1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 spin_lock(&dmabuf->name_lock); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 spin_unlock(&dmabuf->name_lock); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static void dma_buf_release(struct dentry *dentry) 58 { 59 struct dma_buf *dmabuf; 60 61 dmabuf = dentry->d_fsdata; 62 if (unlikely(!dmabuf)) 63 return; 64 65 BUG_ON(dmabuf->vmapping_counter); 66 67 /* 68 * Any fences that a dma-buf poll can wait on should be signaled 69 * before releasing dma-buf. This is the responsibility of each 70 * driver that uses the reservation objects. 71 * 72 * If you hit this BUG() it means someone dropped their ref to the 73 * dma-buf while still having pending operation to the buffer. 74 */ 75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 76 77 dmabuf->ops->release(dmabuf); 78 79 mutex_lock(&db_list.lock); 80 list_del(&dmabuf->list_node); 81 mutex_unlock(&db_list.lock); 82 83 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 84 dma_resv_fini(dmabuf->resv); 85 86 module_put(dmabuf->owner); 87 kfree(dmabuf->name); 88 kfree(dmabuf); 89 } 90 91 static const struct dentry_operations dma_buf_dentry_ops = { 92 .d_dname = dmabuffs_dname, 93 .d_release = dma_buf_release, 94 }; 95 96 static struct vfsmount *dma_buf_mnt; 97 98 static int dma_buf_fs_init_context(struct fs_context *fc) 99 { 100 struct pseudo_fs_context *ctx; 101 102 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 103 if (!ctx) 104 return -ENOMEM; 105 ctx->dops = &dma_buf_dentry_ops; 106 return 0; 107 } 108 109 static struct file_system_type dma_buf_fs_type = { 110 .name = "dmabuf", 111 .init_fs_context = dma_buf_fs_init_context, 112 .kill_sb = kill_anon_super, 113 }; 114 115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 116 { 117 struct dma_buf *dmabuf; 118 119 if (!is_dma_buf_file(file)) 120 return -EINVAL; 121 122 dmabuf = file->private_data; 123 124 /* check if buffer supports mmap */ 125 if (!dmabuf->ops->mmap) 126 return -EINVAL; 127 128 /* check for overflowing the buffer's size */ 129 if (vma->vm_pgoff + vma_pages(vma) > 130 dmabuf->size >> PAGE_SHIFT) 131 return -EINVAL; 132 133 return dmabuf->ops->mmap(dmabuf, vma); 134 } 135 136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 137 { 138 struct dma_buf *dmabuf; 139 loff_t base; 140 141 if (!is_dma_buf_file(file)) 142 return -EBADF; 143 144 dmabuf = file->private_data; 145 146 /* only support discovering the end of the buffer, 147 but also allow SEEK_SET to maintain the idiomatic 148 SEEK_END(0), SEEK_CUR(0) pattern */ 149 if (whence == SEEK_END) 150 base = dmabuf->size; 151 else if (whence == SEEK_SET) 152 base = 0; 153 else 154 return -EINVAL; 155 156 if (offset != 0) 157 return -EINVAL; 158 159 return base + offset; 160 } 161 162 /** 163 * DOC: implicit fence polling 164 * 165 * To support cross-device and cross-driver synchronization of buffer access 166 * implicit fences (represented internally in the kernel with &struct dma_fence) 167 * can be attached to a &dma_buf. The glue for that and a few related things are 168 * provided in the &dma_resv structure. 169 * 170 * Userspace can query the state of these implicitly tracked fences using poll() 171 * and related system calls: 172 * 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 174 * most recent write or exclusive fence. 175 * 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 177 * all attached fences, shared and exclusive ones. 178 * 179 * Note that this only signals the completion of the respective fences, i.e. the 180 * DMA transfers are complete. Cache flushing and any other necessary 181 * preparations before CPU access can begin still need to happen. 182 */ 183 184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 185 { 186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 187 unsigned long flags; 188 189 spin_lock_irqsave(&dcb->poll->lock, flags); 190 wake_up_locked_poll(dcb->poll, dcb->active); 191 dcb->active = 0; 192 spin_unlock_irqrestore(&dcb->poll->lock, flags); 193 } 194 195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 196 { 197 struct dma_buf *dmabuf; 198 struct dma_resv *resv; 199 struct dma_resv_list *fobj; 200 struct dma_fence *fence_excl; 201 __poll_t events; 202 unsigned shared_count, seq; 203 204 dmabuf = file->private_data; 205 if (!dmabuf || !dmabuf->resv) 206 return EPOLLERR; 207 208 resv = dmabuf->resv; 209 210 poll_wait(file, &dmabuf->poll, poll); 211 212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 213 if (!events) 214 return 0; 215 216 retry: 217 seq = read_seqcount_begin(&resv->seq); 218 rcu_read_lock(); 219 220 fobj = rcu_dereference(resv->fence); 221 if (fobj) 222 shared_count = fobj->shared_count; 223 else 224 shared_count = 0; 225 fence_excl = rcu_dereference(resv->fence_excl); 226 if (read_seqcount_retry(&resv->seq, seq)) { 227 rcu_read_unlock(); 228 goto retry; 229 } 230 231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 233 __poll_t pevents = EPOLLIN; 234 235 if (shared_count == 0) 236 pevents |= EPOLLOUT; 237 238 spin_lock_irq(&dmabuf->poll.lock); 239 if (dcb->active) { 240 dcb->active |= pevents; 241 events &= ~pevents; 242 } else 243 dcb->active = pevents; 244 spin_unlock_irq(&dmabuf->poll.lock); 245 246 if (events & pevents) { 247 if (!dma_fence_get_rcu(fence_excl)) { 248 /* force a recheck */ 249 events &= ~pevents; 250 dma_buf_poll_cb(NULL, &dcb->cb); 251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 252 dma_buf_poll_cb)) { 253 events &= ~pevents; 254 dma_fence_put(fence_excl); 255 } else { 256 /* 257 * No callback queued, wake up any additional 258 * waiters. 