1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 #include "dma-buf-sysfs-stats.h" 33 34 static inline int is_dma_buf_file(struct file *); 35 36 struct dma_buf_list { 37 struct list_head head; 38 struct mutex lock; 39 }; 40 41 static struct dma_buf_list db_list; 42 43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 44 { 45 struct dma_buf *dmabuf; 46 char name[DMA_BUF_NAME_LEN]; 47 size_t ret = 0; 48 49 dmabuf = dentry->d_fsdata; 50 spin_lock(&dmabuf->name_lock); 51 if (dmabuf->name) 52 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 53 spin_unlock(&dmabuf->name_lock); 54 55 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 56 dentry->d_name.name, ret > 0 ? name : ""); 57 } 58 59 static void dma_buf_release(struct dentry *dentry) 60 { 61 struct dma_buf *dmabuf; 62 63 dmabuf = dentry->d_fsdata; 64 if (unlikely(!dmabuf)) 65 return; 66 67 BUG_ON(dmabuf->vmapping_counter); 68 69 /* 70 * Any fences that a dma-buf poll can wait on should be signaled 71 * before releasing dma-buf. This is the responsibility of each 72 * driver that uses the reservation objects. 73 * 74 * If you hit this BUG() it means someone dropped their ref to the 75 * dma-buf while still having pending operation to the buffer. 76 */ 77 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 78 79 dma_buf_stats_teardown(dmabuf); 80 dmabuf->ops->release(dmabuf); 81 82 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 83 dma_resv_fini(dmabuf->resv); 84 85 WARN_ON(!list_empty(&dmabuf->attachments)); 86 module_put(dmabuf->owner); 87 kfree(dmabuf->name); 88 kfree(dmabuf); 89 } 90 91 static int dma_buf_file_release(struct inode *inode, struct file *file) 92 { 93 struct dma_buf *dmabuf; 94 95 if (!is_dma_buf_file(file)) 96 return -EINVAL; 97 98 dmabuf = file->private_data; 99 100 mutex_lock(&db_list.lock); 101 list_del(&dmabuf->list_node); 102 mutex_unlock(&db_list.lock); 103 104 return 0; 105 } 106 107 static const struct dentry_operations dma_buf_dentry_ops = { 108 .d_dname = dmabuffs_dname, 109 .d_release = dma_buf_release, 110 }; 111 112 static struct vfsmount *dma_buf_mnt; 113 114 static int dma_buf_fs_init_context(struct fs_context *fc) 115 { 116 struct pseudo_fs_context *ctx; 117 118 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 119 if (!ctx) 120 return -ENOMEM; 121 ctx->dops = &dma_buf_dentry_ops; 122 return 0; 123 } 124 125 static struct file_system_type dma_buf_fs_type = { 126 .name = "dmabuf", 127 .init_fs_context = dma_buf_fs_init_context, 128 .kill_sb = kill_anon_super, 129 }; 130 131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 132 { 133 struct dma_buf *dmabuf; 134 135 if (!is_dma_buf_file(file)) 136 return -EINVAL; 137 138 dmabuf = file->private_data; 139 140 /* check if buffer supports mmap */ 141 if (!dmabuf->ops->mmap) 142 return -EINVAL; 143 144 /* check for overflowing the buffer's size */ 145 if (vma->vm_pgoff + vma_pages(vma) > 146 dmabuf->size >> PAGE_SHIFT) 147 return -EINVAL; 148 149 return dmabuf->ops->mmap(dmabuf, vma); 150 } 151 152 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 153 { 154 struct dma_buf *dmabuf; 155 loff_t base; 156 157 if (!is_dma_buf_file(file)) 158 return -EBADF; 159 160 dmabuf = file->private_data; 161 162 /* only support discovering the end of the buffer, 163 but also allow SEEK_SET to maintain the idiomatic 164 SEEK_END(0), SEEK_CUR(0) pattern */ 165 if (whence == SEEK_END) 166 base = dmabuf->size; 167 else if (whence == SEEK_SET) 168 base = 0; 169 else 170 return -EINVAL; 171 172 if (offset != 0) 173 return -EINVAL; 174 175 return base + offset; 176 } 177 178 /** 179 * DOC: implicit fence polling 180 * 181 * To support cross-device and cross-driver synchronization of buffer access 182 * implicit fences (represented internally in the kernel with &struct dma_fence) 183 * can be attached to a &dma_buf. The glue for that and a few related things are 184 * provided in the &dma_resv structure. 185 * 186 * Userspace can query the state of these implicitly tracked fences using poll() 187 * and related system calls: 188 * 189 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 190 * most recent write or exclusive fence. 191 * 192 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 193 * all attached fences, shared and exclusive ones. 194 * 195 * Note that this only signals the completion of the respective fences, i.e. the 196 * DMA transfers are complete. Cache flushing and any other necessary 197 * preparations before CPU access can begin still need to happen. 198 */ 199 200 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 201 { 202 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 203 unsigned long flags; 204 205 spin_lock_irqsave(&dcb->poll->lock, flags); 206 wake_up_locked_poll(dcb->poll, dcb->active); 207 dcb->active = 0; 208 spin_unlock_irqrestore(&dcb->poll->lock, flags); 209 dma_fence_put(fence); 210 } 211 212 static bool dma_buf_poll_shared(struct dma_resv *resv, 213 struct dma_buf_poll_cb_t *dcb) 214 { 215 struct dma_resv_list *fobj = dma_resv_shared_list(resv); 216 struct dma_fence *fence; 217 int i, r; 218 219 if (!fobj) 220 return false; 221 222 for (i = 0; i < fobj->shared_count; ++i) { 223 fence = rcu_dereference_protected(fobj->shared[i], 224 dma_resv_held(resv)); 225 dma_fence_get(fence); 226 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 227 if (!r) 228 return true; 229 dma_fence_put(fence); 230 } 231 232 return false; 233 } 234 235 static bool dma_buf_poll_excl(struct dma_resv *resv, 236 struct