1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 dma_resv_lock(dmabuf->resv, NULL); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 dma_resv_unlock(dmabuf->resv); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static const struct dentry_operations dma_buf_dentry_ops = { 58 .d_dname = dmabuffs_dname, 59 }; 60 61 static struct vfsmount *dma_buf_mnt; 62 63 static int dma_buf_fs_init_context(struct fs_context *fc) 64 { 65 struct pseudo_fs_context *ctx; 66 67 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 68 if (!ctx) 69 return -ENOMEM; 70 ctx->dops = &dma_buf_dentry_ops; 71 return 0; 72 } 73 74 static struct file_system_type dma_buf_fs_type = { 75 .name = "dmabuf", 76 .init_fs_context = dma_buf_fs_init_context, 77 .kill_sb = kill_anon_super, 78 }; 79 80 static int dma_buf_release(struct inode *inode, struct file *file) 81 { 82 struct dma_buf *dmabuf; 83 84 if (!is_dma_buf_file(file)) 85 return -EINVAL; 86 87 dmabuf = file->private_data; 88 89 BUG_ON(dmabuf->vmapping_counter); 90 91 /* 92 * Any fences that a dma-buf poll can wait on should be signaled 93 * before releasing dma-buf. This is the responsibility of each 94 * driver that uses the reservation objects. 95 * 96 * If you hit this BUG() it means someone dropped their ref to the 97 * dma-buf while still having pending operation to the buffer. 98 */ 99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 100 101 dmabuf->ops->release(dmabuf); 102 103 mutex_lock(&db_list.lock); 104 list_del(&dmabuf->list_node); 105 mutex_unlock(&db_list.lock); 106 107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 108 dma_resv_fini(dmabuf->resv); 109 110 module_put(dmabuf->owner); 111 kfree(dmabuf); 112 return 0; 113 } 114 115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 116 { 117 struct dma_buf *dmabuf; 118 119 if (!is_dma_buf_file(file)) 120 return -EINVAL; 121 122 dmabuf = file->private_data; 123 124 /* check if buffer supports mmap */ 125 if (!dmabuf->ops->mmap) 126 return -EINVAL; 127 128 /* check for overflowing the buffer's size */ 129 if (vma->vm_pgoff + vma_pages(vma) > 130 dmabuf->size >> PAGE_SHIFT) 131 return -EINVAL; 132 133 return dmabuf->ops->mmap(dmabuf, vma); 134 } 135 136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 137 { 138 struct dma_buf *dmabuf; 139 loff_t base; 140 141 if (!is_dma_buf_file(file)) 142 return -EBADF; 143 144 dmabuf = file->private_data; 145 146 /* only support discovering the end of the buffer, 147 but also allow SEEK_SET to maintain the idiomatic 148 SEEK_END(0), SEEK_CUR(0) pattern */ 149 if (whence == SEEK_END) 150 base = dmabuf->size; 151 else if (whence == SEEK_SET) 152 base = 0; 153 else 154 return -EINVAL; 155 156 if (offset != 0) 157 return -EINVAL; 158 159 return base + offset; 160 } 161 162 /** 163 * DOC: fence polling 164 * 165 * To support cross-device and cross-driver synchronization of buffer access 166 * implicit fences (represented internally in the kernel with &struct fence) can 167 * be attached to a &dma_buf. The glue for that and a few related things are 168 * provided in the &dma_resv structure. 169 * 170 * Userspace can query the state of these implicitly tracked fences using poll() 171 * and related system calls: 172 * 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 174 * most recent write or exclusive fence. 175 * 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 177 * all attached fences, shared and exclusive ones. 178 * 179 * Note that this only signals the completion of the respective fences, i.e. the 180 * DMA transfers are complete. Cache flushing and any other necessary 181 * preparations before CPU access can begin still need to happen. 182 */ 183 184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 185 { 186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 187 unsigned long flags; 188 189 spin_lock_irqsave(&dcb->poll->lock, flags); 190 wake_up_locked_poll(dcb->poll, dcb->active); 191 dcb->active = 0; 192 spin_unlock_irqrestore(&dcb->poll->lock, flags); 193 } 194 195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 196 { 197 struct dma_buf *dmabuf; 198 struct dma_resv *resv; 199 struct dma_resv_list *fobj; 200 struct dma_fence *fence_excl; 201 __poll_t events; 202 unsigned shared_count, seq; 203 204 dmabuf = file->private_data; 205 if (!dmabuf || !dmabuf->resv) 206 return EPOLLERR; 207 208 resv = dmabuf->resv; 209 210 poll_wait(file, &dmabuf->poll, poll); 211 212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 213 if (!events) 214 return 0; 215 216 retry: 217 seq = read_seqcount_begin(&resv->seq); 218 rcu_read_lock(); 219 220 fobj = rcu_dereference(resv->fence); 221 if (fobj) 222 shared_count = fobj->shared_count; 223 else 224 shared_count = 0; 225 fence_excl = rcu_dereference(resv->fence_excl); 226 if (read_seqcount_retry(&resv->seq, seq)) { 227 rcu_read_unlock(); 228 goto retry; 229 } 230 231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 233 __poll_t pevents = EPOLLIN; 234 235 if (shared_count == 0) 236 pevents |= EPOLLOUT; 237 238 spin_lock_irq(&dmabuf->poll.lock); 239 if (dcb->active) { 240 dcb->active |= pevents; 241 events &= ~pevents; 242 } else 243 dcb->active = pevents; 244 spin_unlock_irq(&dmabuf->poll.lock); 245 246 if (events & pevents) { 247 if (!dma_fence_get_rcu(fence_excl)) { 248 /* force a recheck */ 249 events &= ~pevents; 250 dma_buf_poll_cb(NULL, &dcb->cb); 251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 252 dma_buf_poll_cb)) { 253 events &= ~pevents; 254 dma_fence_put(fence_excl); 255 } else { 256 /* 257 * No callback queued, wake up any additional 258 * waiters. 