1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 dma_resv_lock(dmabuf->resv, NULL); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 dma_resv_unlock(dmabuf->resv); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static const struct dentry_operations dma_buf_dentry_ops = { 58 .d_dname = dmabuffs_dname, 59 }; 60 61 static struct vfsmount *dma_buf_mnt; 62 63 static int dma_buf_fs_init_context(struct fs_context *fc) 64 { 65 struct pseudo_fs_context *ctx; 66 67 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 68 if (!ctx) 69 return -ENOMEM; 70 ctx->dops = &dma_buf_dentry_ops; 71 return 0; 72 } 73 74 static struct file_system_type dma_buf_fs_type = { 75 .name = "dmabuf", 76 .init_fs_context = dma_buf_fs_init_context, 77 .kill_sb = kill_anon_super, 78 }; 79 80 static int dma_buf_release(struct inode *inode, struct file *file) 81 { 82 struct dma_buf *dmabuf; 83 84 if (!is_dma_buf_file(file)) 85 return -EINVAL; 86 87 dmabuf = file->private_data; 88 89 BUG_ON(dmabuf->vmapping_counter); 90 91 /* 92 * Any fences that a dma-buf poll can wait on should be signaled 93 * before releasing dma-buf. This is the responsibility of each 94 * driver that uses the reservation objects. 95 * 96 * If you hit this BUG() it means someone dropped their ref to the 97 * dma-buf while still having pending operation to the buffer. 98 */ 99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 100 101 dmabuf->ops->release(dmabuf); 102 103 mutex_lock(&db_list.lock); 104 list_del(&dmabuf->list_node); 105 mutex_unlock(&db_list.lock); 106 107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 108 dma_resv_fini(dmabuf->resv); 109 110 module_put(dmabuf->owner); 111 kfree(dmabuf); 112 return 0; 113 } 114 115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 116 { 117 struct dma_buf *dmabuf; 118 119 if (!is_dma_buf_file(file)) 120 return -EINVAL; 121 122 dmabuf = file->private_data; 123 124 /* check if buffer supports mmap */ 125 if (!dmabuf->ops->mmap) 126 return -EINVAL; 127 128 /* check for overflowing the buffer's size */ 129 if (vma->vm_pgoff + vma_pages(vma) > 130 dmabuf->size >> PAGE_SHIFT) 131 return -EINVAL; 132 133 return dmabuf->ops->mmap(dmabuf, vma); 134 } 135 136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 137 { 138 struct dma_buf *dmabuf; 139 loff_t base; 140 141 if (!is_dma_buf_file(file)) 142 return -EBADF; 143 144 dmabuf = file->private_data; 145 146 /* only support discovering the end of the buffer, 147 but also allow SEEK_SET to maintain the idiomatic 148 SEEK_END(0), SEEK_CUR(0) pattern */ 149 if (whence == SEEK_END) 150 base = dmabuf->size; 151 else if (whence == SEEK_SET) 152 base = 0; 153 else 154 return -EINVAL; 155 156 if (offset != 0) 157 return -EINVAL; 158 159 return base + offset; 160 } 161 162 /** 163 * DOC: fence polling 164 * 165 * To support cross-device and cross-driver synchronization of buffer access 166 * implicit fences (represented internally in the kernel with &struct fence) can 167 * be attached to a &dma_buf. The glue for that and a few related things are 168 * provided in the &dma_resv structure. 169 * 170 * Userspace can query the state of these implicitly tracked fences using poll() 171 * and related system calls: 172 * 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 174 * most recent write or exclusive fence. 175 * 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 177 * all attached fences, shared and exclusive ones. 178 * 179 * Note that this only signals the completion of the respective fences, i.e. the 180 * DMA transfers are complete. Cache flushing and any other necessary 181 * preparations before CPU access can begin still need to happen. 