dma_buf_poll_cb_t *dcb) 237 { 238 struct dma_fence *fence = dma_resv_excl_fence(resv); 239 int r; 240 241 if (!fence) 242 return false; 243 244 dma_fence_get(fence); 245 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 246 if (!r) 247 return true; 248 dma_fence_put(fence); 249 250 return false; 251 } 252 253 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 254 { 255 struct dma_buf *dmabuf; 256 struct dma_resv *resv; 257 __poll_t events; 258 259 dmabuf = file->private_data; 260 if (!dmabuf || !dmabuf->resv) 261 return EPOLLERR; 262 263 resv = dmabuf->resv; 264 265 poll_wait(file, &dmabuf->poll, poll); 266 267 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 268 if (!events) 269 return 0; 270 271 dma_resv_lock(resv, NULL); 272 273 if (events & EPOLLOUT) { 274 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 275 276 /* Check that callback isn't busy */ 277 spin_lock_irq(&dmabuf->poll.lock); 278 if (dcb->active) 279 events &= ~EPOLLOUT; 280 else 281 dcb->active = EPOLLOUT; 282 spin_unlock_irq(&dmabuf->poll.lock); 283 284 if (events & EPOLLOUT) { 285 if (!dma_buf_poll_shared(resv, dcb) && 286 !dma_buf_poll_excl(resv, dcb)) 287 /* No callback queued, wake up any other waiters */ 288 dma_buf_poll_cb(NULL, &dcb->cb); 289 else 290 events &= ~EPOLLOUT; 291 } 292 } 293 294 if (events & EPOLLIN) { 295 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 296 297 /* Check that callback isn't busy */ 298 spin_lock_irq(&dmabuf->poll.lock); 299 if (dcb->active) 300 events &= ~EPOLLIN; 301 else 302 dcb->active = EPOLLIN; 303 spin_unlock_irq(&dmabuf->poll.lock); 304 305 if (events & EPOLLIN) { 306 if (!dma_buf_poll_excl(resv, dcb)) 307 /* No callback queued, wake up any other waiters */ 308 dma_buf_poll_cb(NULL, &dcb->cb); 309 else 310 events &= ~EPOLLIN; 311 } 312 } 313 314 dma_resv_unlock(resv); 315 return events; 316 } 317 318 /** 319 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 320 * The name of the dma-buf buffer can only be set when the dma-buf is not 321 * attached to any devices. It could theoritically support changing the 322 * name of the dma-buf if the same piece of memory is used for multiple 323 * purpose between different devices. 324 * 325 * @dmabuf: [in] dmabuf buffer that will be renamed. 326 * @buf: [in] A piece of userspace memory that contains the name of 327 * the dma-buf. 328 * 329 * Returns 0 on success. If the dma-buf buffer is already attached to 330 * devices, return -EBUSY. 331 * 332 */ 333 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 334 { 335 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 336 long ret = 0; 337 338 if (IS_ERR(name)) 339 return PTR_ERR(name); 340 341 dma_resv_lock(dmabuf->resv, NULL); 342 if (!list_empty(&dmabuf->attachments)) { 343 ret = -EBUSY; 344 kfree(name); 345 goto out_unlock; 346 } 347 spin_lock(&dmabuf->name_lock); 348 kfree(dmabuf->name); 349 dmabuf->name = name; 350 spin_unlock(&dmabuf->name_lock); 351 352 out_unlock: 353 dma_resv_unlock(dmabuf->resv); 354 return ret; 355 } 356 357 static long dma_buf_ioctl(struct file *file, 358 unsigned int cmd, unsigned long arg) 359 { 360 struct dma_buf *dmabuf; 361 struct dma_buf_sync sync; 362 enum dma_data_direction direction; 363 int ret; 364 365 dmabuf = file->private_data; 366 367 switch (cmd) { 368 case DMA_BUF_IOCTL_SYNC: 369 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 370 return -EFAULT; 371 372 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 373 return -EINVAL; 374 375 switch (sync.flags & DMA_BUF_SYNC_RW) { 376 case DMA_BUF_SYNC_READ: 377 direction = DMA_FROM_DEVICE; 378 break; 379 case DMA_BUF_SYNC_WRITE: 380 direction = DMA_TO_DEVICE; 381 break; 382 case DMA_BUF_SYNC_RW: 383 direction = DMA_BIDIRECTIONAL; 384 break; 385 default: 386 return -EINVAL; 387 } 388 389 if (sync.flags & DMA_BUF_SYNC_END) 390 ret = dma_buf_end_cpu_access(dmabuf, direction); 391 else 392 ret = dma_buf_begin_cpu_access(dmabuf, direction); 393 394 return ret; 395 396 case DMA_BUF_SET_NAME_A: 397 case DMA_BUF_SET_NAME_B: 398 return dma_buf_set_name(dmabuf, (const char __user *)arg); 399 400 default: 401 return -ENOTTY; 402 } 403 } 404 405 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 406 { 407 struct dma_buf *dmabuf = file->private_data; 408 409 seq_printf(m, "size:\t%zu\n", dmabuf->size); 410 /* Don't count the temporary reference taken inside procfs seq_show */ 411 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 412 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 413 spin_lock(&dmabuf->name_lock); 414 if (dmabuf->name) 415 seq_printf(m, "name:\t%s\n", dmabuf->name); 416 spin_unlock(&dmabuf->name_lock); 417 } 418 419 static const struct file_operations dma_buf_fops = { 420 .release = dma_buf_file_release, 421 .mmap = dma_buf_mmap_internal, 422 .llseek = dma_buf_llseek, 423 .poll = dma_buf_poll, 424 .unlocked_ioctl = dma_buf_ioctl, 425 .compat_ioctl = compat_ptr_ioctl, 426 .show_fdinfo = dma_buf_show_fdinfo, 427 }; 428 429 /* 430 * is_dma_buf_file - Check if struct file* is associated with dma_buf 431 */ 432 static inline int is_dma_buf_file(struct file *file) 433 { 434 return file->f_op == &dma_buf_fops; 435 } 436 437 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 438 { 439 struct file *file; 440 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 441 442 if (IS_ERR(inode)) 443 return ERR_CAST(inode); 444 445 inode->i_size = dmabuf->size; 446 inode_set_bytes(inode, dmabuf->size); 447 448 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 449 flags, &dma_buf_fops); 450 if (IS_ERR(file)) 451 goto err_alloc_file; 452 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 453 file->private_data = dmabuf; 454 file->f_path.dentry->d_fsdata = dmabuf; 455 456 return file; 457 458 err_alloc_file: 459 iput(inode); 460 return file; 461 } 462 463 /** 464 * DOC: dma buf device access 465 * 466 * For device DMA access to a shared DMA buffer the usual sequence of operations 467 * is fairly simple: 468 * 469 * 1. The exporter defines his exporter instance using 470 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 471 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 472 * as a file descriptor by calling dma_buf_fd(). 