259 */ 260 dma_fence_put(fence_excl); 261 dma_buf_poll_cb(NULL, &dcb->cb); 262 } 263 } 264 } 265 266 if ((events & EPOLLOUT) && shared_count > 0) { 267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 268 int i; 269 270 /* Only queue a new callback if no event has fired yet */ 271 spin_lock_irq(&dmabuf->poll.lock); 272 if (dcb->active) 273 events &= ~EPOLLOUT; 274 else 275 dcb->active = EPOLLOUT; 276 spin_unlock_irq(&dmabuf->poll.lock); 277 278 if (!(events & EPOLLOUT)) 279 goto out; 280 281 for (i = 0; i < shared_count; ++i) { 282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 283 284 if (!dma_fence_get_rcu(fence)) { 285 /* 286 * fence refcount dropped to zero, this means 287 * that fobj has been freed 288 * 289 * call dma_buf_poll_cb and force a recheck! 290 */ 291 events &= ~EPOLLOUT; 292 dma_buf_poll_cb(NULL, &dcb->cb); 293 break; 294 } 295 if (!dma_fence_add_callback(fence, &dcb->cb, 296 dma_buf_poll_cb)) { 297 dma_fence_put(fence); 298 events &= ~EPOLLOUT; 299 break; 300 } 301 dma_fence_put(fence); 302 } 303 304 /* No callback queued, wake up any additional waiters. */ 305 if (i == shared_count) 306 dma_buf_poll_cb(NULL, &dcb->cb); 307 } 308 309 out: 310 rcu_read_unlock(); 311 return events; 312 } 313 314 /** 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 316 * The name of the dma-buf buffer can only be set when the dma-buf is not 317 * attached to any devices. It could theoritically support changing the 318 * name of the dma-buf if the same piece of memory is used for multiple 319 * purpose between different devices. 320 * 321 * @dmabuf [in] dmabuf buffer that will be renamed. 322 * @buf: [in] A piece of userspace memory that contains the name of 323 * the dma-buf. 324 * 325 * Returns 0 on success. If the dma-buf buffer is already attached to 326 * devices, return -EBUSY. 327 * 328 */ 329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 330 { 331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 332 long ret = 0; 333 334 if (IS_ERR(name)) 335 return PTR_ERR(name); 336 337 dma_resv_lock(dmabuf->resv, NULL); 338 if (!list_empty(&dmabuf->attachments)) { 339 ret = -EBUSY; 340 kfree(name); 341 goto out_unlock; 342 } 343 kfree(dmabuf->name); 344 dmabuf->name = name; 345 346 out_unlock: 347 dma_resv_unlock(dmabuf->resv); 348 return ret; 349 } 350 351 static long dma_buf_ioctl(struct file *file, 352 unsigned int cmd, unsigned long arg) 353 { 354 struct dma_buf *dmabuf; 355 struct dma_buf_sync sync; 356 enum dma_data_direction direction; 357 int ret; 358 359 dmabuf = file->private_data; 360 361 switch (cmd) { 362 case DMA_BUF_IOCTL_SYNC: 363 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 364 return -EFAULT; 365 366 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 367 return -EINVAL; 368 369 switch (sync.flags & DMA_BUF_SYNC_RW) { 370 case DMA_BUF_SYNC_READ: 371 direction = DMA_FROM_DEVICE; 372 break; 373 case DMA_BUF_SYNC_WRITE: 374 direction = DMA_TO_DEVICE; 375 break; 376 case DMA_BUF_SYNC_RW: 377 direction = DMA_BIDIRECTIONAL; 378 break; 379 default: 380 return -EINVAL; 381 } 382 383 if (sync.flags & DMA_BUF_SYNC_END) 384 ret = dma_buf_end_cpu_access(dmabuf, direction); 385 else 386 ret = dma_buf_begin_cpu_access(dmabuf, direction); 387 388 return ret; 389 390 case DMA_BUF_SET_NAME: 391 return dma_buf_set_name(dmabuf, (const char __user *)arg); 392 393 default: 394 return -ENOTTY; 395 } 396 } 397 398 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 399 { 400 struct dma_buf *dmabuf = file->private_data; 401 402 seq_printf(m, "size:\t%zu\n", dmabuf->size); 403 /* Don't count the temporary reference taken inside procfs seq_show */ 404 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 405 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 406 dma_resv_lock(dmabuf->resv, NULL); 407 if (dmabuf->name) 408 seq_printf(m, "name:\t%s\n", dmabuf->name); 409 dma_resv_unlock(dmabuf->resv); 410 } 411 412 static const struct file_operations dma_buf_fops = { 413 .release = dma_buf_release, 414 .mmap = dma_buf_mmap_internal, 415 .llseek = dma_buf_llseek, 416 .poll = dma_buf_poll, 417 .unlocked_ioctl = dma_buf_ioctl, 418 #ifdef CONFIG_COMPAT 419 .compat_ioctl = dma_buf_ioctl, 420 #endif 421 .show_fdinfo = dma_buf_show_fdinfo, 422 }; 423 424 /* 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf 426 */ 427 static inline int is_dma_buf_file(struct file *file) 428 { 429 return file->f_op == &dma_buf_fops; 430 } 431 432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 433 { 434 struct file *file; 435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 436 437 if (IS_ERR(inode)) 438 return ERR_CAST(inode); 439 440 inode->i_size = dmabuf->size; 441 inode_set_bytes(inode, dmabuf->size); 442 443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 444 flags, &dma_buf_fops); 445 if (IS_ERR(file)) 446 goto err_alloc_file; 447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 448 file->private_data = dmabuf; 449 file->f_path.dentry->d_fsdata = dmabuf; 450 451 return file; 452 453 err_alloc_file: 454 iput(inode); 455 return file; 456 } 457 458 /** 459 * DOC: dma buf device access 460 * 461 * For device DMA access to a shared DMA buffer the usual sequence of operations 462 * is fairly simple: 463 * 464 * 1. The exporter defines his exporter instance using 465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 467 * as a file descriptor by calling dma_buf_fd(). 468 * 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 470 * to share with: First the filedescriptor is converted to a &dma_buf using 471 * dma_buf_get(). Then the buffer is attached to the device using 472 * dma_buf_attach(). 473 * 474 * Up to this stage the exporter is still free to migrate or reallocate the 475 * backing storage. 476 * 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA 478 * access to the shared buffer. In the kernel this is done by calling 479 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 480 * 481 * 4. Once a driver is done with a shared buffer it needs to call 482 * dma_buf_detach() (after cleaning up any mappings) and then release the 483 * reference acquired with dma_buf_get by calling dma_buf_put(). 484 * 485 * For the detailed semantics exporters are expected to implement see 486 * &dma_buf_ops. 487 */ 488 489 /** 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file 491 * with this buffer, so it can be exported. 492 * Also connect the allocator specific data and ops to the buffer. 493 * Additionally, provide a name string for exporter; useful in debugging. 494 * 495 * @exp_info: [in] holds all the export related information provided 496 * by the exporter. see &struct dma_buf_export_info 497 * for further details. 498 * 499 * Returns, on success, a newly created dma_buf object, which wraps the 500 * supplied private data and operations for dma_buf_ops. On either missing 501 * ops, or error in allocating struct dma_buf, will return negative error. 502 * 503 * For most cases the easiest way to create @exp_info is through the 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 505 */ 506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 507 { 508 struct dma_buf *dmabuf; 509 struct dma_resv *resv = exp_info->resv; 510 struct file *file; 511 size_t alloc_size = sizeof(struct dma_buf); 512 int ret; 513 514 if (!exp_info->resv) 515 alloc_size += sizeof(struct dma_resv); 516 else 517 /* prevent &dma_buf[1] == dma_buf->resv */ 518 alloc_size += 1; 519 520 if (WARN_ON(!exp_info->priv 521 || !exp_info->ops 522 || !exp_info->ops->map_dma_buf 523 || !exp_info->ops->unmap_dma_buf 524 || !exp_info->ops->release)) { 525 return ERR_PTR(-EINVAL); 526 } 527 528 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 529 exp_info->ops->dynamic_mapping)) 530 return ERR_PTR(-EINVAL); 531 532 if (!try_module_get(exp_info->owner)) 533 return ERR_PTR(-ENOENT); 534 535 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 536 if (!dmabuf) { 537 ret = -ENOMEM; 538 goto err_module; 539 } 540 541 dmabuf->priv = exp_info->priv; 542 dmabuf->ops = exp_info->ops; 543 dmabuf->size = exp_info->size; 544 dmabuf->exp_name = exp_info->exp_name; 545 dmabuf->owner = exp_info->owner; 546 init_waitqueue_head(&dmabuf->poll); 547 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 548 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 549 550 if (!resv) { 551 resv = (struct dma_resv *)&dmabuf[1]; 552 dma_resv_init(resv); 553 } 554 dmabuf->resv = resv; 555 556 file = dma_buf_getfile(dmabuf, exp_info->flags); 557 if (IS_ERR(file)) { 558 ret = PTR_ERR(file); 559 goto err_dmabuf; 560 } 561 562 file->f_mode |= FMODE_LSEEK; 563 dmabuf->file = file; 564 565 mutex_init(&dmabuf->lock); 566 INIT_LIST_HEAD(&dmabuf->attachments); 567 568 mutex_lock(&db_list.lock); 569 list_add(&dmabuf->list_node, &db_list.head); 570 mutex_unlock(&db_list.lock); 571 572 return dmabuf; 573 574 err_dmabuf: 575 kfree(dmabuf); 576 err_module: 577 module_put(exp_info->owner); 578 return ERR_PTR(ret); 579 } 580 EXPORT_SYMBOL_GPL(dma_buf_export); 581 582 /** 583 * dma_buf_fd - returns a file descriptor for the given dma_buf 584 * @dmabuf: [in] pointer to dma_buf for which fd is required. 585 * @flags: [in] flags to give to fd 586 * 587 * On success, returns an associated 'fd'. Else, returns error. 