attach, sg_table, direction); 1229 1230 if (dma_buf_is_dynamic(attach->dmabuf) && 1231 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1232 dma_buf_unpin(attach); 1233 } 1234 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1235 1236 /** 1237 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might 1238 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1239 * dma_buf_ops. 1240 * @attach: [in] attachment to unmap buffer from 1241 * @sg_table: [in] scatterlist info of the buffer to unmap 1242 * @direction: [in] direction of DMA transfer 1243 * 1244 * Unlocked variant of dma_buf_unmap_attachment(). 1245 */ 1246 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach, 1247 struct sg_table *sg_table, 1248 enum dma_data_direction direction) 1249 { 1250 might_sleep(); 1251 1252 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1253 return; 1254 1255 dma_resv_lock(attach->dmabuf->resv, NULL); 1256 dma_buf_unmap_attachment(attach, sg_table, direction); 1257 dma_resv_unlock(attach->dmabuf->resv); 1258 } 1259 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF); 1260 1261 /** 1262 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1263 * 1264 * @dmabuf: [in] buffer which is moving 1265 * 1266 * Informs all attachmenst that they need to destroy and recreated all their 1267 * mappings. 1268 */ 1269 void dma_buf_move_notify(struct dma_buf *dmabuf) 1270 { 1271 struct dma_buf_attachment *attach; 1272 1273 dma_resv_assert_held(dmabuf->resv); 1274 1275 list_for_each_entry(attach, &dmabuf->attachments, node) 1276 if (attach->importer_ops) 1277 attach->importer_ops->move_notify(attach); 1278 } 1279 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1280 1281 /** 1282 * DOC: cpu access 1283 * 1284 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1285 * 1286 * - Fallback operations in the kernel, for example when a device is connected 1287 * over USB and the kernel needs to shuffle the data around first before 1288 * sending it away. Cache coherency is handled by braketing any transactions 1289 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1290 * access. 1291 * 1292 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1293 * vmap interface is introduced. Note that on very old 32-bit architectures 1294 * vmalloc space might be limited and result in vmap calls failing. 1295 * 1296 * Interfaces:: 1297 * 1298 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1299 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1300 * 1301 * The vmap call can fail if there is no vmap support in the exporter, or if 1302 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1303 * count for all vmap access and calls down into the exporter's vmap function 1304 * only when no vmapping exists, and only unmaps it once. Protection against 1305 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1306 * 1307 * - For full compatibility on the importer side with existing userspace 1308 * interfaces, which might already support mmap'ing buffers. This is needed in 1309 * many processing pipelines (e.g. feeding a software rendered image into a 1310 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1311 * framework already supported this and for DMA buffer file descriptors to 1312 * replace ION buffers mmap support was needed. 1313 * 1314 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1315 * fd. But like for CPU access there's a need to braket the actual access, 1316 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1317 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1318 * be restarted. 1319 * 1320 * Some systems might need some sort of cache coherency management e.g. when 1321 * CPU and GPU domains are being accessed through dma-buf at the same time. 1322 * To circumvent this problem there are begin/end coherency markers, that 1323 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1324 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1325 * sequence would be used like following: 1326 * 1327 * - mmap dma-buf fd 1328 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1329 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1330 * want (with the new data being consumed by say the GPU or the scanout 1331 * device) 1332 * - munmap once you don't need the buffer any more 1333 * 1334 * For correctness and optimal performance, it is always required to use 1335 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1336 * mapped address. Userspace cannot rely on coherent access, even when there 1337 * are systems where it just works without calling these ioctls. 