473 * 474 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 475 * to share with: First the filedescriptor is converted to a &dma_buf using 476 * dma_buf_get(). Then the buffer is attached to the device using 477 * dma_buf_attach(). 478 * 479 * Up to this stage the exporter is still free to migrate or reallocate the 480 * backing storage. 481 * 482 * 3. Once the buffer is attached to all devices userspace can initiate DMA 483 * access to the shared buffer. In the kernel this is done by calling 484 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 485 * 486 * 4. Once a driver is done with a shared buffer it needs to call 487 * dma_buf_detach() (after cleaning up any mappings) and then release the 488 * reference acquired with dma_buf_get() by calling dma_buf_put(). 489 * 490 * For the detailed semantics exporters are expected to implement see 491 * &dma_buf_ops. 492 */ 493 494 /** 495 * dma_buf_export - Creates a new dma_buf, and associates an anon file 496 * with this buffer, so it can be exported. 497 * Also connect the allocator specific data and ops to the buffer. 498 * Additionally, provide a name string for exporter; useful in debugging. 499 * 500 * @exp_info: [in] holds all the export related information provided 501 * by the exporter. see &struct dma_buf_export_info 502 * for further details. 503 * 504 * Returns, on success, a newly created struct dma_buf object, which wraps the 505 * supplied private data and operations for struct dma_buf_ops. On either 506 * missing ops, or error in allocating struct dma_buf, will return negative 507 * error. 508 * 509 * For most cases the easiest way to create @exp_info is through the 510 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 511 */ 512 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 513 { 514 struct dma_buf *dmabuf; 515 struct dma_resv *resv = exp_info->resv; 516 struct file *file; 517 size_t alloc_size = sizeof(struct dma_buf); 518 int ret; 519 520 if (!exp_info->resv) 521 alloc_size += sizeof(struct dma_resv); 522 else 523 /* prevent &dma_buf[1] == dma_buf->resv */ 524 alloc_size += 1; 525 526 if (WARN_ON(!exp_info->priv 527 || !exp_info->ops 528 || !exp_info->ops->map_dma_buf 529 || !exp_info->ops->unmap_dma_buf 530 || !exp_info->ops->release)) { 531 return ERR_PTR(-EINVAL); 532 } 533 534 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 535 (exp_info->ops->pin || exp_info->ops->unpin))) 536 return ERR_PTR(-EINVAL); 537 538 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 539 return ERR_PTR(-EINVAL); 540 541 if (!try_module_get(exp_info->owner)) 542 return ERR_PTR(-ENOENT); 543 544 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 545 if (!dmabuf) { 546 ret = -ENOMEM; 547 goto err_module; 548 } 549 550 dmabuf->priv = exp_info->priv; 551 dmabuf->ops = exp_info->ops; 552 dmabuf->size = exp_info->size; 553 dmabuf->exp_name = exp_info->exp_name; 554 dmabuf->owner = exp_info->owner; 555 spin_lock_init(&dmabuf->name_lock); 556 init_waitqueue_head(&dmabuf->poll); 557 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 558 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 559 560 if (!resv) { 561 resv = (struct dma_resv *)&dmabuf[1]; 562 dma_resv_init(resv); 563 } 564 dmabuf->resv = resv; 565 566 file = dma_buf_getfile(dmabuf, exp_info->flags); 567 if (IS_ERR(file)) { 568 ret = PTR_ERR(file); 569 goto err_dmabuf; 570 } 571 572 file->f_mode |= FMODE_LSEEK; 573 dmabuf->file = file; 574 575 ret = dma_buf_stats_setup(dmabuf); 576 if (ret) 577 goto err_sysfs; 578 579 mutex_init(&dmabuf->lock); 580 INIT_LIST_HEAD(&dmabuf->attachments); 581 582 mutex_lock(&db_list.lock); 583 list_add(&dmabuf->list_node, &db_list.head); 584 mutex_unlock(&db_list.lock); 585 586 return dmabuf; 587 588 err_sysfs: 589 /* 590 * Set file->f_path.dentry->d_fsdata to NULL so that when 591 * dma_buf_release() gets invoked by dentry_ops, it exits 592 * early before calling the release() dma_buf op. 593 */ 594 file->f_path.dentry->d_fsdata = NULL; 595 fput(file); 596 err_dmabuf: 597 kfree(dmabuf); 598 err_module: 599 module_put(exp_info->owner); 600 return ERR_PTR(ret); 601 } 602 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 603 604 /** 605 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 606 * @dmabuf: [in] pointer to dma_buf for which fd is required. 607 * @flags: [in] flags to give to fd 608 * 609 * On success, returns an associated 'fd'. Else, returns error. 610 */ 611 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 612 { 613 int fd; 614 615 if (!dmabuf || !dmabuf->file) 616 return -EINVAL; 617 618 fd = get_unused_fd_flags(flags); 619 if (fd < 0) 620 return fd; 621 622 fd_install(fd, dmabuf->file); 623 624 return fd; 625 } 626 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 627 628 /** 629 * dma_buf_get - returns the struct dma_buf related to an fd 630 * @fd: [in] fd associated with the struct dma_buf to be returned 631 * 632 * On success, returns the struct dma_buf associated with an fd; uses 633 * file's refcounting done by fget to increase refcount. returns ERR_PTR 634 * otherwise. 