588 */ 589 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 590 { 591 int fd; 592 593 if (!dmabuf || !dmabuf->file) 594 return -EINVAL; 595 596 fd = get_unused_fd_flags(flags); 597 if (fd < 0) 598 return fd; 599 600 fd_install(fd, dmabuf->file); 601 602 return fd; 603 } 604 EXPORT_SYMBOL_GPL(dma_buf_fd); 605 606 /** 607 * dma_buf_get - returns the dma_buf structure related to an fd 608 * @fd: [in] fd associated with the dma_buf to be returned 609 * 610 * On success, returns the dma_buf structure associated with an fd; uses 611 * file's refcounting done by fget to increase refcount. returns ERR_PTR 612 * otherwise. 613 */ 614 struct dma_buf *dma_buf_get(int fd) 615 { 616 struct file *file; 617 618 file = fget(fd); 619 620 if (!file) 621 return ERR_PTR(-EBADF); 622 623 if (!is_dma_buf_file(file)) { 624 fput(file); 625 return ERR_PTR(-EINVAL); 626 } 627 628 return file->private_data; 629 } 630 EXPORT_SYMBOL_GPL(dma_buf_get); 631 632 /** 633 * dma_buf_put - decreases refcount of the buffer 634 * @dmabuf: [in] buffer to reduce refcount of 635 * 636 * Uses file's refcounting done implicitly by fput(). 637 * 638 * If, as a result of this call, the refcount becomes 0, the 'release' file 639 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 640 * in turn, and frees the memory allocated for dmabuf when exported. 641 */ 642 void dma_buf_put(struct dma_buf *dmabuf) 643 { 644 if (WARN_ON(!dmabuf || !dmabuf->file)) 645 return; 646 647 fput(dmabuf->file); 648 } 649 EXPORT_SYMBOL_GPL(dma_buf_put); 650 651 /** 652 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 653 * calls attach() of dma_buf_ops to allow device-specific attach functionality 654 * @dmabuf: [in] buffer to attach device to. 655 * @dev: [in] device to be attached. 656 * @dynamic_mapping: [in] calling convention for map/unmap 657 * 658 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 659 * must be cleaned up by calling dma_buf_detach(). 660 * 661 * Returns: 662 * 663 * A pointer to newly created &dma_buf_attachment on success, or a negative 664 * error code wrapped into a pointer on failure. 665 * 666 * Note that this can fail if the backing storage of @dmabuf is in a place not 667 * accessible to @dev, and cannot be moved to a more suitable place. This is 668 * indicated with the error code -EBUSY. 669 */ 670 struct dma_buf_attachment * 671 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 672 bool dynamic_mapping) 673 { 674 struct dma_buf_attachment *attach; 675 int ret; 676 677 if (WARN_ON(!dmabuf || !dev)) 678 return ERR_PTR(-EINVAL); 679 680 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 681 if (!attach) 682 return ERR_PTR(-ENOMEM); 683 684 attach->dev = dev; 685 attach->dmabuf = dmabuf; 686 attach->dynamic_mapping = dynamic_mapping; 687 688 if (dmabuf->ops->attach) { 689 ret = dmabuf->ops->attach(dmabuf, attach); 690 if (ret) 691 goto err_attach; 692 } 693 dma_resv_lock(dmabuf->resv, NULL); 694 list_add(&attach->node, &dmabuf->attachments); 695 dma_resv_unlock(dmabuf->resv); 696 697 /* When either the importer or the exporter can't handle dynamic 698 * mappings we cache the mapping here to avoid issues with the 699 * reservation object lock. 700 */ 701 if (dma_buf_attachment_is_dynamic(attach) != 702 dma_buf_is_dynamic(dmabuf)) { 703 struct sg_table *sgt; 704 705 if (dma_buf_is_dynamic(attach->dmabuf)) 706 dma_resv_lock(attach->dmabuf->resv, NULL); 707 708 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 709 if (!sgt) 710 sgt = ERR_PTR(-ENOMEM); 711 if (IS_ERR(sgt)) { 712 ret = PTR_ERR(sgt); 713 goto err_unlock; 714 } 715 if (dma_buf_is_dynamic(attach->dmabuf)) 716 dma_resv_unlock(attach->dmabuf->resv); 717 attach->sgt = sgt; 718 attach->dir = DMA_BIDIRECTIONAL; 719 } 720 721 return attach; 722 723 err_attach: 724 kfree(attach); 725 return ERR_PTR(ret); 726 727 err_unlock: 728 if (dma_buf_is_dynamic(attach->dmabuf)) 729 dma_resv_unlock(attach->dmabuf->resv); 730 731 dma_buf_detach(dmabuf, attach); 732 return ERR_PTR(ret); 733 } 734 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 735 736 /** 737 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 738 * @dmabuf: [in] buffer to attach device to. 739 * @dev: [in] device to be attached. 740 * 741 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 742 * mapping. 743 */ 744 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 745 struct device *dev) 746 { 747 return dma_buf_dynamic_attach(dmabuf, dev, false); 748 } 749 EXPORT_SYMBOL_GPL(dma_buf_attach); 750 751 /** 752 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 753 * optionally calls detach() of dma_buf_ops for device-specific detach 754 * @dmabuf: [in] buffer to detach from. 755 * @attach: [in] attachment to be detached; is free'd after this call. 756 * 757 * Clean up a device attachment obtained by calling dma_buf_attach(). 