259 */ 260 dma_fence_put(fence_excl); 261 dma_buf_poll_cb(NULL, &dcb->cb); 262 } 263 } 264 } 265 266 if ((events & EPOLLOUT) && shared_count > 0) { 267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 268 int i; 269 270 /* Only queue a new callback if no event has fired yet */ 271 spin_lock_irq(&dmabuf->poll.lock); 272 if (dcb->active) 273 events &= ~EPOLLOUT; 274 else 275 dcb->active = EPOLLOUT; 276 spin_unlock_irq(&dmabuf->poll.lock); 277 278 if (!(events & EPOLLOUT)) 279 goto out; 280 281 for (i = 0; i < shared_count; ++i) { 282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 283 284 if (!dma_fence_get_rcu(fence)) { 285 /* 286 * fence refcount dropped to zero, this means 287 * that fobj has been freed 288 * 289 * call dma_buf_poll_cb and force a recheck! 290 */ 291 events &= ~EPOLLOUT; 292 dma_buf_poll_cb(NULL, &dcb->cb); 293 break; 294 } 295 if (!dma_fence_add_callback(fence, &dcb->cb, 296 dma_buf_poll_cb)) { 297 dma_fence_put(fence); 298 events &= ~EPOLLOUT; 299 break; 300 } 301 dma_fence_put(fence); 302 } 303 304 /* No callback queued, wake up any additional waiters. */ 305 if (i == shared_count) 306 dma_buf_poll_cb(NULL, &dcb->cb); 307 } 308 309 out: 310 rcu_read_unlock(); 311 return events; 312 } 313 314 /** 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 316 * The name of the dma-buf buffer can only be set when the dma-buf is not 317 * attached to any devices. It could theoritically support changing the 318 * name of the dma-buf if the same piece of memory is used for multiple 319 * purpose between different devices. 320 * 321 * @dmabuf: [in] dmabuf buffer that will be renamed. 322 * @buf: [in] A piece of userspace memory that contains the name of 323 * the dma-buf. 324 * 325 * Returns 0 on success. If the dma-buf buffer is already attached to 326 * devices, return -EBUSY. 327 * 328 */ 329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 330 { 331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 332 long ret = 0; 333 334 if (IS_ERR(name)) 335 return PTR_ERR(name); 336 337 dma_resv_lock(dmabuf->resv, NULL); 338 if (!list_empty(&dmabuf->attachments)) { 339 ret = -EBUSY; 340 kfree(name); 341 goto out_unlock; 342 } 343 spin_lock(&dmabuf->name_lock); 344 kfree(dmabuf->name); 345 dmabuf->name = name; 346 spin_unlock(&dmabuf->name_lock); 347 348 out_unlock: 349 dma_resv_unlock(dmabuf->resv); 350 return ret; 351 } 352 353 static long dma_buf_ioctl(struct file *file, 354 unsigned int cmd, unsigned long arg) 355 { 356 struct dma_buf *dmabuf; 357 struct dma_buf_sync sync; 358 enum dma_data_direction direction; 359 int ret; 360 361 dmabuf = file->private_data; 362 363 switch (cmd) { 364 case DMA_BUF_IOCTL_SYNC: 365 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 366 return -EFAULT; 367 368 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 369 return -EINVAL; 370 371 switch (sync.flags & DMA_BUF_SYNC_RW) { 372 case DMA_BUF_SYNC_READ: 373 direction = DMA_FROM_DEVICE; 374 break; 375 case DMA_BUF_SYNC_WRITE: 376 direction = DMA_TO_DEVICE; 377 break; 378 case DMA_BUF_SYNC_RW: 379 direction = DMA_BIDIRECTIONAL; 380 break; 381 default: 382 return -EINVAL; 383 } 384 385 if (sync.flags & DMA_BUF_SYNC_END) 386 ret = dma_buf_end_cpu_access(dmabuf, direction); 387 else 388 ret = dma_buf_begin_cpu_access(dmabuf, direction); 389 390 return ret; 391 392 case DMA_BUF_SET_NAME_A: 393 case DMA_BUF_SET_NAME_B: 394 return dma_buf_set_name(dmabuf, (const char __user *)arg); 395 396 default: 397 return -ENOTTY; 398 } 399 } 400 401 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 402 { 403 struct dma_buf *dmabuf = file->private_data; 404 405 seq_printf(m, "size:\t%zu\n", dmabuf->size); 406 /* Don't count the temporary reference taken inside procfs seq_show */ 407 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 408 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 409 spin_lock(&dmabuf->name_lock); 410 if (dmabuf->name) 411 seq_printf(m, "name:\t%s\n", dmabuf->name); 412 spin_unlock(&dmabuf->name_lock); 413 } 414 415 static const struct file_operations dma_buf_fops = { 416 .mmap = dma_buf_mmap_internal, 417 .llseek = dma_buf_llseek, 418 .poll = dma_buf_poll, 419 .unlocked_ioctl = dma_buf_ioctl, 420 .compat_ioctl = compat_ptr_ioctl, 421 .show_fdinfo = dma_buf_show_fdinfo, 422 }; 423 424 /* 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf 426 */ 427 static inline int is_dma_buf_file(struct