182 */ 183 184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 185 { 186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 187 unsigned long flags; 188 189 spin_lock_irqsave(&dcb->poll->lock, flags); 190 wake_up_locked_poll(dcb->poll, dcb->active); 191 dcb->active = 0; 192 spin_unlock_irqrestore(&dcb->poll->lock, flags); 193 } 194 195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 196 { 197 struct dma_buf *dmabuf; 198 struct dma_resv *resv; 199 struct dma_resv_list *fobj; 200 struct dma_fence *fence_excl; 201 __poll_t events; 202 unsigned shared_count, seq; 203 204 dmabuf = file->private_data; 205 if (!dmabuf || !dmabuf->resv) 206 return EPOLLERR; 207 208 resv = dmabuf->resv; 209 210 poll_wait(file, &dmabuf->poll, poll); 211 212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 213 if (!events) 214 return 0; 215 216 retry: 217 seq = read_seqcount_begin(&resv->seq); 218 rcu_read_lock(); 219 220 fobj = rcu_dereference(resv->fence); 221 if (fobj) 222 shared_count = fobj->shared_count; 223 else 224 shared_count = 0; 225 fence_excl = rcu_dereference(resv->fence_excl); 226 if (read_seqcount_retry(&resv->seq, seq)) { 227 rcu_read_unlock(); 228 goto retry; 229 } 230 231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 233 __poll_t pevents = EPOLLIN; 234 235 if (shared_count == 0) 236 pevents |= EPOLLOUT; 237 238 spin_lock_irq(&dmabuf->poll.lock); 239 if (dcb->active) { 240 dcb->active |= pevents; 241 events &= ~pevents; 242 } else 243 dcb->active = pevents; 244 spin_unlock_irq(&dmabuf->poll.lock); 245 246 if (events & pevents) { 247 if (!dma_fence_get_rcu(fence_excl)) { 248 /* force a recheck */ 249 events &= ~pevents; 250 dma_buf_poll_cb(NULL, &dcb->cb); 251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 252 dma_buf_poll_cb)) { 253 events &= ~pevents; 254 dma_fence_put(fence_excl); 255 } else { 256 /* 257 * No callback queued, wake up any additional 258 * waiters. 259 */ 260 dma_fence_put(fence_excl); 261 dma_buf_poll_cb(NULL, &dcb->cb); 262 } 263 } 264 } 265 266 if ((events & EPOLLOUT) && shared_count > 0) { 267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 268 int i; 269 270 /* Only queue a new callback if no event has fired yet */ 271 spin_lock_irq(&dmabuf->poll.lock); 272 if (dcb->active) 273 events &= ~EPOLLOUT; 274 else 275 dcb->active = EPOLLOUT; 276 spin_unlock_irq(&dmabuf->poll.lock); 277 278 if (!(events & EPOLLOUT)) 279 goto out; 280 281 for (i = 0; i < shared_count; ++i) { 282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 283 284 if (!dma_fence_get_rcu(fence)) { 285 /* 286 * fence refcount dropped to zero, this means 287 * that fobj has been freed 288 * 289 * call dma_buf_poll_cb and force a recheck! 290 */ 291 events &= ~EPOLLOUT; 292 dma_buf_poll_cb(NULL, &dcb->cb); 293 break; 294 } 295 if (!dma_fence_add_callback(fence, &dcb->cb, 296 dma_buf_poll_cb)) { 297 dma_fence_put(fence); 298 events &= ~EPOLLOUT; 299 break; 300 } 301 dma_fence_put(fence); 302 } 303 304 /* No callback queued, wake up any additional waiters. */ 305 if (i == shared_count) 306 dma_buf_poll_cb(NULL, &dcb->cb); 307 } 308 309 out: 310 rcu_read_unlock(); 311 return events; 312 } 313 314 /** 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 316 * The name of the dma-buf buffer can only be set when the dma-buf is not 317 * attached to any devices. It could theoritically support changing the 318 * name of the dma-buf if the same piece of memory is used for multiple 319 * purpose between different devices. 