758 */ 759 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 760 { 761 if (WARN_ON(!dmabuf || !attach)) 762 return; 763 764 if (attach->sgt) { 765 if (dma_buf_is_dynamic(attach->dmabuf)) 766 dma_resv_lock(attach->dmabuf->resv, NULL); 767 768 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 769 770 if (dma_buf_is_dynamic(attach->dmabuf)) 771 dma_resv_unlock(attach->dmabuf->resv); 772 } 773 774 dma_resv_lock(dmabuf->resv, NULL); 775 list_del(&attach->node); 776 dma_resv_unlock(dmabuf->resv); 777 if (dmabuf->ops->detach) 778 dmabuf->ops->detach(dmabuf, attach); 779 780 kfree(attach); 781 } 782 EXPORT_SYMBOL_GPL(dma_buf_detach); 783 784 /** 785 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 786 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 787 * dma_buf_ops. 788 * @attach: [in] attachment whose scatterlist is to be returned 789 * @direction: [in] direction of DMA transfer 790 * 791 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 792 * on error. May return -EINTR if it is interrupted by a signal. 793 * 794 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 795 * the underlying backing storage is pinned for as long as a mapping exists, 796 * therefore users/importers should not hold onto a mapping for undue amounts of 797 * time. 798 */ 799 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 800 enum dma_data_direction direction) 801 { 802 struct sg_table *sg_table; 803 804 might_sleep(); 805 806 if (WARN_ON(!attach || !attach->dmabuf)) 807 return ERR_PTR(-EINVAL); 808 809 if (dma_buf_attachment_is_dynamic(attach)) 810 dma_resv_assert_held(attach->dmabuf->resv); 811 812 if (attach->sgt) { 813 /* 814 * Two mappings with different directions for the same 815 * attachment are not allowed. 816 */ 817 if (attach->dir != direction && 818 attach->dir != DMA_BIDIRECTIONAL) 819 return ERR_PTR(-EBUSY); 820 821 return attach->sgt; 822 } 823 824 if (dma_buf_is_dynamic(attach->dmabuf)) 825 dma_resv_assert_held(attach->dmabuf->resv); 826 827 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 828 if (!sg_table) 829 sg_table = ERR_PTR(-ENOMEM); 830 831 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 832 attach->sgt = sg_table; 833 attach->dir = direction; 834 } 835 836 return sg_table; 837 } 838 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 839 840 /** 841 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 842 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 843 * dma_buf_ops. 844 * @attach: [in] attachment to unmap buffer from 845 * @sg_table: [in] scatterlist info of the buffer to unmap 846 * @direction: [in] direction of DMA transfer 847 * 848 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 849 */ 850 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 851 struct sg_table *sg_table, 852 enum dma_data_direction direction) 853 { 854 might_sleep(); 855 856 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 857 return; 858 859 if (dma_buf_attachment_is_dynamic(attach)) 860 dma_resv_assert_held(attach->dmabuf->resv); 861 862 if (attach->sgt == sg_table) 863 return; 864 865 if (dma_buf_is_dynamic(attach->dmabuf)) 866 dma_resv_assert_held(attach->dmabuf->resv); 867 868 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 869 } 870 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 871 872 /** 873 * DOC: cpu access 874 * 875 * There are mutliple reasons for supporting CPU access to a dma buffer object: 876 * 877 * - Fallback operations in the kernel, for example when a device is connected 878 * over USB and the kernel needs to shuffle the data around first before 879 * sending it away. Cache coherency is handled by braketing any transactions 880 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 881 * access. 882 * 883 * To support dma_buf objects residing in highmem cpu access is page-based 884 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks 885 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which 886 * returns a pointer in kernel virtual address space. Afterwards the chunk 887 * needs to be unmapped again. There is no limit on how often a given chunk 888 * can be mapped and unmapped, i.e. the importer does not need to call 889 * begin_cpu_access again before mapping the same chunk again. 890 * 891 * Interfaces:: 892 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long); 893 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*); 894 * 895 * Implementing the functions is optional for exporters and for importers all 896 * the restrictions of using kmap apply. 897 * 898 * dma_buf kmap calls outside of the range specified in begin_cpu_access are 899 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on 900 * the partial chunks at the beginning and end but may return stale or bogus 901 * data outside of the range (in these partial chunks). 902 * 903 * For some cases the overhead of kmap can be too high, a vmap interface 904 * is introduced. This interface should be used very carefully, as vmalloc 905 * space is a limited resources on many architectures. 