xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision e142bd91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 #include "dma-buf-sysfs-stats.h"
33 
34 static inline int is_dma_buf_file(struct file *);
35 
36 struct dma_buf_list {
37 	struct list_head head;
38 	struct mutex lock;
39 };
40 
41 static struct dma_buf_list db_list;
42 
43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 	struct dma_buf *dmabuf;
46 	char name[DMA_BUF_NAME_LEN];
47 	size_t ret = 0;
48 
49 	dmabuf = dentry->d_fsdata;
50 	spin_lock(&dmabuf->name_lock);
51 	if (dmabuf->name)
52 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 	spin_unlock(&dmabuf->name_lock);
54 
55 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 			     dentry->d_name.name, ret > 0 ? name : "");
57 }
58 
59 static void dma_buf_release(struct dentry *dentry)
60 {
61 	struct dma_buf *dmabuf;
62 
63 	dmabuf = dentry->d_fsdata;
64 	if (unlikely(!dmabuf))
65 		return;
66 
67 	BUG_ON(dmabuf->vmapping_counter);
68 
69 	/*
70 	 * Any fences that a dma-buf poll can wait on should be signaled
71 	 * before releasing dma-buf. This is the responsibility of each
72 	 * driver that uses the reservation objects.
73 	 *
74 	 * If you hit this BUG() it means someone dropped their ref to the
75 	 * dma-buf while still having pending operation to the buffer.
76 	 */
77 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
78 
79 	dma_buf_stats_teardown(dmabuf);
80 	dmabuf->ops->release(dmabuf);
81 
82 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
83 		dma_resv_fini(dmabuf->resv);
84 
85 	module_put(dmabuf->owner);
86 	kfree(dmabuf->name);
87 	kfree(dmabuf);
88 }
89 
90 static int dma_buf_file_release(struct inode *inode, struct file *file)
91 {
92 	struct dma_buf *dmabuf;
93 
94 	if (!is_dma_buf_file(file))
95 		return -EINVAL;
96 
97 	dmabuf = file->private_data;
98 
99 	mutex_lock(&db_list.lock);
100 	list_del(&dmabuf->list_node);
101 	mutex_unlock(&db_list.lock);
102 
103 	return 0;
104 }
105 
106 static const struct dentry_operations dma_buf_dentry_ops = {
107 	.d_dname = dmabuffs_dname,
108 	.d_release = dma_buf_release,
109 };
110 
111 static struct vfsmount *dma_buf_mnt;
112 
113 static int dma_buf_fs_init_context(struct fs_context *fc)
114 {
115 	struct pseudo_fs_context *ctx;
116 
117 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
118 	if (!ctx)
119 		return -ENOMEM;
120 	ctx->dops = &dma_buf_dentry_ops;
121 	return 0;
122 }
123 
124 static struct file_system_type dma_buf_fs_type = {
125 	.name = "dmabuf",
126 	.init_fs_context = dma_buf_fs_init_context,
127 	.kill_sb = kill_anon_super,
128 };
129 
130 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
131 {
132 	struct dma_buf *dmabuf;
133 
134 	if (!is_dma_buf_file(file))
135 		return -EINVAL;
136 
137 	dmabuf = file->private_data;
138 
139 	/* check if buffer supports mmap */
140 	if (!dmabuf->ops->mmap)
141 		return -EINVAL;
142 
143 	/* check for overflowing the buffer's size */
144 	if (vma->vm_pgoff + vma_pages(vma) >
145 	    dmabuf->size >> PAGE_SHIFT)
146 		return -EINVAL;
147 
148 	return dmabuf->ops->mmap(dmabuf, vma);
149 }
150 
151 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
152 {
153 	struct dma_buf *dmabuf;
154 	loff_t base;
155 
156 	if (!is_dma_buf_file(file))
157 		return -EBADF;
158 
159 	dmabuf = file->private_data;
160 
161 	/* only support discovering the end of the buffer,
162 	   but also allow SEEK_SET to maintain the idiomatic
163 	   SEEK_END(0), SEEK_CUR(0) pattern */
164 	if (whence == SEEK_END)
165 		base = dmabuf->size;
166 	else if (whence == SEEK_SET)
167 		base = 0;
168 	else
169 		return -EINVAL;
170 
171 	if (offset != 0)
172 		return -EINVAL;
173 
174 	return base + offset;
175 }
176 
177 /**
178  * DOC: implicit fence polling
179  *
180  * To support cross-device and cross-driver synchronization of buffer access
181  * implicit fences (represented internally in the kernel with &struct dma_fence)
182  * can be attached to a &dma_buf. The glue for that and a few related things are
183  * provided in the &dma_resv structure.
184  *
185  * Userspace can query the state of these implicitly tracked fences using poll()
186  * and related system calls:
187  *
188  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
189  *   most recent write or exclusive fence.
190  *
191  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
192  *   all attached fences, shared and exclusive ones.
193  *
194  * Note that this only signals the completion of the respective fences, i.e. the
195  * DMA transfers are complete. Cache flushing and any other necessary
196  * preparations before CPU access can begin still need to happen.