1338 * 1339 * - And as a CPU fallback in userspace processing pipelines. 1340 * 1341 * Similar to the motivation for kernel cpu access it is again important that 1342 * the userspace code of a given importing subsystem can use the same 1343 * interfaces with a imported dma-buf buffer object as with a native buffer 1344 * object. This is especially important for drm where the userspace part of 1345 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1346 * use a different way to mmap a buffer rather invasive. 1347 * 1348 * The assumption in the current dma-buf interfaces is that redirecting the 1349 * initial mmap is all that's needed. A survey of some of the existing 1350 * subsystems shows that no driver seems to do any nefarious thing like 1351 * syncing up with outstanding asynchronous processing on the device or 1352 * allocating special resources at fault time. So hopefully this is good 1353 * enough, since adding interfaces to intercept pagefaults and allow pte 1354 * shootdowns would increase the complexity quite a bit. 1355 * 1356 * Interface:: 1357 * 1358 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1359 * unsigned long); 1360 * 1361 * If the importing subsystem simply provides a special-purpose mmap call to 1362 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1363 * equally achieve that for a dma-buf object. 1364 */ 1365 1366 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1367 enum dma_data_direction direction) 1368 { 1369 bool write = (direction == DMA_BIDIRECTIONAL || 1370 direction == DMA_TO_DEVICE); 1371 struct dma_resv *resv = dmabuf->resv; 1372 long ret; 1373 1374 /* Wait on any implicit rendering fences */ 1375 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1376 true, MAX_SCHEDULE_TIMEOUT); 1377 if (ret < 0) 1378 return ret; 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1385 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1386 * preparations. Coherency is only guaranteed in the specified range for the 1387 * specified access direction. 1388 * @dmabuf: [in] buffer to prepare cpu access for. 1389 * @direction: [in] length of range for cpu access. 1390 * 1391 * After the cpu access is complete the caller should call 1392 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1393 * it guaranteed to be coherent with other DMA access. 1394 * 1395 * This function will also wait for any DMA transactions tracked through 1396 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1397 * synchronization this function will only ensure cache coherency, callers must 1398 * ensure synchronization with such DMA transactions on their own. 1399 * 1400 * Can return negative error values, returns 0 on success. 1401 */ 1402 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1403 enum dma_data_direction direction) 1404 { 1405 int ret = 0; 1406 1407 if (WARN_ON(!dmabuf)) 1408 return -EINVAL; 1409 1410 might_lock(&dmabuf->resv->lock.base); 1411 1412 if (dmabuf->ops->begin_cpu_access) 1413 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1414 1415 /* Ensure that all fences are waited upon - but we first allow 1416 * the native handler the chance to do so more efficiently if it 1417 * chooses. A double invocation here will be reasonably cheap no-op. 1418 */ 1419 if (ret == 0) 1420 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1421 1422 return ret; 1423 } 1424 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1425 1426 /** 1427 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1428 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1429 * actions. Coherency is only guaranteed in the specified range for the 1430 * specified access direction. 1431 * @dmabuf: [in] buffer to complete cpu access for. 1432 * @direction: [in] length of range for cpu access. 1433 * 1434 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1435 * 1436 * Can return negative error values, returns 0 on success. 