906 * 907 * Interfaces:: 908 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 909 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 910 * 911 * The vmap call can fail if there is no vmap support in the exporter, or if 912 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 913 * that the dma-buf layer keeps a reference count for all vmap access and 914 * calls down into the exporter's vmap function only when no vmapping exists, 915 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 916 * provided by taking the dma_buf->lock mutex. 917 * 918 * - For full compatibility on the importer side with existing userspace 919 * interfaces, which might already support mmap'ing buffers. This is needed in 920 * many processing pipelines (e.g. feeding a software rendered image into a 921 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 922 * framework already supported this and for DMA buffer file descriptors to 923 * replace ION buffers mmap support was needed. 924 * 925 * There is no special interfaces, userspace simply calls mmap on the dma-buf 926 * fd. But like for CPU access there's a need to braket the actual access, 927 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 928 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 929 * be restarted. 930 * 931 * Some systems might need some sort of cache coherency management e.g. when 932 * CPU and GPU domains are being accessed through dma-buf at the same time. 933 * To circumvent this problem there are begin/end coherency markers, that 934 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 935 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 936 * sequence would be used like following: 937 * 938 * - mmap dma-buf fd 939 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 940 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 941 * want (with the new data being consumed by say the GPU or the scanout 942 * device) 943 * - munmap once you don't need the buffer any more 944 * 945 * For correctness and optimal performance, it is always required to use 946 * SYNC_START and SYNC_END before and after, respectively, when accessing the 947 * mapped address. Userspace cannot rely on coherent access, even when there 948 * are systems where it just works without calling these ioctls. 949 * 950 * - And as a CPU fallback in userspace processing pipelines. 951 * 952 * Similar to the motivation for kernel cpu access it is again important that 953 * the userspace code of a given importing subsystem can use the same 954 * interfaces with a imported dma-buf buffer object as with a native buffer 955 * object. This is especially important for drm where the userspace part of 956 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 957 * use a different way to mmap a buffer rather invasive. 958 * 959 * The assumption in the current dma-buf interfaces is that redirecting the 960 * initial mmap is all that's needed. A survey of some of the existing 961 * subsystems shows that no driver seems to do any nefarious thing like 962 * syncing up with outstanding asynchronous processing on the device or 963 * allocating special resources at fault time. So hopefully this is good 964 * enough, since adding interfaces to intercept pagefaults and allow pte 965 * shootdowns would increase the complexity quite a bit. 966 * 967 * Interface:: 968 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 969 * unsigned long); 970 * 971 * If the importing subsystem simply provides a special-purpose mmap call to 972 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 973 * equally achieve that for a dma-buf object. 974 */ 975 976 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 977 enum dma_data_direction direction) 978 { 979 bool write = (direction == DMA_BIDIRECTIONAL || 980 direction == DMA_TO_DEVICE); 981 struct dma_resv *resv = dmabuf->resv; 982 long ret; 983 984 /* Wait on any implicit rendering fences */ 985 ret = dma_resv_wait_timeout_rcu(resv, write, true, 986 MAX_SCHEDULE_TIMEOUT); 987 if (ret < 0) 988 return ret; 989 990 return 0; 991 } 992 993 /** 994 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 995 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 996 * preparations. Coherency is only guaranteed in the specified range for the 997 * specified access direction. 998 * @dmabuf: [in] buffer to prepare cpu access for. 999 * @direction: [in] length of range for cpu access. 1000 * 1001 * After the cpu access is complete the caller should call 1002 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1003 * it guaranteed to be coherent with other DMA access. 1004 * 1005 * Can return negative error values, returns 0 on success. 