635 */ 636 struct dma_buf *dma_buf_get(int fd) 637 { 638 struct file *file; 639 640 file = fget(fd); 641 642 if (!file) 643 return ERR_PTR(-EBADF); 644 645 if (!is_dma_buf_file(file)) { 646 fput(file); 647 return ERR_PTR(-EINVAL); 648 } 649 650 return file->private_data; 651 } 652 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 653 654 /** 655 * dma_buf_put - decreases refcount of the buffer 656 * @dmabuf: [in] buffer to reduce refcount of 657 * 658 * Uses file's refcounting done implicitly by fput(). 659 * 660 * If, as a result of this call, the refcount becomes 0, the 'release' file 661 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 662 * in turn, and frees the memory allocated for dmabuf when exported. 663 */ 664 void dma_buf_put(struct dma_buf *dmabuf) 665 { 666 if (WARN_ON(!dmabuf || !dmabuf->file)) 667 return; 668 669 fput(dmabuf->file); 670 } 671 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 672 673 static void mangle_sg_table(struct sg_table *sg_table) 674 { 675 #ifdef CONFIG_DMABUF_DEBUG 676 int i; 677 struct scatterlist *sg; 678 679 /* To catch abuse of the underlying struct page by importers mix 680 * up the bits, but take care to preserve the low SG_ bits to 681 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 682 * before passing the sgt back to the exporter. */ 683 for_each_sgtable_sg(sg_table, sg, i) 684 sg->page_link ^= ~0xffUL; 685 #endif 686 687 } 688 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 689 enum dma_data_direction direction) 690 { 691 struct sg_table *sg_table; 692 693 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 694 695 if (!IS_ERR_OR_NULL(sg_table)) 696 mangle_sg_table(sg_table); 697 698 return sg_table; 699 } 700 701 /** 702 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 703 * @dmabuf: [in] buffer to attach device to. 704 * @dev: [in] device to be attached. 705 * @importer_ops: [in] importer operations for the attachment 706 * @importer_priv: [in] importer private pointer for the attachment 707 * 708 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 709 * must be cleaned up by calling dma_buf_detach(). 710 * 711 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 712 * functionality. 713 * 714 * Returns: 715 * 716 * A pointer to newly created &dma_buf_attachment on success, or a negative 717 * error code wrapped into a pointer on failure. 718 * 719 * Note that this can fail if the backing storage of @dmabuf is in a place not 720 * accessible to @dev, and cannot be moved to a more suitable place. This is 721 * indicated with the error code -EBUSY. 722 */ 723 struct dma_buf_attachment * 724 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 725 const struct dma_buf_attach_ops *importer_ops, 726 void *importer_priv) 727 { 728 struct dma_buf_attachment *attach; 729 int ret; 730 731 if (WARN_ON(!dmabuf || !dev)) 732 return ERR_PTR(-EINVAL); 733 734 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 735 return ERR_PTR(-EINVAL); 736 737 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 738 if (!attach) 739 return ERR_PTR(-ENOMEM); 740 741 attach->dev = dev; 742 attach->dmabuf = dmabuf; 743 if (importer_ops) 744 attach->peer2peer = importer_ops->allow_peer2peer; 745 attach->importer_ops = importer_ops; 746 attach->importer_priv = importer_priv; 747 748 if (dmabuf->ops->attach) { 749 ret = dmabuf->ops->attach(dmabuf, attach); 750 if (ret) 751 goto err_attach; 752 } 753 dma_resv_lock(dmabuf->resv, NULL); 754 list_add(&attach->node, &dmabuf->attachments); 755 dma_resv_unlock(dmabuf->resv); 756 757 /* When either the importer or the exporter can't handle dynamic 758 * mappings we cache the mapping here to avoid issues with the 759 * reservation object lock. 760 */ 761 if (dma_buf_attachment_is_dynamic(attach) != 762 dma_buf_is_dynamic(dmabuf)) { 763 struct sg_table *sgt; 764 765 if (dma_buf_is_dynamic(attach->dmabuf)) { 766 dma_resv_lock(attach->dmabuf->resv, NULL); 767 ret = dmabuf->ops->pin(attach); 768 if (ret) 769 goto err_unlock; 770 } 771 772 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 773 if (!sgt) 774 sgt = ERR_PTR(-ENOMEM); 775 if (IS_ERR(sgt)) { 776 ret = PTR_ERR(sgt); 777 goto err_unpin; 778 } 779 if (dma_buf_is_dynamic(attach->dmabuf)) 780 dma_resv_unlock(attach->dmabuf->resv); 781 attach->sgt = sgt; 782 attach->dir = DMA_BIDIRECTIONAL; 783 } 784 785 return attach; 786 787 err_attach: 788 kfree(attach); 789 return ERR_PTR(ret); 790 791 err_unpin: 792 if (dma_buf_is_dynamic(attach->dmabuf)) 793 dmabuf->ops->unpin(attach); 794 795 err_unlock: 796 if (dma_buf_is_dynamic(attach->dmabuf)) 797 dma_resv_unlock(attach->dmabuf->resv); 798 799 dma_buf_detach(dmabuf, attach); 800 return ERR_PTR(ret); 801 } 802 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 803 804 /** 805 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 806 * @dmabuf: [in] buffer to attach device to. 807 * @dev: [in] device to be attached. 808 * 809 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 810 * mapping. 