file *file) 428 { 429 return file->f_op == &dma_buf_fops; 430 } 431 432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 433 { 434 struct file *file; 435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 436 437 if (IS_ERR(inode)) 438 return ERR_CAST(inode); 439 440 inode->i_size = dmabuf->size; 441 inode_set_bytes(inode, dmabuf->size); 442 443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 444 flags, &dma_buf_fops); 445 if (IS_ERR(file)) 446 goto err_alloc_file; 447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 448 file->private_data = dmabuf; 449 file->f_path.dentry->d_fsdata = dmabuf; 450 451 return file; 452 453 err_alloc_file: 454 iput(inode); 455 return file; 456 } 457 458 /** 459 * DOC: dma buf device access 460 * 461 * For device DMA access to a shared DMA buffer the usual sequence of operations 462 * is fairly simple: 463 * 464 * 1. The exporter defines his exporter instance using 465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 467 * as a file descriptor by calling dma_buf_fd(). 468 * 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 470 * to share with: First the filedescriptor is converted to a &dma_buf using 471 * dma_buf_get(). Then the buffer is attached to the device using 472 * dma_buf_attach(). 473 * 474 * Up to this stage the exporter is still free to migrate or reallocate the 475 * backing storage. 476 * 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA 478 * access to the shared buffer. In the kernel this is done by calling 479 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 480 * 481 * 4. Once a driver is done with a shared buffer it needs to call 482 * dma_buf_detach() (after cleaning up any mappings) and then release the 483 * reference acquired with dma_buf_get by calling dma_buf_put(). 484 * 485 * For the detailed semantics exporters are expected to implement see 486 * &dma_buf_ops. 487 */ 488 489 /** 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file 491 * with this buffer, so it can be exported. 492 * Also connect the allocator specific data and ops to the buffer. 493 * Additionally, provide a name string for exporter; useful in debugging. 494 * 495 * @exp_info: [in] holds all the export related information provided 496 * by the exporter. see &struct dma_buf_export_info 497 * for further details. 498 * 499 * Returns, on success, a newly created dma_buf object, which wraps the 500 * supplied private data and operations for dma_buf_ops. On either missing 501 * ops, or error in allocating struct dma_buf, will return negative error. 502 * 503 * For most cases the easiest way to create @exp_info is through the 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 505 */ 506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 507 { 508 struct dma_buf *dmabuf; 509 struct dma_resv *resv = exp_info->resv; 510 struct file *file; 511 size_t alloc_size = sizeof(struct dma_buf); 512 int ret; 513 514 if (!exp_info->resv) 515 alloc_size += sizeof(struct dma_resv); 516 else 517 /* prevent &dma_buf[1] == dma_buf->resv */ 518 alloc_size += 1; 519 520 if (WARN_ON(!exp_info->priv 521 || !exp_info->ops 522 || !exp_info->ops->map_dma_buf 523 || !exp_info->ops->unmap_dma_buf 524 || !exp_info->ops->release)) { 525 return ERR_PTR(-EINVAL); 526 } 527 528 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 529 (exp_info->ops->pin || exp_info->ops->unpin))) 530 return ERR_PTR(-EINVAL); 531 532 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 533 return ERR_PTR(-EINVAL); 534 535 if (!try_module_get(exp_info->owner)) 536 return ERR_PTR(-ENOENT); 537 538 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 539 if (!dmabuf) { 540 ret = -ENOMEM; 541 goto err_module; 542 } 543 544 dmabuf->priv = exp_info->priv; 545 dmabuf->ops = exp_info->ops; 546 dmabuf->size = exp_info->size; 547 dmabuf->exp_name = exp_info->exp_name; 548 dmabuf->owner = exp_info->owner; 549 spin_lock_init(&dmabuf->name_lock); 550 init_waitqueue_head(&dmabuf->poll); 551 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 552 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 553 554 if (!resv) { 555 resv = (struct dma_resv *)&dmabuf[1]; 556 dma_resv_init(resv); 557 } 558 dmabuf->resv = resv; 559 560 file = dma_buf_getfile(dmabuf, exp_info->flags); 561 if (IS_ERR(file)) { 562 ret = PTR_ERR(file); 563 goto err_dmabuf; 564 } 565 566 file->f_mode |= FMODE_LSEEK; 567 dmabuf->file = file; 568 569 mutex_init(&dmabuf->lock); 570 INIT_LIST_HEAD(&dmabuf->attachments); 571 572 mutex_lock(&db_list.lock); 573 list_add(&dmabuf->list_node, &db_list.head); 574 mutex_unlock(&db_list.lock); 575 576 return dmabuf; 577 578 err_dmabuf: 579 kfree(dmabuf); 580 err_module: 581 module_put(exp_info->owner); 582 return ERR_PTR(ret); 583 } 584 EXPORT_SYMBOL_GPL(dma_buf_export); 585 586 /** 587 * dma_buf_fd - returns a file descriptor for the given dma_buf 588 * @dmabuf: [in] pointer to dma_buf for which fd is required. 589 * @flags: [in] flags to give to fd 590 * 591 * On success, returns an associated 'fd'. Else, returns error. 