1006 */ 1007 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1008 enum dma_data_direction direction) 1009 { 1010 int ret = 0; 1011 1012 if (WARN_ON(!dmabuf)) 1013 return -EINVAL; 1014 1015 if (dmabuf->ops->begin_cpu_access) 1016 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1017 1018 /* Ensure that all fences are waited upon - but we first allow 1019 * the native handler the chance to do so more efficiently if it 1020 * chooses. A double invocation here will be reasonably cheap no-op. 1021 */ 1022 if (ret == 0) 1023 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1024 1025 return ret; 1026 } 1027 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1028 1029 /** 1030 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1031 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1032 * actions. Coherency is only guaranteed in the specified range for the 1033 * specified access direction. 1034 * @dmabuf: [in] buffer to complete cpu access for. 1035 * @direction: [in] length of range for cpu access. 1036 * 1037 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1038 * 1039 * Can return negative error values, returns 0 on success. 1040 */ 1041 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1042 enum dma_data_direction direction) 1043 { 1044 int ret = 0; 1045 1046 WARN_ON(!dmabuf); 1047 1048 if (dmabuf->ops->end_cpu_access) 1049 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1050 1051 return ret; 1052 } 1053 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1054 1055 /** 1056 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The 1057 * same restrictions as for kmap and friends apply. 1058 * @dmabuf: [in] buffer to map page from. 1059 * @page_num: [in] page in PAGE_SIZE units to map. 1060 * 1061 * This call must always succeed, any necessary preparations that might fail 1062 * need to be done in begin_cpu_access. 1063 */ 1064 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num) 1065 { 1066 WARN_ON(!dmabuf); 1067 1068 if (!dmabuf->ops->map) 1069 return NULL; 1070 return dmabuf->ops->map(dmabuf, page_num); 1071 } 1072 EXPORT_SYMBOL_GPL(dma_buf_kmap); 1073 1074 /** 1075 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap. 1076 * @dmabuf: [in] buffer to unmap page from. 1077 * @page_num: [in] page in PAGE_SIZE units to unmap. 1078 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap. 1079 * 1080 * This call must always succeed. 1081 */ 1082 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num, 1083 void *vaddr) 1084 { 1085 WARN_ON(!dmabuf); 1086 1087 if (dmabuf->ops->unmap) 1088 dmabuf->ops->unmap(dmabuf, page_num, vaddr); 1089 } 1090 EXPORT_SYMBOL_GPL(dma_buf_kunmap); 1091 1092 1093 /** 1094 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1095 * @dmabuf: [in] buffer that should back the vma 1096 * @vma: [in] vma for the mmap 1097 * @pgoff: [in] offset in pages where this mmap should start within the 1098 * dma-buf buffer. 1099 * 1100 * This function adjusts the passed in vma so that it points at the file of the 1101 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1102 * checking on the size of the vma. Then it calls the exporters mmap function to 1103 * set up the mapping. 1104 * 1105 * Can return negative error values, returns 0 on success. 1106 */ 1107 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1108 unsigned long pgoff) 1109 { 1110 struct file *oldfile; 1111 int ret; 1112 1113 if (WARN_ON(!dmabuf || !vma)) 1114 return -EINVAL; 1115 1116 /* check if buffer supports mmap */ 1117 if (!dmabuf->ops->mmap) 1118 return -EINVAL; 1119 1120 /* check for offset overflow */ 1121 if (pgoff + vma_pages(vma) < pgoff) 1122 return -EOVERFLOW; 1123 1124 /* check for overflowing the buffer's size */ 1125 if (pgoff + vma_pages(vma) > 1126 dmabuf->size >> PAGE_SHIFT) 1127 return -EINVAL; 1128 1129 /* readjust the vma */ 1130 get_file(dmabuf->file); 1131 oldfile = vma->vm_file; 1132 vma->vm_file = dmabuf->file; 1133 vma->vm_pgoff = pgoff; 1134 1135 ret = dmabuf->ops->mmap(dmabuf, vma); 1136 if (ret) { 1137 /* restore old parameters on failure */ 1138 vma->vm_file = oldfile; 1139 fput(dmabuf->file); 1140 } else { 1141 if (oldfile) 1142 fput(oldfile); 1143 } 1144 return ret; 1145 1146 } 1147 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1148 1149 /** 1150 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1151 * address space. Same restrictions as for vmap and friends apply. 1152 * @dmabuf: [in] buffer to vmap 1153 * 1154 * This call may fail due to lack of virtual mapping address space. 1155 * These calls are optional in drivers. The intended use for them 1156 * is for mapping objects linear in kernel space for high use objects. 1157 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1158 * 1159 * Returns NULL on error. 