197  */
198 
199 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
200 {
201 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
202 	unsigned long flags;
203 
204 	spin_lock_irqsave(&dcb->poll->lock, flags);
205 	wake_up_locked_poll(dcb->poll, dcb->active);
206 	dcb->active = 0;
207 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
208 }
209 
210 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
211 {
212 	struct dma_buf *dmabuf;
213 	struct dma_resv *resv;
214 	struct dma_resv_list *fobj;
215 	struct dma_fence *fence_excl;
216 	__poll_t events;
217 	unsigned shared_count, seq;
218 
219 	dmabuf = file->private_data;
220 	if (!dmabuf || !dmabuf->resv)
221 		return EPOLLERR;
222 
223 	resv = dmabuf->resv;
224 
225 	poll_wait(file, &dmabuf->poll, poll);
226 
227 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
228 	if (!events)
229 		return 0;
230 
231 retry:
232 	seq = read_seqcount_begin(&resv->seq);
233 	rcu_read_lock();
234 
235 	fobj = rcu_dereference(resv->fence);
236 	if (fobj)
237 		shared_count = fobj->shared_count;
238 	else
239 		shared_count = 0;
240 	fence_excl = dma_resv_excl_fence(resv);
241 	if (read_seqcount_retry(&resv->seq, seq)) {
242 		rcu_read_unlock();
243 		goto retry;
244 	}
245 
246 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
247 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
248 		__poll_t pevents = EPOLLIN;
249 
250 		if (shared_count == 0)
251 			pevents |= EPOLLOUT;
252 
253 		spin_lock_irq(&dmabuf->poll.lock);
254 		if (dcb->active) {
255 			dcb->active |= pevents;
256 			events &= ~pevents;
257 		} else
258 			dcb->active = pevents;
259 		spin_unlock_irq(&dmabuf->poll.lock);
260 
261 		if (events & pevents) {
262 			if (!dma_fence_get_rcu(fence_excl)) {
263 				/* force a recheck */
264 				events &= ~pevents;
265 				dma_buf_poll_cb(NULL, &dcb->cb);
266 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
267 							   dma_buf_poll_cb)) {
268 				events &= ~pevents;
269 				dma_fence_put(fence_excl);
270 			} else {
271 				/*
272 				 * No callback queued, wake up any additional
273 				 * waiters.
274 				 */
275 				dma_fence_put(fence_excl);
276 				dma_buf_poll_cb(NULL, &dcb->cb);
277 			}
278 		}
279 	}
280 
281 	if ((events & EPOLLOUT) && shared_count > 0) {
282 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
283 		int i;
284 
285 		/* Only queue a new callback if no event has fired yet */
286 		spin_lock_irq(&dmabuf->poll.lock);
287 		if (dcb->active)
288 			events &= ~EPOLLOUT;
289 		else
290 			dcb->active = EPOLLOUT;
291 		spin_unlock_irq(&dmabuf->poll.lock);
292 
293 		if (!(events & EPOLLOUT))
294 			goto out;
295 
296 		for (i = 0; i < shared_count; ++i) {
297 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
298 
299 			if (!dma_fence_get_rcu(fence)) {
300 				/*
301 				 * fence refcount dropped to zero, this means
302 				 * that fobj has been freed
303 				 *
304 				 * call dma_buf_poll_cb and force a recheck!
305 				 */
306 				events &= ~EPOLLOUT;
307 				dma_buf_poll_cb(NULL, &dcb->cb);
308 				break;
309 			}
310 			if (!dma_fence_add_callback(fence, &dcb->cb,
311 						    dma_buf_poll_cb)) {
312 				dma_fence_put(fence);
313 				events &= ~EPOLLOUT;
314 				break;
315 			}
316 			dma_fence_put(fence);
317 		}
318 
319 		/* No callback queued, wake up any additional waiters. */
320 		if (i == shared_count)
321 			dma_buf_poll_cb(NULL, &dcb->cb);
322 	}
323 
324 out:
325 	rcu_read_unlock();
326 	return events;
327 }
328 
329 /**
330  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
331  * The name of the dma-buf buffer can only be set when the dma-buf is not
332  * attached to any devices. It could theoritically support changing the
333  * name of the dma-buf if the same piece of memory is used for multiple
334  * purpose between different devices.
335  *
336  * @dmabuf: [in]     dmabuf buffer that will be renamed.
337  * @buf:    [in]     A piece of userspace memory that contains the name of
338  *                   the dma-buf.
339  *
340  * Returns 0 on success. If the dma-buf buffer is already attached to
341  * devices, return -EBUSY.
342  *
343  */
344 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
345 {
346 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
347 	long ret = 0;
348 
349 	if (IS_ERR(name))
350 		return PTR_ERR(name);
351 
352 	dma_resv_lock(dmabuf->resv, NULL);
353 	if (!list_empty(&dmabuf->attachments)) {
354 		ret = -EBUSY;
355 		kfree(name);
356 		goto out_unlock;
357 	}
358 	spin_lock(&dmabuf->name_lock);
359 	kfree(dmabuf->name);
360 	dmabuf->name = name;
361 	spin_unlock(&dmabuf->name_lock);
362 
363 out_unlock:
364 	dma_resv_unlock(dmabuf->resv);
365 	return ret;
366 }
367 
368 static long dma_buf_ioctl(struct file *file,
369 			  unsigned int cmd, unsigned long arg)
370 {
371 	struct dma_buf *dmabuf;
372 	struct dma_buf_sync sync;
373 	enum dma_data_direction direction;
374 	int ret;
375 
376 	dmabuf = file->private_data;
377 
378 	switch (cmd) {
379 	case DMA_BUF_IOCTL_SYNC:
380 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
381 			return -EFAULT;
382 
383 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
384 			return -EINVAL;
385 
386 		switch (sync.flags & DMA_BUF_SYNC_RW) {
387 		case DMA_BUF_SYNC_READ:
388 			direction = DMA_FROM_DEVICE;
389 			break;
390 		case DMA_BUF_SYNC_WRITE:
391 			direction = DMA_TO_DEVICE;
392 			break;
393 		case DMA_BUF_SYNC_RW:
394 			direction = DMA_BIDIRECTIONAL;
395 			break;
396 		default:
397 			return -EINVAL;
398 		}
399 
400 		if (sync.flags & DMA_BUF_SYNC_END)
401 			ret = dma_buf_end_cpu_access(dmabuf, direction);
402 		else
403 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
404 
405 		return ret;
406 
407 	case DMA_BUF_SET_NAME_A:
408 	case DMA_BUF_SET_NAME_B:
409 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
410 
411 	default:
412 		return -ENOTTY;
413 	}
414 }
415 
416 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
417 {
418 	struct dma_buf *dmabuf = file->private_data;
419 