592 */ 593 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 594 { 595 int fd; 596 597 if (!dmabuf || !dmabuf->file) 598 return -EINVAL; 599 600 fd = get_unused_fd_flags(flags); 601 if (fd < 0) 602 return fd; 603 604 fd_install(fd, dmabuf->file); 605 606 return fd; 607 } 608 EXPORT_SYMBOL_GPL(dma_buf_fd); 609 610 /** 611 * dma_buf_get - returns the dma_buf structure related to an fd 612 * @fd: [in] fd associated with the dma_buf to be returned 613 * 614 * On success, returns the dma_buf structure associated with an fd; uses 615 * file's refcounting done by fget to increase refcount. returns ERR_PTR 616 * otherwise. 617 */ 618 struct dma_buf *dma_buf_get(int fd) 619 { 620 struct file *file; 621 622 file = fget(fd); 623 624 if (!file) 625 return ERR_PTR(-EBADF); 626 627 if (!is_dma_buf_file(file)) { 628 fput(file); 629 return ERR_PTR(-EINVAL); 630 } 631 632 return file->private_data; 633 } 634 EXPORT_SYMBOL_GPL(dma_buf_get); 635 636 /** 637 * dma_buf_put - decreases refcount of the buffer 638 * @dmabuf: [in] buffer to reduce refcount of 639 * 640 * Uses file's refcounting done implicitly by fput(). 641 * 642 * If, as a result of this call, the refcount becomes 0, the 'release' file 643 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 644 * in turn, and frees the memory allocated for dmabuf when exported. 645 */ 646 void dma_buf_put(struct dma_buf *dmabuf) 647 { 648 if (WARN_ON(!dmabuf || !dmabuf->file)) 649 return; 650 651 fput(dmabuf->file); 652 } 653 EXPORT_SYMBOL_GPL(dma_buf_put); 654 655 /** 656 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 657 * calls attach() of dma_buf_ops to allow device-specific attach functionality 658 * @dmabuf: [in] buffer to attach device to. 659 * @dev: [in] device to be attached. 660 * @importer_ops: [in] importer operations for the attachment 661 * @importer_priv: [in] importer private pointer for the attachment 662 * 663 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 664 * must be cleaned up by calling dma_buf_detach(). 665 * 666 * Returns: 667 * 668 * A pointer to newly created &dma_buf_attachment on success, or a negative 669 * error code wrapped into a pointer on failure. 670 * 671 * Note that this can fail if the backing storage of @dmabuf is in a place not 672 * accessible to @dev, and cannot be moved to a more suitable place. This is 673 * indicated with the error code -EBUSY. 674 */ 675 struct dma_buf_attachment * 676 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 677 const struct dma_buf_attach_ops *importer_ops, 678 void *importer_priv) 679 { 680 struct dma_buf_attachment *attach; 681 int ret; 682 683 if (WARN_ON(!dmabuf || !dev)) 684 return ERR_PTR(-EINVAL); 685 686 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 687 return ERR_PTR(-EINVAL); 688 689 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 690 if (!attach) 691 return ERR_PTR(-ENOMEM); 692 693 attach->dev = dev; 694 attach->dmabuf = dmabuf; 695 if (importer_ops) 696 attach->peer2peer = importer_ops->allow_peer2peer; 697 attach->importer_ops = importer_ops; 698 attach->importer_priv = importer_priv; 699 700 if (dmabuf->ops->attach) { 701 ret = dmabuf->ops->attach(dmabuf, attach); 702 if (ret) 703 goto err_attach; 704 } 705 dma_resv_lock(dmabuf->resv, NULL); 706 list_add(&attach->node, &dmabuf->attachments); 707 dma_resv_unlock(dmabuf->resv); 708 709 /* When either the importer or the exporter can't handle dynamic 710 * mappings we cache the mapping here to avoid issues with the 711 * reservation object lock. 712 */ 713 if (dma_buf_attachment_is_dynamic(attach) != 714 dma_buf_is_dynamic(dmabuf)) { 715 struct sg_table *sgt; 716 717 if (dma_buf_is_dynamic(attach->dmabuf)) { 718 dma_resv_lock(attach->dmabuf->resv, NULL); 719 ret = dma_buf_pin(attach); 720 if (ret) 721 goto err_unlock; 722 } 723 724 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 725 if (!sgt) 726 sgt = ERR_PTR(-ENOMEM); 727 if (IS_ERR(sgt)) { 728 ret = PTR_ERR(sgt); 729 goto err_unpin; 730 } 731 if (dma_buf_is_dynamic(attach->dmabuf)) 732 dma_resv_unlock(attach->dmabuf->resv); 733 attach->sgt = sgt; 734 attach->dir = DMA_BIDIRECTIONAL; 735 } 736 737 return attach; 738 739 err_attach: 740 kfree(attach); 741 return ERR_PTR(ret); 742 743 err_unpin: 744 if (dma_buf_is_dynamic(attach->dmabuf)) 745 dma_buf_unpin(attach); 746 747 err_unlock: 748 if (dma_buf_is_dynamic(attach->dmabuf)) 749 dma_resv_unlock(attach->dmabuf->resv); 750 751 dma_buf_detach(dmabuf, attach); 752 return ERR_PTR(ret); 753 } 754 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 755 756 /** 757 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 758 * @dmabuf: [in] buffer to attach device to. 759 * @dev: [in] device to be attached. 760 * 761 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 762 * mapping. 