811 */ 812 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 813 struct device *dev) 814 { 815 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 816 } 817 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 818 819 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 820 struct sg_table *sg_table, 821 enum dma_data_direction direction) 822 { 823 /* uses XOR, hence this unmangles */ 824 mangle_sg_table(sg_table); 825 826 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 827 } 828 829 /** 830 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 831 * @dmabuf: [in] buffer to detach from. 832 * @attach: [in] attachment to be detached; is free'd after this call. 833 * 834 * Clean up a device attachment obtained by calling dma_buf_attach(). 835 * 836 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 837 */ 838 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 839 { 840 if (WARN_ON(!dmabuf || !attach)) 841 return; 842 843 if (attach->sgt) { 844 if (dma_buf_is_dynamic(attach->dmabuf)) 845 dma_resv_lock(attach->dmabuf->resv, NULL); 846 847 __unmap_dma_buf(attach, attach->sgt, attach->dir); 848 849 if (dma_buf_is_dynamic(attach->dmabuf)) { 850 dmabuf->ops->unpin(attach); 851 dma_resv_unlock(attach->dmabuf->resv); 852 } 853 } 854 855 dma_resv_lock(dmabuf->resv, NULL); 856 list_del(&attach->node); 857 dma_resv_unlock(dmabuf->resv); 858 if (dmabuf->ops->detach) 859 dmabuf->ops->detach(dmabuf, attach); 860 861 kfree(attach); 862 } 863 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 864 865 /** 866 * dma_buf_pin - Lock down the DMA-buf 867 * @attach: [in] attachment which should be pinned 868 * 869 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 870 * call this, and only for limited use cases like scanout and not for temporary 871 * pin operations. It is not permitted to allow userspace to pin arbitrary 872 * amounts of buffers through this interface. 873 * 874 * Buffers must be unpinned by calling dma_buf_unpin(). 875 * 876 * Returns: 877 * 0 on success, negative error code on failure. 878 */ 879 int dma_buf_pin(struct dma_buf_attachment *attach) 880 { 881 struct dma_buf *dmabuf = attach->dmabuf; 882 int ret = 0; 883 884 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 885 886 dma_resv_assert_held(dmabuf->resv); 887 888 if (dmabuf->ops->pin) 889 ret = dmabuf->ops->pin(attach); 890 891 return ret; 892 } 893 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 894 895 /** 896 * dma_buf_unpin - Unpin a DMA-buf 897 * @attach: [in] attachment which should be unpinned 898 * 899 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 900 * any mapping of @attach again and inform the importer through 901 * &dma_buf_attach_ops.move_notify. 902 */ 903 void dma_buf_unpin(struct dma_buf_attachment *attach) 904 { 905 struct dma_buf *dmabuf = attach->dmabuf; 906 907 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 908 909 dma_resv_assert_held(dmabuf->resv); 910 911 if (dmabuf->ops->unpin) 912 dmabuf->ops->unpin(attach); 913 } 914 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 915 916 /** 917 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 918 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 919 * dma_buf_ops. 920 * @attach: [in] attachment whose scatterlist is to be returned 921 * @direction: [in] direction of DMA transfer 922 * 923 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 924 * on error. May return -EINTR if it is interrupted by a signal. 925 * 926 * On success, the DMA addresses and lengths in the returned scatterlist are 927 * PAGE_SIZE aligned. 928 * 929 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 930 * the underlying backing storage is pinned for as long as a mapping exists, 931 * therefore users/importers should not hold onto a mapping for undue amounts of 932 * time. 933 * 934 * Important: Dynamic importers must wait for the exclusive fence of the struct 935 * dma_resv attached to the DMA-BUF first. 936 */ 937 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 938 enum dma_data_direction direction) 939 { 940 struct sg_table *sg_table; 941 int r; 942 943 might_sleep(); 944 945 if (WARN_ON(!attach || !attach->dmabuf)) 946 return ERR_PTR(-EINVAL); 947 948 if (dma_buf_attachment_is_dynamic(attach)) 949 dma_resv_assert_held(attach->dmabuf->resv); 950 951 if (attach->sgt) { 952 /* 953 * Two mappings with different directions for the same 954 * attachment are not allowed. 955 */ 956 if (attach->dir != direction && 957 attach->dir != DMA_BIDIRECTIONAL) 958 return ERR_PTR(-EBUSY); 959 960 return attach->sgt; 961 } 962 963 if (dma_buf_is_dynamic(attach->dmabuf)) { 964 dma_resv_assert_held(attach->dmabuf->resv); 965 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 966 r = attach->dmabuf->ops->pin(attach); 967 if (r) 968 return ERR_PTR(r); 969 } 970 } 971 972 sg_table = __map_dma_buf(attach, direction); 973 if (!sg_table) 974 sg_table = ERR_PTR(-ENOMEM); 975 976 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 977 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 978 attach->dmabuf->ops->unpin(attach); 979 980 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 981 attach->sgt = sg_table; 982 attach->dir = direction; 983 } 984 985 #ifdef CONFIG_DMA_API_DEBUG 986 if (!IS_ERR(sg_table)) { 987 struct scatterlist *sg; 988 u64 addr; 989 int len; 990 int i; 991 992 for_each_sgtable_dma_sg(sg_table, sg, i) { 993 addr = sg_dma_address(sg); 994 len = sg_dma_len(sg); 995 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 996 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 997 __func__, addr, len); 998 } 999 } 1000 } 1001 #endif /* CONFIG_DMA_API_DEBUG */ 1002 return sg_table; 1003 } 1004 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 1005 1006 /** 1007 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1008 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1009 * dma_buf_ops. 1010 * @attach: [in] attachment to unmap buffer from 1011 * @sg_table: [in] scatterlist info of the buffer to unmap 1012 * @direction: [in] direction of DMA transfer 1013 * 1014 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1015 */ 1016 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1017 struct sg_table *sg_table, 1018 enum dma_data_direction direction) 1019 { 1020 might_sleep(); 1021 1022 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1023 return; 1024 1025 if (dma_buf_attachment_is_dynamic(attach)) 1026 dma_resv_assert_held(attach->dmabuf->resv); 1027 1028 if (attach->sgt == sg_table) 1029 return; 1030 1031 if (dma_buf_is_dynamic(attach->dmabuf)) 1032 dma_resv_assert_held(attach->dmabuf->resv); 1033 1034 __unmap_dma_buf(attach, sg_table, direction); 1035 1036 if (dma_buf_is_dynamic(attach->dmabuf) && 1037 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1038 dma_buf_unpin(attach); 1039 } 1040 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1041 1042 /** 1043 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1044 * 1045 * @dmabuf: [in] buffer which is moving 1046 * 1047 * Informs all attachmenst that they need to destroy and recreated all their 1048 * mappings. 1049 */ 1050 void dma_buf_move_notify(struct dma_buf *dmabuf) 1051 { 1052 struct dma_buf_attachment *attach; 1053 1054 dma_resv_assert_held(dmabuf->resv); 1055 1056 list_for_each_entry(attach, &dmabuf->attachments, node) 1057 if (attach->importer_ops) 1058 attach->importer_ops->move_notify(attach); 1059 } 1060 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1061 1062 /** 1063 * DOC: cpu access 1064 * 1065 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1066 * 1067 * - Fallback operations in the kernel, for example when a device is connected 1068 * over USB and the kernel needs to shuffle the data around first before 1069 * sending it away. Cache coherency is handled by braketing any transactions 1070 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1071 * access. 1072 * 1073 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1074 * vmap interface is introduced. Note that on very old 32-bit architectures 1075 * vmalloc space might be limited and result in vmap calls failing. 1076 * 1077 * Interfaces:: 1078 * 1079 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 1080 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 1081 * 1082 * The vmap call can fail if there is no vmap support in the exporter, or if 1083 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1084 * count for all vmap access and calls down into the exporter's vmap function 1085 * only when no vmapping exists, and only unmaps it once. Protection against 1086 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1087 * 1088 * - For full compatibility on the importer side with existing userspace 1089 * interfaces, which might already support mmap'ing buffers. This is needed in 1090 * many processing pipelines (e.g. feeding a software rendered image into a 1091 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1092 * framework already supported this and for DMA buffer file descriptors to 1093 * replace ION buffers mmap support was needed. 1094 * 1095 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1096 * fd. But like for CPU access there's a need to braket the actual access, 1097 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1098 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1099 * be restarted. 1100 * 1101 * Some systems might need some sort of cache coherency management e.g. when 1102 * CPU and GPU domains are being accessed through dma-buf at the same time. 1103 * To circumvent this problem there are begin/end coherency markers, that 1104 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1105 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1106 * sequence would be used like following: 1107 * 1108 * - mmap dma-buf fd 1109 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1110 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1111 * want (with the new data being consumed by say the GPU or the scanout 1112 * device) 1113 * - munmap once you don't need the buffer any more 1114 * 1115 * For correctness and optimal performance, it is always required to use 1116 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1117 * mapped address. Userspace cannot rely on coherent access, even when there 1118 * are systems where it just works without calling these ioctls. 1119 * 1120 * - And as a CPU fallback in userspace processing pipelines. 1121 * 1122 * Similar to the motivation for kernel cpu access it is again important that 1123 * the userspace code of a given importing subsystem can use the same 1124 * interfaces with a imported dma-buf buffer object as with a native buffer 1125 * object. This is especially important for drm where the userspace part of 1126 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1127 * use a different way to mmap a buffer rather invasive. 