420 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
421 	/* Don't count the temporary reference taken inside procfs seq_show */
422 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
423 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
424 	spin_lock(&dmabuf->name_lock);
425 	if (dmabuf->name)
426 		seq_printf(m, "name:\t%s\n", dmabuf->name);
427 	spin_unlock(&dmabuf->name_lock);
428 }
429 
430 static const struct file_operations dma_buf_fops = {
431 	.release	= dma_buf_file_release,
432 	.mmap		= dma_buf_mmap_internal,
433 	.llseek		= dma_buf_llseek,
434 	.poll		= dma_buf_poll,
435 	.unlocked_ioctl	= dma_buf_ioctl,
436 	.compat_ioctl	= compat_ptr_ioctl,
437 	.show_fdinfo	= dma_buf_show_fdinfo,
438 };
439 
440 /*
441  * is_dma_buf_file - Check if struct file* is associated with dma_buf
442  */
443 static inline int is_dma_buf_file(struct file *file)
444 {
445 	return file->f_op == &dma_buf_fops;
446 }
447 
448 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
449 {
450 	struct file *file;
451 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
452 
453 	if (IS_ERR(inode))
454 		return ERR_CAST(inode);
455 
456 	inode->i_size = dmabuf->size;
457 	inode_set_bytes(inode, dmabuf->size);
458 
459 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
460 				 flags, &dma_buf_fops);
461 	if (IS_ERR(file))
462 		goto err_alloc_file;
463 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
464 	file->private_data = dmabuf;
465 	file->f_path.dentry->d_fsdata = dmabuf;
466 
467 	return file;
468 
469 err_alloc_file:
470 	iput(inode);
471 	return file;
472 }
473 
474 /**
475  * DOC: dma buf device access
476  *
477  * For device DMA access to a shared DMA buffer the usual sequence of operations
478  * is fairly simple:
479  *
480  * 1. The exporter defines his exporter instance using
481  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
482  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
483  *    as a file descriptor by calling dma_buf_fd().
484  *
485  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
486  *    to share with: First the filedescriptor is converted to a &dma_buf using
487  *    dma_buf_get(). Then the buffer is attached to the device using
488  *    dma_buf_attach().
489  *
490  *    Up to this stage the exporter is still free to migrate or reallocate the
491  *    backing storage.
492  *
493  * 3. Once the buffer is attached to all devices userspace can initiate DMA
494  *    access to the shared buffer. In the kernel this is done by calling
495  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
496  *
497  * 4. Once a driver is done with a shared buffer it needs to call
498  *    dma_buf_detach() (after cleaning up any mappings) and then release the
499  *    reference acquired with dma_buf_get() by calling dma_buf_put().
500  *
501  * For the detailed semantics exporters are expected to implement see
502  * &dma_buf_ops.
503  */
504 
505 /**
506  * dma_buf_export - Creates a new dma_buf, and associates an anon file
507  * with this buffer, so it can be exported.
508  * Also connect the allocator specific data and ops to the buffer.
509  * Additionally, provide a name string for exporter; useful in debugging.
510  *
511  * @exp_info:	[in]	holds all the export related information provided
512  *			by the exporter. see &struct dma_buf_export_info
513  *			for further details.
514  *
515  * Returns, on success, a newly created struct dma_buf object, which wraps the
516  * supplied private data and operations for struct dma_buf_ops. On either
517  * missing ops, or error in allocating struct dma_buf, will return negative
518  * error.
519  *
520  * For most cases the easiest way to create @exp_info is through the
521  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
522  */
523 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
524 {
525 	struct dma_buf *dmabuf;
526 	struct dma_resv *resv = exp_info->resv;
527 	struct file *file;
528 	size_t alloc_size = sizeof(struct dma_buf);
529 	int ret;
530 
531 	if (!exp_info->resv)
532 		alloc_size += sizeof(struct dma_resv);
533 	else
534 		/* prevent &dma_buf[1] == dma_buf->resv */
535 		alloc_size += 1;
536 
537 	if (WARN_ON(!exp_info->priv
538 			  || !exp_info->ops
539 			  || !exp_info->ops->map_dma_buf
540 			  || !exp_info->ops->unmap_dma_buf
541 			  || !exp_info->ops->release)) {
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
546 		    (exp_info->ops->pin || exp_info->ops->unpin)))
547 		return ERR_PTR(-EINVAL);
548 
549 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
550 		return ERR_PTR(-EINVAL);
551 
552 	if (!try_module_get(exp_info->owner))
553 		return ERR_PTR(-ENOENT);
554 
555 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
556 	if (!dmabuf) {
557 		ret = -ENOMEM;
558 		goto err_module;
559 	}
560 
561 	dmabuf->priv = exp_info->priv;
562 	dmabuf->ops = exp_info->ops;
563 	dmabuf->size = exp_info->size;
564 	dmabuf->exp_name = exp_info->exp_name;
565 	dmabuf->owner = exp_info->owner;
566 	spin_lock_init(&dmabuf->name_lock);
567 	init_waitqueue_head(&dmabuf->poll);
568 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
569 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
570 
571 	if (!resv) {
572 		resv = (struct dma_resv *)&dmabuf[1];
573 		dma_resv_init(resv);
574 	}
575 	dmabuf->resv = resv;
576 
577 	file = dma_buf_getfile(dmabuf, exp_info->flags);
578 	if (IS_ERR(file)) {
579 		ret = PTR_ERR(file);
580 		goto err_dmabuf;
581 	}
582 
583 	file->f_mode |= FMODE_LSEEK;
584 	dmabuf->file = file;
585 
586 	ret = dma_buf_stats_setup(dmabuf);
587 	if (ret)
588 		goto err_sysfs;
589 
590 	mutex_init(&dmabuf->lock);
591 	INIT_LIST_HEAD(&dmabuf->attachments);
592 
593 	mutex_lock(&db_list.lock);
594 	list_add(&dmabuf->list_node, &db_list.head);
595 	mutex_unlock(&db_list.lock);
596 
597 	return dmabuf;
598 
599 err_sysfs:
600 	/*
601 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
602 	 * dma_buf_release() gets invoked by dentry_ops, it exits
603 	 * early before calling the release() dma_buf op.