763 */ 764 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 765 struct device *dev) 766 { 767 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 768 } 769 EXPORT_SYMBOL_GPL(dma_buf_attach); 770 771 /** 772 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 773 * optionally calls detach() of dma_buf_ops for device-specific detach 774 * @dmabuf: [in] buffer to detach from. 775 * @attach: [in] attachment to be detached; is free'd after this call. 776 * 777 * Clean up a device attachment obtained by calling dma_buf_attach(). 778 */ 779 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 780 { 781 if (WARN_ON(!dmabuf || !attach)) 782 return; 783 784 if (attach->sgt) { 785 if (dma_buf_is_dynamic(attach->dmabuf)) 786 dma_resv_lock(attach->dmabuf->resv, NULL); 787 788 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 789 790 if (dma_buf_is_dynamic(attach->dmabuf)) { 791 dma_buf_unpin(attach); 792 dma_resv_unlock(attach->dmabuf->resv); 793 } 794 } 795 796 dma_resv_lock(dmabuf->resv, NULL); 797 list_del(&attach->node); 798 dma_resv_unlock(dmabuf->resv); 799 if (dmabuf->ops->detach) 800 dmabuf->ops->detach(dmabuf, attach); 801 802 kfree(attach); 803 } 804 EXPORT_SYMBOL_GPL(dma_buf_detach); 805 806 /** 807 * dma_buf_pin - Lock down the DMA-buf 808 * 809 * @attach: [in] attachment which should be pinned 810 * 811 * Returns: 812 * 0 on success, negative error code on failure. 813 */ 814 int dma_buf_pin(struct dma_buf_attachment *attach) 815 { 816 struct dma_buf *dmabuf = attach->dmabuf; 817 int ret = 0; 818 819 dma_resv_assert_held(dmabuf->resv); 820 821 if (dmabuf->ops->pin) 822 ret = dmabuf->ops->pin(attach); 823 824 return ret; 825 } 826 EXPORT_SYMBOL_GPL(dma_buf_pin); 827 828 /** 829 * dma_buf_unpin - Remove lock from DMA-buf 830 * 831 * @attach: [in] attachment which should be unpinned 832 */ 833 void dma_buf_unpin(struct dma_buf_attachment *attach) 834 { 835 struct dma_buf *dmabuf = attach->dmabuf; 836 837 dma_resv_assert_held(dmabuf->resv); 838 839 if (dmabuf->ops->unpin) 840 dmabuf->ops->unpin(attach); 841 } 842 EXPORT_SYMBOL_GPL(dma_buf_unpin); 843 844 /** 845 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 846 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 847 * dma_buf_ops. 848 * @attach: [in] attachment whose scatterlist is to be returned 849 * @direction: [in] direction of DMA transfer 850 * 851 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 852 * on error. May return -EINTR if it is interrupted by a signal. 853 * 854 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 855 * the underlying backing storage is pinned for as long as a mapping exists, 856 * therefore users/importers should not hold onto a mapping for undue amounts of 857 * time. 858 */ 859 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 860 enum dma_data_direction direction) 861 { 862 struct sg_table *sg_table; 863 int r; 864 865 might_sleep(); 866 867 if (WARN_ON(!attach || !attach->dmabuf)) 868 return ERR_PTR(-EINVAL); 869 870 if (dma_buf_attachment_is_dynamic(attach)) 871 dma_resv_assert_held(attach->dmabuf->resv); 872 873 if (attach->sgt) { 874 /* 875 * Two mappings with different directions for the same 876 * attachment are not allowed. 877 */ 878 if (attach->dir != direction && 879 attach->dir != DMA_BIDIRECTIONAL) 880 return ERR_PTR(-EBUSY); 881 882 return attach->sgt; 883 } 884 885 if (dma_buf_is_dynamic(attach->dmabuf)) { 886 dma_resv_assert_held(attach->dmabuf->resv); 887 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 888 r = dma_buf_pin(attach); 889 if (r) 890 return ERR_PTR(r); 891 } 892 } 893 894 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 895 if (!sg_table) 896 sg_table = ERR_PTR(-ENOMEM); 897 898 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 899 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 900 dma_buf_unpin(attach); 901 902 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 903 attach->sgt = sg_table; 904 attach->dir = direction; 905 } 906 907 return sg_table; 908 } 909 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 910 911 /** 912 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 913 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 914 * dma_buf_ops. 915 * @attach: [in] attachment to unmap buffer from 916 * @sg_table: [in] scatterlist info of the buffer to unmap 917 * @direction: [in] direction of DMA transfer 918 * 919 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 920 */ 921 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 922 struct sg_table *sg_table, 923 enum dma_data_direction direction) 924 { 925 might_sleep(); 926 927 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 928 return; 929 930 if (dma_buf_attachment_is_dynamic(attach)) 931 dma_resv_assert_held(attach->dmabuf->resv); 932 933 if (attach->sgt == sg_table) 934 return; 935 936 if (dma_buf_is_dynamic(attach->dmabuf)) 937 dma_resv_assert_held(attach->dmabuf->resv); 938 939 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 940 941 if (dma_buf_is_dynamic(attach->dmabuf) && 942 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 943 dma_buf_unpin(attach); 944 } 945 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 946 947 /** 948 * dma_buf_move_notify - notify attachments that DMA-buf is moving 949 * 950 * @dmabuf: [in] buffer which is moving 951 * 952 * Informs all attachmenst that they need to destroy and recreated all their 953 * mappings. 