1128 * 1129 * The assumption in the current dma-buf interfaces is that redirecting the 1130 * initial mmap is all that's needed. A survey of some of the existing 1131 * subsystems shows that no driver seems to do any nefarious thing like 1132 * syncing up with outstanding asynchronous processing on the device or 1133 * allocating special resources at fault time. So hopefully this is good 1134 * enough, since adding interfaces to intercept pagefaults and allow pte 1135 * shootdowns would increase the complexity quite a bit. 1136 * 1137 * Interface:: 1138 * 1139 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1140 * unsigned long); 1141 * 1142 * If the importing subsystem simply provides a special-purpose mmap call to 1143 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1144 * equally achieve that for a dma-buf object. 1145 */ 1146 1147 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1148 enum dma_data_direction direction) 1149 { 1150 bool write = (direction == DMA_BIDIRECTIONAL || 1151 direction == DMA_TO_DEVICE); 1152 struct dma_resv *resv = dmabuf->resv; 1153 long ret; 1154 1155 /* Wait on any implicit rendering fences */ 1156 ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT); 1157 if (ret < 0) 1158 return ret; 1159 1160 return 0; 1161 } 1162 1163 /** 1164 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1165 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1166 * preparations. Coherency is only guaranteed in the specified range for the 1167 * specified access direction. 1168 * @dmabuf: [in] buffer to prepare cpu access for. 1169 * @direction: [in] length of range for cpu access. 1170 * 1171 * After the cpu access is complete the caller should call 1172 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1173 * it guaranteed to be coherent with other DMA access. 1174 * 1175 * This function will also wait for any DMA transactions tracked through 1176 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1177 * synchronization this function will only ensure cache coherency, callers must 1178 * ensure synchronization with such DMA transactions on their own. 1179 * 1180 * Can return negative error values, returns 0 on success. 1181 */ 1182 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1183 enum dma_data_direction direction) 1184 { 1185 int ret = 0; 1186 1187 if (WARN_ON(!dmabuf)) 1188 return -EINVAL; 1189 1190 might_lock(&dmabuf->resv->lock.base); 1191 1192 if (dmabuf->ops->begin_cpu_access) 1193 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1194 1195 /* Ensure that all fences are waited upon - but we first allow 1196 * the native handler the chance to do so more efficiently if it 1197 * chooses. A double invocation here will be reasonably cheap no-op. 1198 */ 1199 if (ret == 0) 1200 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1201 1202 return ret; 1203 } 1204 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1205 1206 /** 1207 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1208 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1209 * actions. Coherency is only guaranteed in the specified range for the 1210 * specified access direction. 1211 * @dmabuf: [in] buffer to complete cpu access for. 1212 * @direction: [in] length of range for cpu access. 1213 * 1214 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1215 * 1216 * Can return negative error values, returns 0 on success. 1217 */ 1218 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1219 enum dma_data_direction direction) 1220 { 1221 int ret = 0; 1222 1223 WARN_ON(!dmabuf); 1224 1225 might_lock(&dmabuf->resv->lock.base); 1226 1227 if (dmabuf->ops->end_cpu_access) 1228 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1229 1230 return ret; 1231 } 1232 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1233 1234 1235 /** 1236 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1237 * @dmabuf: [in] buffer that should back the vma 1238 * @vma: [in] vma for the mmap 1239 * @pgoff: [in] offset in pages where this mmap should start within the 1240 * dma-buf buffer. 1241 * 1242 * This function adjusts the passed in vma so that it points at the file of the 1243 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1244 * checking on the size of the vma. Then it calls the exporters mmap function to 1245 * set up the mapping. 1246 * 1247 * Can return negative error values, returns 0 on success. 1248 */ 1249 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1250 unsigned long pgoff) 1251 { 1252 if (WARN_ON(!dmabuf || !vma)) 1253 return -EINVAL; 1254 1255 /* check if buffer supports mmap */ 1256 if (!dmabuf->ops->mmap) 1257 return -EINVAL; 1258 1259 /* check for offset overflow */ 1260 if (pgoff + vma_pages(vma) < pgoff) 1261 return -EOVERFLOW; 1262 1263 /* check for overflowing the buffer's size */ 1264 if (pgoff + vma_pages(vma) > 1265 dmabuf->size >> PAGE_SHIFT) 1266 return -EINVAL; 1267 1268 /* readjust the vma */ 1269 vma_set_file(vma, dmabuf->file); 1270 vma->vm_pgoff = pgoff; 1271 1272 return dmabuf->ops->mmap(dmabuf, vma); 1273 } 1274 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1275 1276 /** 1277 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1278 * address space. Same restrictions as for vmap and friends apply. 1279 * @dmabuf: [in] buffer to vmap 1280 * @map: [out] returns the vmap pointer 1281 * 1282 * This call may fail due to lack of virtual mapping address space. 1283 * These calls are optional in drivers. The intended use for them 1284 * is for mapping objects linear in kernel space for high use objects. 1285 * 1286 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1287 * dma_buf_end_cpu_access() around any cpu access performed through this 1288 * mapping. 1289 * 1290 * Returns 0 on success, or a negative errno code otherwise. 