604 	 */
605 	file->f_path.dentry->d_fsdata = NULL;
606 	fput(file);
607 err_dmabuf:
608 	kfree(dmabuf);
609 err_module:
610 	module_put(exp_info->owner);
611 	return ERR_PTR(ret);
612 }
613 EXPORT_SYMBOL_GPL(dma_buf_export);
614 
615 /**
616  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
617  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
618  * @flags:      [in]    flags to give to fd
619  *
620  * On success, returns an associated 'fd'. Else, returns error.
621  */
622 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
623 {
624 	int fd;
625 
626 	if (!dmabuf || !dmabuf->file)
627 		return -EINVAL;
628 
629 	fd = get_unused_fd_flags(flags);
630 	if (fd < 0)
631 		return fd;
632 
633 	fd_install(fd, dmabuf->file);
634 
635 	return fd;
636 }
637 EXPORT_SYMBOL_GPL(dma_buf_fd);
638 
639 /**
640  * dma_buf_get - returns the struct dma_buf related to an fd
641  * @fd:	[in]	fd associated with the struct dma_buf to be returned
642  *
643  * On success, returns the struct dma_buf associated with an fd; uses
644  * file's refcounting done by fget to increase refcount. returns ERR_PTR
645  * otherwise.
646  */
647 struct dma_buf *dma_buf_get(int fd)
648 {
649 	struct file *file;
650 
651 	file = fget(fd);
652 
653 	if (!file)
654 		return ERR_PTR(-EBADF);
655 
656 	if (!is_dma_buf_file(file)) {
657 		fput(file);
658 		return ERR_PTR(-EINVAL);
659 	}
660 
661 	return file->private_data;
662 }
663 EXPORT_SYMBOL_GPL(dma_buf_get);
664 
665 /**
666  * dma_buf_put - decreases refcount of the buffer
667  * @dmabuf:	[in]	buffer to reduce refcount of
668  *
669  * Uses file's refcounting done implicitly by fput().
670  *
671  * If, as a result of this call, the refcount becomes 0, the 'release' file
672  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
673  * in turn, and frees the memory allocated for dmabuf when exported.
674  */
675 void dma_buf_put(struct dma_buf *dmabuf)
676 {
677 	if (WARN_ON(!dmabuf || !dmabuf->file))
678 		return;
679 
680 	fput(dmabuf->file);
681 }
682 EXPORT_SYMBOL_GPL(dma_buf_put);
683 
684 static void mangle_sg_table(struct sg_table *sg_table)
685 {
686 #ifdef CONFIG_DMABUF_DEBUG
687 	int i;
688 	struct scatterlist *sg;
689 
690 	/* To catch abuse of the underlying struct page by importers mix
691 	 * up the bits, but take care to preserve the low SG_ bits to
692 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
693 	 * before passing the sgt back to the exporter. */
694 	for_each_sgtable_sg(sg_table, sg, i)
695 		sg->page_link ^= ~0xffUL;
696 #endif
697 
698 }
699 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
700 				       enum dma_data_direction direction)
701 {
702 	struct sg_table *sg_table;
703 
704 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
705 
706 	if (!IS_ERR_OR_NULL(sg_table))
707 		mangle_sg_table(sg_table);
708 
709 	return sg_table;
710 }
711 
712 /**
713  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
714  * @dmabuf:		[in]	buffer to attach device to.
715  * @dev:		[in]	device to be attached.
716  * @importer_ops:	[in]	importer operations for the attachment
717  * @importer_priv:	[in]	importer private pointer for the attachment
718  *
719  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
720  * must be cleaned up by calling dma_buf_detach().
721  *
722  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
723  * functionality.
724  *
725  * Returns:
726  *
727  * A pointer to newly created &dma_buf_attachment on success, or a negative
728  * error code wrapped into a pointer on failure.
729  *
730  * Note that this can fail if the backing storage of @dmabuf is in a place not
731  * accessible to @dev, and cannot be moved to a more suitable place. This is
732  * indicated with the error code -EBUSY.
733  */
734 struct dma_buf_attachment *
735 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
736 		       const struct dma_buf_attach_ops *importer_ops,
737 		       void *importer_priv)
738 {
739 	struct dma_buf_attachment *attach;
740 	int ret;
741 
742 	if (WARN_ON(!dmabuf || !dev))
743 		return ERR_PTR(-EINVAL);
744 
745 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
746 		return ERR_PTR(-EINVAL);
747 
748 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
749 	if (!attach)
750 		return ERR_PTR(-ENOMEM);
751 
752 	attach->dev = dev;
753 	attach->dmabuf = dmabuf;
754 	if (importer_ops)
755 		attach->peer2peer = importer_ops->allow_peer2peer;
756 	attach->importer_ops = importer_ops;
757 	attach->importer_priv = importer_priv;
758 
759 	if (dmabuf->ops->attach) {
760 		ret = dmabuf->ops->attach(dmabuf, attach);
761 		if (ret)
762 			goto err_attach;
763 	}
764 	dma_resv_lock(dmabuf->resv, NULL);
765 	list_add(&attach->node, &dmabuf->attachments);
766 	dma_resv_unlock(dmabuf->resv);
767 
768 	/* When either the importer or the exporter can't handle dynamic
769 	 * mappings we cache the mapping here to avoid issues with the
770 	 * reservation object lock.