1437 */ 1438 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1439 enum dma_data_direction direction) 1440 { 1441 int ret = 0; 1442 1443 WARN_ON(!dmabuf); 1444 1445 might_lock(&dmabuf->resv->lock.base); 1446 1447 if (dmabuf->ops->end_cpu_access) 1448 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1449 1450 return ret; 1451 } 1452 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1453 1454 1455 /** 1456 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1457 * @dmabuf: [in] buffer that should back the vma 1458 * @vma: [in] vma for the mmap 1459 * @pgoff: [in] offset in pages where this mmap should start within the 1460 * dma-buf buffer. 1461 * 1462 * This function adjusts the passed in vma so that it points at the file of the 1463 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1464 * checking on the size of the vma. Then it calls the exporters mmap function to 1465 * set up the mapping. 1466 * 1467 * Can return negative error values, returns 0 on success. 1468 */ 1469 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1470 unsigned long pgoff) 1471 { 1472 int ret; 1473 1474 if (WARN_ON(!dmabuf || !vma)) 1475 return -EINVAL; 1476 1477 /* check if buffer supports mmap */ 1478 if (!dmabuf->ops->mmap) 1479 return -EINVAL; 1480 1481 /* check for offset overflow */ 1482 if (pgoff + vma_pages(vma) < pgoff) 1483 return -EOVERFLOW; 1484 1485 /* check for overflowing the buffer's size */ 1486 if (pgoff + vma_pages(vma) > 1487 dmabuf->size >> PAGE_SHIFT) 1488 return -EINVAL; 1489 1490 /* readjust the vma */ 1491 vma_set_file(vma, dmabuf->file); 1492 vma->vm_pgoff = pgoff; 1493 1494 dma_resv_lock(dmabuf->resv, NULL); 1495 ret = dmabuf->ops->mmap(dmabuf, vma); 1496 dma_resv_unlock(dmabuf->resv); 1497 1498 return ret; 1499 } 1500 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1501 1502 /** 1503 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1504 * address space. Same restrictions as for vmap and friends apply. 1505 * @dmabuf: [in] buffer to vmap 1506 * @map: [out] returns the vmap pointer 1507 * 1508 * This call may fail due to lack of virtual mapping address space. 1509 * These calls are optional in drivers. The intended use for them 1510 * is for mapping objects linear in kernel space for high use objects. 1511 * 1512 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1513 * dma_buf_end_cpu_access() around any cpu access performed through this 1514 * mapping. 1515 * 1516 * Returns 0 on success, or a negative errno code otherwise. 1517 */ 1518 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1519 { 1520 struct iosys_map ptr; 1521 int ret; 1522 1523 iosys_map_clear(map); 1524 1525 if (WARN_ON(!dmabuf)) 1526 return -EINVAL; 1527 1528 dma_resv_assert_held(dmabuf->resv); 1529 1530 if (!dmabuf->ops->vmap) 1531 return -EINVAL; 1532 1533 if (dmabuf->vmapping_counter) { 1534 dmabuf->vmapping_counter++; 1535 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1536 *map = dmabuf->vmap_ptr; 1537 return 0; 1538 } 1539 1540 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1541 1542 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1543 if (WARN_ON_ONCE(ret)) 1544 return ret; 1545 1546 dmabuf->vmap_ptr = ptr; 1547 dmabuf->vmapping_counter = 1; 1548 1549 *map = dmabuf->vmap_ptr; 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1554 1555 /** 1556 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel 1557 * address space. Same restrictions as for vmap and friends apply. 1558 * @dmabuf: [in] buffer to vmap 1559 * @map: [out] returns the vmap pointer 1560 * 1561 * Unlocked version of dma_buf_vmap() 1562 * 1563 * Returns 0 on success, or a negative errno code otherwise. 