1291 */ 1292 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1293 { 1294 struct dma_buf_map ptr; 1295 int ret = 0; 1296 1297 dma_buf_map_clear(map); 1298 1299 if (WARN_ON(!dmabuf)) 1300 return -EINVAL; 1301 1302 if (!dmabuf->ops->vmap) 1303 return -EINVAL; 1304 1305 mutex_lock(&dmabuf->lock); 1306 if (dmabuf->vmapping_counter) { 1307 dmabuf->vmapping_counter++; 1308 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1309 *map = dmabuf->vmap_ptr; 1310 goto out_unlock; 1311 } 1312 1313 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr)); 1314 1315 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1316 if (WARN_ON_ONCE(ret)) 1317 goto out_unlock; 1318 1319 dmabuf->vmap_ptr = ptr; 1320 dmabuf->vmapping_counter = 1; 1321 1322 *map = dmabuf->vmap_ptr; 1323 1324 out_unlock: 1325 mutex_unlock(&dmabuf->lock); 1326 return ret; 1327 } 1328 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1329 1330 /** 1331 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1332 * @dmabuf: [in] buffer to vunmap 1333 * @map: [in] vmap pointer to vunmap 1334 */ 1335 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1336 { 1337 if (WARN_ON(!dmabuf)) 1338 return; 1339 1340 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1341 BUG_ON(dmabuf->vmapping_counter == 0); 1342 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map)); 1343 1344 mutex_lock(&dmabuf->lock); 1345 if (--dmabuf->vmapping_counter == 0) { 1346 if (dmabuf->ops->vunmap) 1347 dmabuf->ops->vunmap(dmabuf, map); 1348 dma_buf_map_clear(&dmabuf->vmap_ptr); 1349 } 1350 mutex_unlock(&dmabuf->lock); 1351 } 1352 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1353 1354 #ifdef CONFIG_DEBUG_FS 1355 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1356 { 1357 struct dma_buf *buf_obj; 1358 struct dma_buf_attachment *attach_obj; 1359 struct dma_resv *robj; 1360 struct dma_resv_list *fobj; 1361 struct dma_fence *fence; 1362 int count = 0, attach_count, shared_count, i; 1363 size_t size = 0; 1364 int ret; 1365 1366 ret = mutex_lock_interruptible(&db_list.lock); 1367 1368 if (ret) 1369 return ret; 1370 1371 seq_puts(s, "\nDma-buf Objects:\n"); 1372 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1373 "size", "flags", "mode", "count", "ino"); 1374 1375 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1376 1377 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1378 if (ret) 1379 goto error_unlock; 1380 1381 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1382 buf_obj->size, 1383 buf_obj->file->f_flags, buf_obj->file->f_mode, 1384 file_count(buf_obj->file), 1385 buf_obj->exp_name, 1386 file_inode(buf_obj->file)->i_ino, 1387 buf_obj->name ?: ""); 1388 1389 robj = buf_obj->resv; 1390 fence = dma_resv_excl_fence(robj); 1391 if (fence) 1392 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1393 fence->ops->get_driver_name(fence), 1394 fence->ops->get_timeline_name(fence), 1395 dma_fence_is_signaled(fence) ? "" : "un"); 1396 1397 fobj = rcu_dereference_protected(robj->fence, 1398 dma_resv_held(robj)); 1399 shared_count = fobj ? fobj->shared_count : 0; 1400 for (i = 0; i < shared_count; i++) { 1401 fence = rcu_dereference_protected(fobj->shared[i], 1402 dma_resv_held(robj)); 1403 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1404 fence->ops->get_driver_name(fence), 1405 fence->ops->get_timeline_name(fence), 1406 dma_fence_is_signaled(fence) ? "" : "un"); 1407 } 1408 1409 seq_puts(s, "\tAttached Devices:\n"); 1410 attach_count = 0; 1411 1412 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1413 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1414 attach_count++; 1415 } 1416 dma_resv_unlock(buf_obj->resv); 1417 1418 seq_printf(s, "Total %d devices attached\n\n", 1419 attach_count); 1420 1421 count++; 1422 size += buf_obj->size; 1423 } 1424 1425 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1426 1427 mutex_unlock(&db_list.lock); 1428 return 0; 1429 1430 error_unlock: 1431 mutex_unlock(&db_list.lock); 1432 return ret; 1433 } 1434 1435 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1436 1437 static struct dentry *dma_buf_debugfs_dir; 1438 1439 static int dma_buf_init_debugfs(void) 1440 { 1441 struct dentry *d; 1442 int err = 0; 1443 1444 d = debugfs_create_dir("dma_buf", NULL); 1445 if (IS_ERR(d)) 1446 return PTR_ERR(d); 1447 1448 dma_buf_debugfs_dir = d; 1449 1450 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1451 NULL, &dma_buf_debug_fops); 1452 if (IS_ERR(d)) { 1453 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1454 debugfs_remove_recursive(dma_buf_debugfs_dir); 1455 dma_buf_debugfs_dir = NULL; 1456 err = PTR_ERR(d); 1457 } 1458 1459 return err; 1460 } 1461 1462 static void dma_buf_uninit_debugfs(void) 1463 { 1464 debugfs_remove_recursive(dma_buf_debugfs_dir); 1465 } 1466 #else 1467 static inline int dma_buf_init_debugfs(void) 1468 { 1469 return 0; 1470 } 1471 static inline void dma_buf_uninit_debugfs(void) 1472 { 1473 } 1474 #endif 1475 1476 static int __init dma_buf_init(void) 1477 { 1478 int ret; 1479 1480 ret = dma_buf_init_sysfs_statistics(); 1481 if (ret) 1482 return ret; 1483 1484 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1485 if (IS_ERR(dma_buf_mnt)) 1486 return PTR_ERR(dma_buf_mnt); 1487 1488 mutex_init(&db_list.lock); 1489 INIT_LIST_HEAD(&db_list.head); 1490 dma_buf_init_debugfs(); 1491 return 0; 1492 } 1493 subsys_initcall(dma_buf_init); 1494 1495 static void __exit dma_buf_deinit(void) 1496 { 1497 dma_buf_uninit_debugfs(); 1498 kern_unmount(dma_buf_mnt); 1499 dma_buf_uninit_sysfs_statistics(); 1500 } 1501 __exitcall(dma_buf_deinit); 1502