954 */ 955 void dma_buf_move_notify(struct dma_buf *dmabuf) 956 { 957 struct dma_buf_attachment *attach; 958 959 dma_resv_assert_held(dmabuf->resv); 960 961 list_for_each_entry(attach, &dmabuf->attachments, node) 962 if (attach->importer_ops) 963 attach->importer_ops->move_notify(attach); 964 } 965 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 966 967 /** 968 * DOC: cpu access 969 * 970 * There are mutliple reasons for supporting CPU access to a dma buffer object: 971 * 972 * - Fallback operations in the kernel, for example when a device is connected 973 * over USB and the kernel needs to shuffle the data around first before 974 * sending it away. Cache coherency is handled by braketing any transactions 975 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 976 * access. 977 * 978 * Since for most kernel internal dma-buf accesses need the entire buffer, a 979 * vmap interface is introduced. Note that on very old 32-bit architectures 980 * vmalloc space might be limited and result in vmap calls failing. 981 * 982 * Interfaces:: 983 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 984 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 985 * 986 * The vmap call can fail if there is no vmap support in the exporter, or if 987 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 988 * that the dma-buf layer keeps a reference count for all vmap access and 989 * calls down into the exporter's vmap function only when no vmapping exists, 990 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 991 * provided by taking the dma_buf->lock mutex. 992 * 993 * - For full compatibility on the importer side with existing userspace 994 * interfaces, which might already support mmap'ing buffers. This is needed in 995 * many processing pipelines (e.g. feeding a software rendered image into a 996 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 997 * framework already supported this and for DMA buffer file descriptors to 998 * replace ION buffers mmap support was needed. 999 * 1000 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1001 * fd. But like for CPU access there's a need to braket the actual access, 1002 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1003 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1004 * be restarted. 1005 * 1006 * Some systems might need some sort of cache coherency management e.g. when 1007 * CPU and GPU domains are being accessed through dma-buf at the same time. 1008 * To circumvent this problem there are begin/end coherency markers, that 1009 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1010 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1011 * sequence would be used like following: 1012 * 1013 * - mmap dma-buf fd 1014 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1015 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1016 * want (with the new data being consumed by say the GPU or the scanout 1017 * device) 1018 * - munmap once you don't need the buffer any more 1019 * 1020 * For correctness and optimal performance, it is always required to use 1021 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1022 * mapped address. Userspace cannot rely on coherent access, even when there 1023 * are systems where it just works without calling these ioctls. 1024 * 1025 * - And as a CPU fallback in userspace processing pipelines. 1026 * 1027 * Similar to the motivation for kernel cpu access it is again important that 1028 * the userspace code of a given importing subsystem can use the same 1029 * interfaces with a imported dma-buf buffer object as with a native buffer 1030 * object. This is especially important for drm where the userspace part of 1031 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1032 * use a different way to mmap a buffer rather invasive. 1033 * 1034 * The assumption in the current dma-buf interfaces is that redirecting the 1035 * initial mmap is all that's needed. A survey of some of the existing 1036 * subsystems shows that no driver seems to do any nefarious thing like 1037 * syncing up with outstanding asynchronous processing on the device or 1038 * allocating special resources at fault time. So hopefully this is good 1039 * enough, since adding interfaces to intercept pagefaults and allow pte 1040 * shootdowns would increase the complexity quite a bit. 1041 * 1042 * Interface:: 1043 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1044 * unsigned long); 1045 * 1046 * If the importing subsystem simply provides a special-purpose mmap call to 1047 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 1048 * equally achieve that for a dma-buf object. 