771 	 */
772 	if (dma_buf_attachment_is_dynamic(attach) !=
773 	    dma_buf_is_dynamic(dmabuf)) {
774 		struct sg_table *sgt;
775 
776 		if (dma_buf_is_dynamic(attach->dmabuf)) {
777 			dma_resv_lock(attach->dmabuf->resv, NULL);
778 			ret = dmabuf->ops->pin(attach);
779 			if (ret)
780 				goto err_unlock;
781 		}
782 
783 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
784 		if (!sgt)
785 			sgt = ERR_PTR(-ENOMEM);
786 		if (IS_ERR(sgt)) {
787 			ret = PTR_ERR(sgt);
788 			goto err_unpin;
789 		}
790 		if (dma_buf_is_dynamic(attach->dmabuf))
791 			dma_resv_unlock(attach->dmabuf->resv);
792 		attach->sgt = sgt;
793 		attach->dir = DMA_BIDIRECTIONAL;
794 	}
795 
796 	return attach;
797 
798 err_attach:
799 	kfree(attach);
800 	return ERR_PTR(ret);
801 
802 err_unpin:
803 	if (dma_buf_is_dynamic(attach->dmabuf))
804 		dmabuf->ops->unpin(attach);
805 
806 err_unlock:
807 	if (dma_buf_is_dynamic(attach->dmabuf))
808 		dma_resv_unlock(attach->dmabuf->resv);
809 
810 	dma_buf_detach(dmabuf, attach);
811 	return ERR_PTR(ret);
812 }
813 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
814 
815 /**
816  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
817  * @dmabuf:	[in]	buffer to attach device to.
818  * @dev:	[in]	device to be attached.
819  *
820  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
821  * mapping.
822  */
823 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
824 					  struct device *dev)
825 {
826 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
827 }
828 EXPORT_SYMBOL_GPL(dma_buf_attach);
829 
830 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
831 			    struct sg_table *sg_table,
832 			    enum dma_data_direction direction)
833 {
834 	/* uses XOR, hence this unmangles */
835 	mangle_sg_table(sg_table);
836 
837 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
838 }
839 
840 /**
841  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
842  * @dmabuf:	[in]	buffer to detach from.
843  * @attach:	[in]	attachment to be detached; is free'd after this call.
844  *
845  * Clean up a device attachment obtained by calling dma_buf_attach().
846  *
847  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
848  */
849 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
850 {
851 	if (WARN_ON(!dmabuf || !attach))
852 		return;
853 
854 	if (attach->sgt) {
855 		if (dma_buf_is_dynamic(attach->dmabuf))
856 			dma_resv_lock(attach->dmabuf->resv, NULL);
857 
858 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
859 
860 		if (dma_buf_is_dynamic(attach->dmabuf)) {
861 			dmabuf->ops->unpin(attach);
862 			dma_resv_unlock(attach->dmabuf->resv);
863 		}
864 	}
865 
866 	dma_resv_lock(dmabuf->resv, NULL);
867 	list_del(&attach->node);
868 	dma_resv_unlock(dmabuf->resv);
869 	if (dmabuf->ops->detach)
870 		dmabuf->ops->detach(dmabuf, attach);
871 
872 	kfree(attach);
873 }
874 EXPORT_SYMBOL_GPL(dma_buf_detach);
875 
876 /**
877  * dma_buf_pin - Lock down the DMA-buf
878  * @attach:	[in]	attachment which should be pinned
879  *
880  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
881  * call this, and only for limited use cases like scanout and not for temporary
882  * pin operations. It is not permitted to allow userspace to pin arbitrary
883  * amounts of buffers through this interface.
884  *
885  * Buffers must be unpinned by calling dma_buf_unpin().
886  *
887  * Returns:
888  * 0 on success, negative error code on failure.
889  */
890 int dma_buf_pin(struct dma_buf_attachment *attach)
891 {
892 	struct dma_buf *dmabuf = attach->dmabuf;
893 	int ret = 0;
894 
895 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
896 
897 	dma_resv_assert_held(dmabuf->resv);
898 
899 	if (dmabuf->ops->pin)
900 		ret = dmabuf->ops->pin(attach);
901 
902 	return ret;
903 }
904 EXPORT_SYMBOL_GPL(dma_buf_pin);
905 
906 /**
907  * dma_buf_unpin - Unpin a DMA-buf
908  * @attach:	[in]	attachment which should be unpinned
909  *
910  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
911  * any mapping of @attach again and inform the importer through
912  * &dma_buf_attach_ops.move_notify.
913  */
914 void dma_buf_unpin(struct dma_buf_attachment *attach)
915 {
916 	struct dma_buf *dmabuf = attach->dmabuf;
917 
918 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
919 
920 	dma_resv_assert_held(dmabuf->resv);
921 
922 	if (dmabuf->ops->unpin)
923 		dmabuf->ops->unpin(attach);
924 }
925 EXPORT_SYMBOL_GPL(dma_buf_unpin);
926 
927 /**
928  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
929  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
930  * dma_buf_ops.
931  * @attach:	[in]	attachment whose scatterlist is to be returned
932  * @direction:	[in]	direction of DMA transfer
933  *
934  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
935  * on error. May return -EINTR if it is interrupted by a signal.
936  *
937  * On success, the DMA addresses and lengths in the returned scatterlist are
938  * PAGE_SIZE aligned.
939  *
940  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
941  * the underlying backing storage is pinned for as long as a mapping exists,
942  * therefore users/importers should not hold onto a mapping for undue amounts of
943  * time.
944  *
945  * Important: Dynamic importers must wait for the exclusive fence of the struct
946  * dma_resv attached to the DMA-BUF first.