1564 */ 1565 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1566 { 1567 int ret; 1568 1569 iosys_map_clear(map); 1570 1571 if (WARN_ON(!dmabuf)) 1572 return -EINVAL; 1573 1574 dma_resv_lock(dmabuf->resv, NULL); 1575 ret = dma_buf_vmap(dmabuf, map); 1576 dma_resv_unlock(dmabuf->resv); 1577 1578 return ret; 1579 } 1580 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF); 1581 1582 /** 1583 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1584 * @dmabuf: [in] buffer to vunmap 1585 * @map: [in] vmap pointer to vunmap 1586 */ 1587 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1588 { 1589 if (WARN_ON(!dmabuf)) 1590 return; 1591 1592 dma_resv_assert_held(dmabuf->resv); 1593 1594 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1595 BUG_ON(dmabuf->vmapping_counter == 0); 1596 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1597 1598 if (--dmabuf->vmapping_counter == 0) { 1599 if (dmabuf->ops->vunmap) 1600 dmabuf->ops->vunmap(dmabuf, map); 1601 iosys_map_clear(&dmabuf->vmap_ptr); 1602 } 1603 } 1604 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1605 1606 /** 1607 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap. 1608 * @dmabuf: [in] buffer to vunmap 1609 * @map: [in] vmap pointer to vunmap 1610 */ 1611 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1612 { 1613 if (WARN_ON(!dmabuf)) 1614 return; 1615 1616 dma_resv_lock(dmabuf->resv, NULL); 1617 dma_buf_vunmap(dmabuf, map); 1618 dma_resv_unlock(dmabuf->resv); 1619 } 1620 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF); 1621 1622 #ifdef CONFIG_DEBUG_FS 1623 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1624 { 1625 struct dma_buf *buf_obj; 1626 struct dma_buf_attachment *attach_obj; 1627 int count = 0, attach_count; 1628 size_t size = 0; 1629 int ret; 1630 1631 ret = mutex_lock_interruptible(&db_list.lock); 1632 1633 if (ret) 1634 return ret; 1635 1636 seq_puts(s, "\nDma-buf Objects:\n"); 1637 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1638 "size", "flags", "mode", "count", "ino"); 1639 1640 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1641 1642 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1643 if (ret) 1644 goto error_unlock; 1645 1646 1647 spin_lock(&buf_obj->name_lock); 1648 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1649 buf_obj->size, 1650 buf_obj->file->f_flags, buf_obj->file->f_mode, 1651 file_count(buf_obj->file), 1652 buf_obj->exp_name, 1653 file_inode(buf_obj->file)->i_ino, 1654 buf_obj->name ?: "<none>"); 1655 spin_unlock(&buf_obj->name_lock); 1656 1657 dma_resv_describe(buf_obj->resv, s); 1658 1659 seq_puts(s, "\tAttached Devices:\n"); 1660 attach_count = 0; 1661 1662 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1663 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1664 attach_count++; 1665 } 1666 dma_resv_unlock(buf_obj->resv); 1667 1668 seq_printf(s, "Total %d devices attached\n\n", 1669 attach_count); 1670 1671 count++; 1672 size += buf_obj->size; 1673 } 1674 1675 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1676 1677 mutex_unlock(&db_list.lock); 1678 return 0; 1679 1680 error_unlock: 1681 mutex_unlock(&db_list.lock); 1682 return ret; 1683 } 1684 1685 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1686 1687 static struct dentry *dma_buf_debugfs_dir; 1688 1689 static int dma_buf_init_debugfs(void) 1690 { 1691 struct dentry *d; 1692 int err = 0; 1693 1694 d = debugfs_create_dir("dma_buf", NULL); 1695 if (IS_ERR(d)) 1696 return PTR_ERR(d); 1697 1698 dma_buf_debugfs_dir = d; 1699 1700 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1701 NULL, &dma_buf_debug_fops); 1702 if (IS_ERR(d)) { 1703 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1704 debugfs_remove_recursive(dma_buf_debugfs_dir); 1705 dma_buf_debugfs_dir = NULL; 1706 err = PTR_ERR(d); 1707 } 1708 1709 return err; 1710 } 1711 1712 static void dma_buf_uninit_debugfs(void) 1713 { 1714 debugfs_remove_recursive(dma_buf_debugfs_dir); 1715 } 1716 #else 1717 static inline int dma_buf_init_debugfs(void) 1718 { 1719 return 0; 1720 } 1721 static inline void dma_buf_uninit_debugfs(void) 1722 { 1723 } 1724 #endif 1725 1726 static int __init dma_buf_init(void) 1727 { 1728 int ret; 1729 1730 ret = dma_buf_init_sysfs_statistics(); 1731 if (ret) 1732 return ret; 1733 1734 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1735 if (IS_ERR(dma_buf_mnt)) 1736 return PTR_ERR(dma_buf_mnt); 1737 1738 mutex_init(&db_list.lock); 1739 INIT_LIST_HEAD(&db_list.head); 1740 dma_buf_init_debugfs(); 1741 return 0; 1742 } 1743 subsys_initcall(dma_buf_init); 1744 1745 static void __exit dma_buf_deinit(void) 1746 { 1747 dma_buf_uninit_debugfs(); 1748 kern_unmount(dma_buf_mnt); 1749 dma_buf_uninit_sysfs_statistics(); 1750 } 1751 __exitcall(dma_buf_deinit); 1752