1049 */ 1050 1051 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1052 enum dma_data_direction direction) 1053 { 1054 bool write = (direction == DMA_BIDIRECTIONAL || 1055 direction == DMA_TO_DEVICE); 1056 struct dma_resv *resv = dmabuf->resv; 1057 long ret; 1058 1059 /* Wait on any implicit rendering fences */ 1060 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1061 MAX_SCHEDULE_TIMEOUT); 1062 if (ret < 0) 1063 return ret; 1064 1065 return 0; 1066 } 1067 1068 /** 1069 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1070 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1071 * preparations. Coherency is only guaranteed in the specified range for the 1072 * specified access direction. 1073 * @dmabuf: [in] buffer to prepare cpu access for. 1074 * @direction: [in] length of range for cpu access. 1075 * 1076 * After the cpu access is complete the caller should call 1077 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1078 * it guaranteed to be coherent with other DMA access. 1079 * 1080 * Can return negative error values, returns 0 on success. 1081 */ 1082 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1083 enum dma_data_direction direction) 1084 { 1085 int ret = 0; 1086 1087 if (WARN_ON(!dmabuf)) 1088 return -EINVAL; 1089 1090 if (dmabuf->ops->begin_cpu_access) 1091 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1092 1093 /* Ensure that all fences are waited upon - but we first allow 1094 * the native handler the chance to do so more efficiently if it 1095 * chooses. A double invocation here will be reasonably cheap no-op. 1096 */ 1097 if (ret == 0) 1098 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1099 1100 return ret; 1101 } 1102 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1103 1104 /** 1105 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1106 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1107 * actions. Coherency is only guaranteed in the specified range for the 1108 * specified access direction. 1109 * @dmabuf: [in] buffer to complete cpu access for. 1110 * @direction: [in] length of range for cpu access. 1111 * 1112 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1113 * 1114 * Can return negative error values, returns 0 on success. 1115 */ 1116 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1117 enum dma_data_direction direction) 1118 { 1119 int ret = 0; 1120 1121 WARN_ON(!dmabuf); 1122 1123 if (dmabuf->ops->end_cpu_access) 1124 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1125 1126 return ret; 1127 } 1128 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1129 1130 1131 /** 1132 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1133 * @dmabuf: [in] buffer that should back the vma 1134 * @vma: [in] vma for the mmap 1135 * @pgoff: [in] offset in pages where this mmap should start within the 1136 * dma-buf buffer. 1137 * 1138 * This function adjusts the passed in vma so that it points at the file of the 1139 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1140 * checking on the size of the vma. Then it calls the exporters mmap function to 1141 * set up the mapping. 1142 * 1143 * Can return negative error values, returns 0 on success. 1144 */ 1145 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1146 unsigned long pgoff) 1147 { 1148 struct file *oldfile; 1149 int ret; 1150 1151 if (WARN_ON(!dmabuf || !vma)) 1152 return -EINVAL; 1153 1154 /* check if buffer supports mmap */ 1155 if (!dmabuf->ops->mmap) 1156 return -EINVAL; 1157 1158 /* check for offset overflow */ 1159 if (pgoff + vma_pages(vma) < pgoff) 1160 return -EOVERFLOW; 1161 1162 /* check for overflowing the buffer's size */ 1163 if (pgoff + vma_pages(vma) > 1164 dmabuf->size >> PAGE_SHIFT) 1165 return -EINVAL; 1166 1167 /* readjust the vma */ 1168 get_file(dmabuf->file); 1169 oldfile = vma->vm_file; 1170 vma->vm_file = dmabuf->file; 1171 vma->vm_pgoff = pgoff; 1172 1173 ret = dmabuf->ops->mmap(dmabuf, vma); 1174 if (ret) { 1175 /* restore old parameters on failure */ 1176 vma->vm_file = oldfile; 1177 fput(dmabuf->file); 1178 } else { 1179 if (oldfile) 1180 fput(oldfile); 1181 } 1182 return ret; 1183 1184 } 1185 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1186 1187 /** 1188 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1189 * address space. Same restrictions as for vmap and friends apply. 1190 * @dmabuf: [in] buffer to vmap 1191 * 1192 * This call may fail due to lack of virtual mapping address space. 1193 * These calls are optional in drivers. The intended use for them 1194 * is for mapping objects linear in kernel space for high use objects. 1195 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1196 * 1197 * Returns NULL on error. 