947  */
948 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
949 					enum dma_data_direction direction)
950 {
951 	struct sg_table *sg_table;
952 	int r;
953 
954 	might_sleep();
955 
956 	if (WARN_ON(!attach || !attach->dmabuf))
957 		return ERR_PTR(-EINVAL);
958 
959 	if (dma_buf_attachment_is_dynamic(attach))
960 		dma_resv_assert_held(attach->dmabuf->resv);
961 
962 	if (attach->sgt) {
963 		/*
964 		 * Two mappings with different directions for the same
965 		 * attachment are not allowed.
966 		 */
967 		if (attach->dir != direction &&
968 		    attach->dir != DMA_BIDIRECTIONAL)
969 			return ERR_PTR(-EBUSY);
970 
971 		return attach->sgt;
972 	}
973 
974 	if (dma_buf_is_dynamic(attach->dmabuf)) {
975 		dma_resv_assert_held(attach->dmabuf->resv);
976 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
977 			r = attach->dmabuf->ops->pin(attach);
978 			if (r)
979 				return ERR_PTR(r);
980 		}
981 	}
982 
983 	sg_table = __map_dma_buf(attach, direction);
984 	if (!sg_table)
985 		sg_table = ERR_PTR(-ENOMEM);
986 
987 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
988 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
989 		attach->dmabuf->ops->unpin(attach);
990 
991 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
992 		attach->sgt = sg_table;
993 		attach->dir = direction;
994 	}
995 
996 #ifdef CONFIG_DMA_API_DEBUG
997 	if (!IS_ERR(sg_table)) {
998 		struct scatterlist *sg;
999 		u64 addr;
1000 		int len;
1001 		int i;
1002 
1003 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1004 			addr = sg_dma_address(sg);
1005 			len = sg_dma_len(sg);
1006 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1007 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1008 					 __func__, addr, len);
1009 			}
1010 		}
1011 	}
1012 #endif /* CONFIG_DMA_API_DEBUG */
1013 	return sg_table;
1014 }
1015 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
1016 
1017 /**
1018  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1019  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1020  * dma_buf_ops.
1021  * @attach:	[in]	attachment to unmap buffer from
1022  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1023  * @direction:  [in]    direction of DMA transfer
1024  *
1025  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1026  */
1027 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1028 				struct sg_table *sg_table,
1029 				enum dma_data_direction direction)
1030 {
1031 	might_sleep();
1032 
1033 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1034 		return;
1035 
1036 	if (dma_buf_attachment_is_dynamic(attach))
1037 		dma_resv_assert_held(attach->dmabuf->resv);
1038 
1039 	if (attach->sgt == sg_table)
1040 		return;
1041 
1042 	if (dma_buf_is_dynamic(attach->dmabuf))
1043 		dma_resv_assert_held(attach->dmabuf->resv);
1044 
1045 	__unmap_dma_buf(attach, sg_table, direction);
1046 
1047 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1048 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1049 		dma_buf_unpin(attach);
1050 }
1051 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
1052 
1053 /**
1054  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1055  *
1056  * @dmabuf:	[in]	buffer which is moving
1057  *
1058  * Informs all attachmenst that they need to destroy and recreated all their
1059  * mappings.
1060  */
1061 void dma_buf_move_notify(struct dma_buf *dmabuf)
1062 {
1063 	struct dma_buf_attachment *attach;
1064 
1065 	dma_resv_assert_held(dmabuf->resv);
1066 
1067 	list_for_each_entry(attach, &dmabuf->attachments, node)
1068 		if (attach->importer_ops)
1069 			attach->importer_ops->move_notify(attach);
1070 }
1071 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1072 
1073 /**
1074  * DOC: cpu access
1075  *
1076  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1077  *
1078  * - Fallback operations in the kernel, for example when a device is connected
1079  *   over USB and the kernel needs to shuffle the data around first before
1080  *   sending it away. Cache coherency is handled by braketing any transactions
1081  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1082  *   access.
1083  *
1084  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1085  *   vmap interface is introduced. Note that on very old 32-bit architectures
1086  *   vmalloc space might be limited and result in vmap calls failing.
1087  *
1088  *   Interfaces::
1089  *
1090  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1091  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1092  *
1093  *   The vmap call can fail if there is no vmap support in the exporter, or if
1094  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1095  *   count for all vmap access and calls down into the exporter's vmap function
1096  *   only when no vmapping exists, and only unmaps it once. Protection against
1097  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1098  *
1099  * - For full compatibility on the importer side with existing userspace
1100  *   interfaces, which might already support mmap'ing buffers. This is needed in
1101  *   many processing pipelines (e.g. feeding a software rendered image into a
1102  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1103  *   framework already supported this and for DMA buffer file descriptors to
1104  *   replace ION buffers mmap support was needed.
1105  *
1106  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1107  *   fd. But like for CPU access there's a need to braket the actual access,
1108  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1109  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1110  *   be restarted.
1111  *
1112  *   Some systems might need some sort of cache coherency management e.g. when
1113  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1114  *   To circumvent this problem there are begin/end coherency markers, that
1115  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1116  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1117  *   sequence would be used like following:
1118  *
1119  *     - mmap dma-buf fd
1120  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1121  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1122  *       want (with the new data being consumed by say the GPU or the scanout
1123  *       device)
1124  *     - munmap once you don't need the buffer any more
1125  *
1126  *    For correctness and optimal performance, it is always required to use
1127  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1128  *    mapped address. Userspace cannot rely on coherent access, even when there
1129  *    are systems where it just works without calling these ioctls.
1130  *
1131  * - And as a CPU fallback in userspace processing pipelines.
1132  *
1133  *   Similar to the motivation for kernel cpu access it is again important that
1134  *   the userspace code of a given importing subsystem can use the same
1135  *   interfaces with a imported dma-buf buffer object as with a native buffer
1136  *   object. This is especially important for drm where the userspace part of
1137  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1138  *   use a different way to mmap a buffer rather invasive.