320 * 321 * @dmabuf [in] dmabuf buffer that will be renamed. 322 * @buf: [in] A piece of userspace memory that contains the name of 323 * the dma-buf. 324 * 325 * Returns 0 on success. If the dma-buf buffer is already attached to 326 * devices, return -EBUSY. 327 * 328 */ 329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 330 { 331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 332 long ret = 0; 333 334 if (IS_ERR(name)) 335 return PTR_ERR(name); 336 337 dma_resv_lock(dmabuf->resv, NULL); 338 if (!list_empty(&dmabuf->attachments)) { 339 ret = -EBUSY; 340 kfree(name); 341 goto out_unlock; 342 } 343 kfree(dmabuf->name); 344 dmabuf->name = name; 345 346 out_unlock: 347 dma_resv_unlock(dmabuf->resv); 348 return ret; 349 } 350 351 static long dma_buf_ioctl(struct file *file, 352 unsigned int cmd, unsigned long arg) 353 { 354 struct dma_buf *dmabuf; 355 struct dma_buf_sync sync; 356 enum dma_data_direction direction; 357 int ret; 358 359 dmabuf = file->private_data; 360 361 switch (cmd) { 362 case DMA_BUF_IOCTL_SYNC: 363 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 364 return -EFAULT; 365 366 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 367 return -EINVAL; 368 369 switch (sync.flags & DMA_BUF_SYNC_RW) { 370 case DMA_BUF_SYNC_READ: 371 direction = DMA_FROM_DEVICE; 372 break; 373 case DMA_BUF_SYNC_WRITE: 374 direction = DMA_TO_DEVICE; 375 break; 376 case DMA_BUF_SYNC_RW: 377 direction = DMA_BIDIRECTIONAL; 378 break; 379 default: 380 return -EINVAL; 381 } 382 383 if (sync.flags & DMA_BUF_SYNC_END) 384 ret = dma_buf_end_cpu_access(dmabuf, direction); 385 else 386 ret = dma_buf_begin_cpu_access(dmabuf, direction); 387 388 return ret; 389 390 case DMA_BUF_SET_NAME: 391 return dma_buf_set_name(dmabuf, (const char __user *)arg); 392 393 default: 394 return -ENOTTY; 395 } 396 } 397 398 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 399 { 400 struct dma_buf *dmabuf = file->private_data; 401 402 seq_printf(m, "size:\t%zu\n", dmabuf->size); 403 /* Don't count the temporary reference taken inside procfs seq_show */ 404 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 405 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 406 dma_resv_lock(dmabuf->resv, NULL); 407 if (dmabuf->name) 408 seq_printf(m, "name:\t%s\n", dmabuf->name); 409 dma_resv_unlock(dmabuf->resv); 410 } 411 412 static const struct file_operations dma_buf_fops = { 413 .release = dma_buf_release, 414 .mmap = dma_buf_mmap_internal, 415 .llseek = dma_buf_llseek, 416 .poll = dma_buf_poll, 417 .unlocked_ioctl = dma_buf_ioctl, 418 .compat_ioctl = compat_ptr_ioctl, 419 .show_fdinfo = dma_buf_show_fdinfo, 420 }; 421 422 /* 423 * is_dma_buf_file - Check if struct file* is associated with dma_buf 424 */ 425 static inline int is_dma_buf_file(struct file *file) 426 { 427 return file->f_op == &dma_buf_fops; 428 } 429 430 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 431 { 432 struct file *file; 433 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 434 435 if (IS_ERR(inode)) 436 return ERR_CAST(inode); 437 438 inode->i_size = dmabuf->size; 439 inode_set_bytes(inode, dmabuf->size); 440 441 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 442 flags, &dma_buf_fops); 443 if (IS_ERR(file)) 444 goto err_alloc_file; 445 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 446 file->private_data = dmabuf; 447 file->f_path.dentry->d_fsdata = dmabuf; 448 449 return file; 450 451 err_alloc_file: 452 iput(inode); 453 return file; 454 } 455 456 /** 457 * DOC: dma buf device access 458 * 459 * For device DMA access to a shared DMA buffer the usual sequence of operations 460 * is fairly simple: 461 * 462 * 1. The exporter defines his exporter instance using 463 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 464 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 465 * as a file descriptor by calling dma_buf_fd(). 