1198 */ 1199 void *dma_buf_vmap(struct dma_buf *dmabuf) 1200 { 1201 void *ptr; 1202 1203 if (WARN_ON(!dmabuf)) 1204 return NULL; 1205 1206 if (!dmabuf->ops->vmap) 1207 return NULL; 1208 1209 mutex_lock(&dmabuf->lock); 1210 if (dmabuf->vmapping_counter) { 1211 dmabuf->vmapping_counter++; 1212 BUG_ON(!dmabuf->vmap_ptr); 1213 ptr = dmabuf->vmap_ptr; 1214 goto out_unlock; 1215 } 1216 1217 BUG_ON(dmabuf->vmap_ptr); 1218 1219 ptr = dmabuf->ops->vmap(dmabuf); 1220 if (WARN_ON_ONCE(IS_ERR(ptr))) 1221 ptr = NULL; 1222 if (!ptr) 1223 goto out_unlock; 1224 1225 dmabuf->vmap_ptr = ptr; 1226 dmabuf->vmapping_counter = 1; 1227 1228 out_unlock: 1229 mutex_unlock(&dmabuf->lock); 1230 return ptr; 1231 } 1232 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1233 1234 /** 1235 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1236 * @dmabuf: [in] buffer to vunmap 1237 * @vaddr: [in] vmap to vunmap 1238 */ 1239 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1240 { 1241 if (WARN_ON(!dmabuf)) 1242 return; 1243 1244 BUG_ON(!dmabuf->vmap_ptr); 1245 BUG_ON(dmabuf->vmapping_counter == 0); 1246 BUG_ON(dmabuf->vmap_ptr != vaddr); 1247 1248 mutex_lock(&dmabuf->lock); 1249 if (--dmabuf->vmapping_counter == 0) { 1250 if (dmabuf->ops->vunmap) 1251 dmabuf->ops->vunmap(dmabuf, vaddr); 1252 dmabuf->vmap_ptr = NULL; 1253 } 1254 mutex_unlock(&dmabuf->lock); 1255 } 1256 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1257 1258 #ifdef CONFIG_DEBUG_FS 1259 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1260 { 1261 int ret; 1262 struct dma_buf *buf_obj; 1263 struct dma_buf_attachment *attach_obj; 1264 struct dma_resv *robj; 1265 struct dma_resv_list *fobj; 1266 struct dma_fence *fence; 1267 unsigned seq; 1268 int count = 0, attach_count, shared_count, i; 1269 size_t size = 0; 1270 1271 ret = mutex_lock_interruptible(&db_list.lock); 1272 1273 if (ret) 1274 return ret; 1275 1276 seq_puts(s, "\nDma-buf Objects:\n"); 1277 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1278 "size", "flags", "mode", "count", "ino"); 1279 1280 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1281 1282 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1283 if (ret) 1284 goto error_unlock; 1285 1286 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1287 buf_obj->size, 1288 buf_obj->file->f_flags, buf_obj->file->f_mode, 1289 file_count(buf_obj->file), 1290 buf_obj->exp_name, 1291 file_inode(buf_obj->file)->i_ino, 1292 buf_obj->name ?: ""); 1293 1294 robj = buf_obj->resv; 1295 while (true) { 1296 seq = read_seqcount_begin(&robj->seq); 1297 rcu_read_lock(); 1298 fobj = rcu_dereference(robj->fence); 1299 shared_count = fobj ? fobj->shared_count : 0; 1300 fence = rcu_dereference(robj->fence_excl); 1301 if (!read_seqcount_retry(&robj->seq, seq)) 1302 break; 1303 rcu_read_unlock(); 1304 } 1305 1306 if (fence) 1307 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1308 fence->ops->get_driver_name(fence), 1309 fence->ops->get_timeline_name(fence), 1310 dma_fence_is_signaled(fence) ? "" : "un"); 1311 for (i = 0; i < shared_count; i++) { 1312 fence = rcu_dereference(fobj->shared[i]); 1313 if (!dma_fence_get_rcu(fence)) 1314 continue; 1315 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1316 fence->ops->get_driver_name(fence), 1317 fence->ops->get_timeline_name(fence), 1318 dma_fence_is_signaled(fence) ? "" : "un"); 1319 dma_fence_put(fence); 1320 } 1321 rcu_read_unlock(); 1322 1323 seq_puts(s, "\tAttached Devices:\n"); 1324 attach_count = 0; 1325 1326 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1327 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1328 attach_count++; 1329 } 1330 dma_resv_unlock(buf_obj->resv); 1331 1332 seq_printf(s, "Total %d devices attached\n\n", 1333 attach_count); 1334 1335 count++; 1336 size += buf_obj->size; 1337 } 1338 1339 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1340 1341 mutex_unlock(&db_list.lock); 1342 return 0; 1343 1344 error_unlock: 1345 mutex_unlock(&db_list.lock); 1346 return ret; 1347 } 1348 1349 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1350 1351 static struct dentry *dma_buf_debugfs_dir; 1352 1353 static int dma_buf_init_debugfs(void) 1354 { 1355 struct dentry *d; 1356 int err = 0; 1357 1358 d = debugfs_create_dir("dma_buf", NULL); 1359 if (IS_ERR(d)) 1360 return PTR_ERR(d); 1361 1362 dma_buf_debugfs_dir = d; 1363 1364 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1365 NULL, &dma_buf_debug_fops); 1366 if (IS_ERR(d)) { 1367 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1368 debugfs_remove_recursive(dma_buf_debugfs_dir); 1369 dma_buf_debugfs_dir = NULL; 1370 err = PTR_ERR(d); 1371 } 1372 1373 return err; 1374 } 1375 1376 static void dma_buf_uninit_debugfs(void) 1377 { 1378 debugfs_remove_recursive(dma_buf_debugfs_dir); 1379 } 1380 #else 1381 static inline int dma_buf_init_debugfs(void) 1382 { 1383 return 0; 1384 } 1385 static inline void dma_buf_uninit_debugfs(void) 1386 { 1387 } 1388 #endif 1389 1390 static int __init dma_buf_init(void) 1391 { 1392 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1393 if (IS_ERR(dma_buf_mnt)) 1394 return PTR_ERR(dma_buf_mnt); 1395 1396 mutex_init(&db_list.lock); 1397 INIT_LIST_HEAD(&db_list.head); 1398 dma_buf_init_debugfs(); 1399 return 0; 1400 } 1401 subsys_initcall(dma_buf_init); 1402 1403 static void __exit dma_buf_deinit(void) 1404 { 1405 dma_buf_uninit_debugfs(); 1406 kern_unmount(dma_buf_mnt); 1407 } 1408 __exitcall(dma_buf_deinit); 1409