1160 */ 1161 void *dma_buf_vmap(struct dma_buf *dmabuf) 1162 { 1163 void *ptr; 1164 1165 if (WARN_ON(!dmabuf)) 1166 return NULL; 1167 1168 if (!dmabuf->ops->vmap) 1169 return NULL; 1170 1171 mutex_lock(&dmabuf->lock); 1172 if (dmabuf->vmapping_counter) { 1173 dmabuf->vmapping_counter++; 1174 BUG_ON(!dmabuf->vmap_ptr); 1175 ptr = dmabuf->vmap_ptr; 1176 goto out_unlock; 1177 } 1178 1179 BUG_ON(dmabuf->vmap_ptr); 1180 1181 ptr = dmabuf->ops->vmap(dmabuf); 1182 if (WARN_ON_ONCE(IS_ERR(ptr))) 1183 ptr = NULL; 1184 if (!ptr) 1185 goto out_unlock; 1186 1187 dmabuf->vmap_ptr = ptr; 1188 dmabuf->vmapping_counter = 1; 1189 1190 out_unlock: 1191 mutex_unlock(&dmabuf->lock); 1192 return ptr; 1193 } 1194 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1195 1196 /** 1197 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1198 * @dmabuf: [in] buffer to vunmap 1199 * @vaddr: [in] vmap to vunmap 1200 */ 1201 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1202 { 1203 if (WARN_ON(!dmabuf)) 1204 return; 1205 1206 BUG_ON(!dmabuf->vmap_ptr); 1207 BUG_ON(dmabuf->vmapping_counter == 0); 1208 BUG_ON(dmabuf->vmap_ptr != vaddr); 1209 1210 mutex_lock(&dmabuf->lock); 1211 if (--dmabuf->vmapping_counter == 0) { 1212 if (dmabuf->ops->vunmap) 1213 dmabuf->ops->vunmap(dmabuf, vaddr); 1214 dmabuf->vmap_ptr = NULL; 1215 } 1216 mutex_unlock(&dmabuf->lock); 1217 } 1218 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1219 1220 #ifdef CONFIG_DEBUG_FS 1221 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1222 { 1223 int ret; 1224 struct dma_buf *buf_obj; 1225 struct dma_buf_attachment *attach_obj; 1226 struct dma_resv *robj; 1227 struct dma_resv_list *fobj; 1228 struct dma_fence *fence; 1229 unsigned seq; 1230 int count = 0, attach_count, shared_count, i; 1231 size_t size = 0; 1232 1233 ret = mutex_lock_interruptible(&db_list.lock); 1234 1235 if (ret) 1236 return ret; 1237 1238 seq_puts(s, "\nDma-buf Objects:\n"); 1239 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1240 "size", "flags", "mode", "count", "ino"); 1241 1242 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1243 1244 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1245 if (ret) 1246 goto error_unlock; 1247 1248 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1249 buf_obj->size, 1250 buf_obj->file->f_flags, buf_obj->file->f_mode, 1251 file_count(buf_obj->file), 1252 buf_obj->exp_name, 1253 file_inode(buf_obj->file)->i_ino, 1254 buf_obj->name ?: ""); 1255 1256 robj = buf_obj->resv; 1257 while (true) { 1258 seq = read_seqcount_begin(&robj->seq); 1259 rcu_read_lock(); 1260 fobj = rcu_dereference(robj->fence); 1261 shared_count = fobj ? fobj->shared_count : 0; 1262 fence = rcu_dereference(robj->fence_excl); 1263 if (!read_seqcount_retry(&robj->seq, seq)) 1264 break; 1265 rcu_read_unlock(); 1266 } 1267 1268 if (fence) 1269 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1270 fence->ops->get_driver_name(fence), 1271 fence->ops->get_timeline_name(fence), 1272 dma_fence_is_signaled(fence) ? "" : "un"); 1273 for (i = 0; i < shared_count; i++) { 1274 fence = rcu_dereference(fobj->shared[i]); 1275 if (!dma_fence_get_rcu(fence)) 1276 continue; 1277 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1278 fence->ops->get_driver_name(fence), 1279 fence->ops->get_timeline_name(fence), 1280 dma_fence_is_signaled(fence) ? "" : "un"); 1281 dma_fence_put(fence); 1282 } 1283 rcu_read_unlock(); 1284 1285 seq_puts(s, "\tAttached Devices:\n"); 1286 attach_count = 0; 1287 1288 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1289 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1290 attach_count++; 1291 } 1292 dma_resv_unlock(buf_obj->resv); 1293 1294 seq_printf(s, "Total %d devices attached\n\n", 1295 attach_count); 1296 1297 count++; 1298 size += buf_obj->size; 1299 } 1300 1301 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1302 1303 mutex_unlock(&db_list.lock); 1304 return 0; 1305 1306 error_unlock: 1307 mutex_unlock(&db_list.lock); 1308 return ret; 1309 } 1310 1311 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1312 1313 static struct dentry *dma_buf_debugfs_dir; 1314 1315 static int dma_buf_init_debugfs(void) 1316 { 1317 struct dentry *d; 1318 int err = 0; 1319 1320 d = debugfs_create_dir("dma_buf", NULL); 1321 if (IS_ERR(d)) 1322 return PTR_ERR(d); 1323 1324 dma_buf_debugfs_dir = d; 1325 1326 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1327 NULL, &dma_buf_debug_fops); 1328 if (IS_ERR(d)) { 1329 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1330 debugfs_remove_recursive(dma_buf_debugfs_dir); 1331 dma_buf_debugfs_dir = NULL; 1332 err = PTR_ERR(d); 1333 } 1334 1335 return err; 1336 } 1337 1338 static void dma_buf_uninit_debugfs(void) 1339 { 1340 debugfs_remove_recursive(dma_buf_debugfs_dir); 1341 } 1342 #else 1343 static inline int dma_buf_init_debugfs(void) 1344 { 1345 return 0; 1346 } 1347 static inline void dma_buf_uninit_debugfs(void) 1348 { 1349 } 1350 #endif 1351 1352 static int __init dma_buf_init(void) 1353 { 1354 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1355 if (IS_ERR(dma_buf_mnt)) 1356 return PTR_ERR(dma_buf_mnt); 1357 1358 mutex_init(&db_list.lock); 1359 INIT_LIST_HEAD(&db_list.head); 1360 dma_buf_init_debugfs(); 1361 return 0; 1362 } 1363 subsys_initcall(dma_buf_init); 1364 1365 static void __exit dma_buf_deinit(void) 1366 { 1367 dma_buf_uninit_debugfs(); 1368 kern_unmount(dma_buf_mnt); 1369 } 1370 __exitcall(dma_buf_deinit); 1371