466 * 467 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 468 * to share with: First the filedescriptor is converted to a &dma_buf using 469 * dma_buf_get(). Then the buffer is attached to the device using 470 * dma_buf_attach(). 471 * 472 * Up to this stage the exporter is still free to migrate or reallocate the 473 * backing storage. 474 * 475 * 3. Once the buffer is attached to all devices userspace can initiate DMA 476 * access to the shared buffer. In the kernel this is done by calling 477 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 478 * 479 * 4. Once a driver is done with a shared buffer it needs to call 480 * dma_buf_detach() (after cleaning up any mappings) and then release the 481 * reference acquired with dma_buf_get by calling dma_buf_put(). 482 * 483 * For the detailed semantics exporters are expected to implement see 484 * &dma_buf_ops. 485 */ 486 487 /** 488 * dma_buf_export - Creates a new dma_buf, and associates an anon file 489 * with this buffer, so it can be exported. 490 * Also connect the allocator specific data and ops to the buffer. 491 * Additionally, provide a name string for exporter; useful in debugging. 492 * 493 * @exp_info: [in] holds all the export related information provided 494 * by the exporter. see &struct dma_buf_export_info 495 * for further details. 496 * 497 * Returns, on success, a newly created dma_buf object, which wraps the 498 * supplied private data and operations for dma_buf_ops. On either missing 499 * ops, or error in allocating struct dma_buf, will return negative error. 500 * 501 * For most cases the easiest way to create @exp_info is through the 502 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 503 */ 504 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 505 { 506 struct dma_buf *dmabuf; 507 struct dma_resv *resv = exp_info->resv; 508 struct file *file; 509 size_t alloc_size = sizeof(struct dma_buf); 510 int ret; 511 512 if (!exp_info->resv) 513 alloc_size += sizeof(struct dma_resv); 514 else 515 /* prevent &dma_buf[1] == dma_buf->resv */ 516 alloc_size += 1; 517 518 if (WARN_ON(!exp_info->priv 519 || !exp_info->ops 520 || !exp_info->ops->map_dma_buf 521 || !exp_info->ops->unmap_dma_buf 522 || !exp_info->ops->release)) { 523 return ERR_PTR(-EINVAL); 524 } 525 526 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 527 exp_info->ops->dynamic_mapping)) 528 return ERR_PTR(-EINVAL); 529 530 if (!try_module_get(exp_info->owner)) 531 return ERR_PTR(-ENOENT); 532 533 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 534 if (!dmabuf) { 535 ret = -ENOMEM; 536 goto err_module; 537 } 538 539 dmabuf->priv = exp_info->priv; 540 dmabuf->ops = exp_info->ops; 541 dmabuf->size = exp_info->size; 542 dmabuf->exp_name = exp_info->exp_name; 543 dmabuf->owner = exp_info->owner; 544 init_waitqueue_head(&dmabuf->poll); 545 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 546 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 547 548 if (!resv) { 549 resv = (struct dma_resv *)&dmabuf[1]; 550 dma_resv_init(resv); 551 } 552 dmabuf->resv = resv; 553 554 file = dma_buf_getfile(dmabuf, exp_info->flags); 555 if (IS_ERR(file)) { 556 ret = PTR_ERR(file); 557 goto err_dmabuf; 558 } 559 560 file->f_mode |= FMODE_LSEEK; 561 