1139  *
1140  *   The assumption in the current dma-buf interfaces is that redirecting the
1141  *   initial mmap is all that's needed. A survey of some of the existing
1142  *   subsystems shows that no driver seems to do any nefarious thing like
1143  *   syncing up with outstanding asynchronous processing on the device or
1144  *   allocating special resources at fault time. So hopefully this is good
1145  *   enough, since adding interfaces to intercept pagefaults and allow pte
1146  *   shootdowns would increase the complexity quite a bit.
1147  *
1148  *   Interface::
1149  *
1150  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1151  *		       unsigned long);
1152  *
1153  *   If the importing subsystem simply provides a special-purpose mmap call to
1154  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1155  *   equally achieve that for a dma-buf object.
1156  */
1157 
1158 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1159 				      enum dma_data_direction direction)
1160 {
1161 	bool write = (direction == DMA_BIDIRECTIONAL ||
1162 		      direction == DMA_TO_DEVICE);
1163 	struct dma_resv *resv = dmabuf->resv;
1164 	long ret;
1165 
1166 	/* Wait on any implicit rendering fences */
1167 	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1168 	if (ret < 0)
1169 		return ret;
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1176  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1177  * preparations. Coherency is only guaranteed in the specified range for the
1178  * specified access direction.
1179  * @dmabuf:	[in]	buffer to prepare cpu access for.
1180  * @direction:	[in]	length of range for cpu access.
1181  *
1182  * After the cpu access is complete the caller should call
1183  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1184  * it guaranteed to be coherent with other DMA access.
1185  *
1186  * This function will also wait for any DMA transactions tracked through
1187  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1188  * synchronization this function will only ensure cache coherency, callers must
1189  * ensure synchronization with such DMA transactions on their own.
1190  *
1191  * Can return negative error values, returns 0 on success.
1192  */
1193 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1194 			     enum dma_data_direction direction)
1195 {
1196 	int ret = 0;
1197 
1198 	if (WARN_ON(!dmabuf))
1199 		return -EINVAL;
1200 
1201 	might_lock(&dmabuf->resv->lock.base);
1202 
1203 	if (dmabuf->ops->begin_cpu_access)
1204 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1205 
1206 	/* Ensure that all fences are waited upon - but we first allow
1207 	 * the native handler the chance to do so more efficiently if it
1208 	 * chooses. A double invocation here will be reasonably cheap no-op.
1209 	 */
1210 	if (ret == 0)
1211 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1216 
1217 /**
1218  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1219  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1220  * actions. Coherency is only guaranteed in the specified range for the
1221  * specified access direction.
1222  * @dmabuf:	[in]	buffer to complete cpu access for.
1223  * @direction:	[in]	length of range for cpu access.
1224  *
1225  * This terminates CPU access started with dma_buf_begin_cpu_access().
1226  *
1227  * Can return negative error values, returns 0 on success.
1228  */
1229 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1230 			   enum dma_data_direction direction)
1231 {
1232 	int ret = 0;
1233 
1234 	WARN_ON(!dmabuf);
1235 
1236 	might_lock(&dmabuf->resv->lock.base);
1237 
1238 	if (dmabuf->ops->end_cpu_access)
1239 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1240 
1241 	return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1244 
1245 
1246 /**
1247  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1248  * @dmabuf:	[in]	buffer that should back the vma
1249  * @vma:	[in]	vma for the mmap
1250  * @pgoff:	[in]	offset in pages where this mmap should start within the
1251  *			dma-buf buffer.
1252  *
1253  * This function adjusts the passed in vma so that it points at the file of the
1254  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1255  * checking on the size of the vma. Then it calls the exporters mmap function to
1256  * set up the mapping.
1257  *
1258  * Can return negative error values, returns 0 on success.
1259  */
1260 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1261 		 unsigned long pgoff)
1262 {
1263 	if (WARN_ON(!dmabuf || !vma))
1264 		return -EINVAL;
1265 
1266 	/* check if buffer supports mmap */
1267 	if (!dmabuf->ops->mmap)
1268 		return -EINVAL;
1269 
1270 	/* check for offset overflow */
1271 	if (pgoff + vma_pages(vma) < pgoff)
1272 		return -EOVERFLOW;
1273 
1274 	/* check for overflowing the buffer's size */
1275 	if (pgoff + vma_pages(vma) >
1276 	    dmabuf->size >> PAGE_SHIFT)
1277 		return -EINVAL;
1278 
1279 	/* readjust the vma */
1280 	vma_set_file(vma, dmabuf->file);
1281 	vma->vm_pgoff = pgoff;
1282 
1283 	return dmabuf->ops->mmap(dmabuf, vma);
1284 }
1285 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1286 
1287 /**
1288  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1289  * address space. Same restrictions as for vmap and friends apply.
1290  * @dmabuf:	[in]	buffer to vmap
1291  * @map:	[out]	returns the vmap pointer
1292  *
1293  * This call may fail due to lack of virtual mapping address space.
1294  * These calls are optional in drivers. The intended use for them
1295  * is for mapping objects linear in kernel space for high use objects.
1296  *
1297  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1298  * dma_buf_end_cpu_access() around any cpu access performed through this
1299  * mapping.
1300  *
1301  * Returns 0 on success, or a negative errno code otherwise.
1302  */
1303 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1304 {
1305 	struct dma_buf_map ptr;
1306 	int ret = 0;
1307 
1308 	dma_buf_map_clear(map);
1309 
1310 	if (WARN_ON(!dmabuf))
1311 		return -EINVAL;
1312 
1313 	if (!dmabuf->ops->vmap)
1314 		return -EINVAL;
1315 
1316 	mutex_lock(&dmabuf->lock);
1317 	if (dmabuf->vmapping_counter) {
1318 		dmabuf->vmapping_counter++;
1319 		BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1320 		*map = dmabuf->vmap_ptr;
1321 		goto out_unlock;
1322 	}
1323 
1324 	BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1325 
1326 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1327 	if (WARN_ON_ONCE(ret))
1328 		goto out_unlock;
1329 
1330 	dmabuf->vmap_ptr = ptr;
1331 	dmabuf->vmapping_counter = 1;
1332 
1333 	*map = dmabuf->vmap_ptr;
1334 
1335 out_unlock:
1336 	mutex_unlock(&dmabuf->lock);
1337 	return ret;
1338 }
1339 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1340 
1341 /**
1342  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1343  * @dmabuf:	[in]	buffer to vunmap
1344  * @map:	[in]	vmap pointer to vunmap
1345  */
1346 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1347 {
1348 	if (WARN_ON(!dmabuf))
1349 		return;
1350 
1351 	BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1352 	BUG_ON(dmabuf->vmapping_counter == 0);
1353 	BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1354 
1355 	mutex_lock(&dmabuf->lock);
1356 	if (--dmabuf->vmapping_counter == 0) {
1357 		if (dmabuf->ops->vunmap)
1358 			dmabuf->ops->vunmap(dmabuf, map);
1359 		dma_buf_map_clear(&dmabuf->vmap_ptr);
1360 	}
1361 	mutex_unlock(&dmabuf->lock);
1362 }
1363 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1364 
1365 #ifdef CONFIG_DEBUG_FS
1366 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1367 {
1368 	struct dma_buf *buf_obj;
1369 	struct dma_buf_attachment *attach_obj;
1370 	struct dma_resv *robj;
1371 	struct dma_resv_list *fobj;
1372 	struct dma_fence *fence;
1373 	int count = 0, attach_count, shared_count, i;
1374 	size_t size = 0;
1375 	int ret;
1376 
1377 	ret = mutex_lock_interruptible(&db_list.lock);
1378 
1379 	if (ret)
1380 		return ret;
1381 
1382 	seq_puts(s, "\nDma-buf Objects:\n");
1383 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1384 		   "size", "flags", "mode", "count", "ino");
1385 
1386 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1387 
1388 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1389 		if (ret)
1390 			goto error_unlock;
1391 
1392 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1393 				buf_obj->size,
1394 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1395 				file_count(buf_obj->file),
1396 				buf_obj->exp_name,
1397 				file_inode(buf_obj->file)->i_ino,
1398 				buf_obj->name ?: "");
1399 
1400 		robj = buf_obj->resv;
1401 		fence = dma_resv_excl_fence(robj);
1402 		if (fence)
1403 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1404 				   fence->ops->get_driver_name(fence),
1405 				   fence->ops->get_timeline_name(fence),
1406 				   dma_fence_is_signaled(fence) ? "" : "un");
1407 
1408 		fobj = rcu_dereference_protected(robj->fence,
1409 						 dma_resv_held(robj));
1410 		shared_count = fobj ? fobj->shared_count : 0;
1411 		for (i = 0; i < shared_count; i++) {
1412 			fence = rcu_dereference_protected(fobj->shared[i],
1413 							  dma_resv_held(robj));
1414 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1415 				   fence->ops->get_driver_name(fence),
1416 				   fence->ops->get_timeline_name(fence),
1417 				   dma_fence_is_signaled(fence) ? "" : "un");
1418 		}
1419 
1420 		seq_puts(s, "\tAttached Devices:\n");
1421 		attach_count = 0;
1422 
1423 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1424 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1425 			attach_count++;
1426 		}
1427 		dma_resv_unlock(buf_obj->resv);
1428 
1429 		seq_printf(s, "Total %d devices attached\n\n",
1430 				attach_count);
1431 
1432 		count++;
1433 		size += buf_obj->size;
1434 	}
1435 
1436 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1437 
1438 	mutex_unlock(&db_list.lock);
1439 	return 0;
1440 
1441 error_unlock:
1442 	mutex_unlock(&db_list.lock);
1443 	return ret;
1444 }
1445 
1446 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1447 
1448 static struct dentry *dma_buf_debugfs_dir;
1449 
1450 static int dma_buf_init_debugfs(void)
1451 {
1452 	struct dentry *d;
1453 	int err = 0;
1454 
1455 	d = debugfs_create_dir("dma_buf", NULL);
1456 	if (IS_ERR(d))
1457 		return PTR_ERR(d);
1458 
1459 	dma_buf_debugfs_dir = d;
1460 
1461 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1462 				NULL, &dma_buf_debug_fops);
1463 	if (IS_ERR(d)) {
1464 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1465 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1466 		dma_buf_debugfs_dir = NULL;
1467 		err = PTR_ERR(d);
1468 	}
1469 
1470 	return err;
1471 }
1472 
1473 static void dma_buf_uninit_debugfs(void)
1474 {
1475 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1476 }
1477 #else
1478 static inline int dma_buf_init_debugfs(void)
1479 {
1480 	return 0;
1481 }
1482 static inline void dma_buf_uninit_debugfs(void)
1483 {
1484 }
1485 #endif
1486 
1487 static int __init dma_buf_init(void)
1488 {
1489 	int ret;
1490 
1491 	ret = dma_buf_init_sysfs_statistics();
1492 	if (ret)
1493 		return ret;
1494 
1495 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1496 	if (IS_ERR(dma_buf_mnt))
1497 		return PTR_ERR(dma_buf_mnt);
1498 
1499 	mutex_init(&db_list.lock);
1500 	INIT_LIST_HEAD(&db_list.head);
1501 	dma_buf_init_debugfs();
1502 	return 0;
1503 }
1504 subsys_initcall(dma_buf_init);
1505 
1506 static void __exit dma_buf_deinit(void)
1507 {
1508 	dma_buf_uninit_debugfs();
1509 	kern_unmount(dma_buf_mnt);
1510 	dma_buf_uninit_sysfs_statistics();
1511 }
1512 __exitcall(dma_buf_deinit);
1513