dmabuf->file = file; 562 563 mutex_init(&dmabuf->lock); 564 INIT_LIST_HEAD(&dmabuf->attachments); 565 566 mutex_lock(&db_list.lock); 567 list_add(&dmabuf->list_node, &db_list.head); 568 mutex_unlock(&db_list.lock); 569 570 return dmabuf; 571 572 err_dmabuf: 573 kfree(dmabuf); 574 err_module: 575 module_put(exp_info->owner); 576 return ERR_PTR(ret); 577 } 578 EXPORT_SYMBOL_GPL(dma_buf_export); 579 580 /** 581 * dma_buf_fd - returns a file descriptor for the given dma_buf 582 * @dmabuf: [in] pointer to dma_buf for which fd is required. 583 * @flags: [in] flags to give to fd 584 * 585 * On success, returns an associated 'fd'. Else, returns error. 586 */ 587 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 588 { 589 int fd; 590 591 if (!dmabuf || !dmabuf->file) 592 return -EINVAL; 593 594 fd = get_unused_fd_flags(flags); 595 if (fd < 0) 596 return fd; 597 598 fd_install(fd, dmabuf->file); 599 600 return fd; 601 } 602 EXPORT_SYMBOL_GPL(dma_buf_fd); 603 604 /** 605 * dma_buf_get - returns the dma_buf structure related to an fd 606 * @fd: [in] fd associated with the dma_buf to be returned 607 * 608 * On success, returns the dma_buf structure associated with an fd; uses 609 * file's refcounting done by fget to increase refcount. returns ERR_PTR 610 * otherwise. 611 */ 612 struct dma_buf *dma_buf_get(int fd) 613 { 614 struct file *file; 615 616 file = fget(fd); 617 618 if (!file) 619 return ERR_PTR(-EBADF); 620 621 if (!is_dma_buf_file(file)) { 622 fput(file); 623 return ERR_PTR(-EINVAL); 624 } 625 626 return file->private_data; 627 } 628 EXPORT_SYMBOL_GPL(dma_buf_get); 629 630 /** 631 * dma_buf_put - decreases refcount of the buffer 632 * @dmabuf: [in] buffer to reduce refcount of 633 * 634 * Uses file's refcounting done implicitly by fput(). 635 * 636 * If, as a result of this call, the refcount becomes 0, the 'release' file 637 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 638 * in turn, and frees the memory allocated for dmabuf when exported. 639 */ 640 void dma_buf_put(struct dma_buf *dmabuf) 641 { 642 if (WARN_ON(!dmabuf || !dmabuf->file)) 643 return; 644 645 fput(dmabuf->file); 646 } 647 EXPORT_SYMBOL_GPL(dma_buf_put); 648 649 /** 650 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 651 * calls attach() of dma_buf_ops to allow device-specific attach functionality 652 * @dmabuf: [in] buffer to attach device to. 653 * @dev: [in] device to be attached. 654 * @dynamic_mapping: [in] calling convention for map/unmap 655 * 656 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 657 * must be cleaned up by calling dma_buf_detach(). 658 * 659 * Returns: 660 * 661 * A pointer to newly created &dma_buf_attachment on success, or a negative 662 * error code wrapped into a pointer on failure. 663 * 664 * Note that this can fail if the backing storage of @dmabuf is in a place not 665 * accessible to @dev, and cannot be moved to a more suitable place. This is 666 * indicated with the error code -EBUSY. 667 */ 668 struct dma_buf_attachment * 669 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 670 bool dynamic_mapping) 671 { 672 struct dma_buf_attachment *attach; 673 int ret; 674 675 if (WARN_ON(!dmabuf || !dev)) 676 return ERR_PTR(-EINVAL); 677 678 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 679 if (!attach) 680 return ERR_PTR(-ENOMEM); 681 682 attach->dev = dev; 683 attach->dmabuf = dmabuf; 684 attach->dynamic_mapping = dynamic_mapping; 685 686 if (dmabuf->ops->attach) { 687 ret = dmabuf->ops->attach(dmabuf, attach); 688 if (ret) 689 goto err_attach; 690 } 691 dma_resv_lock(dmabuf->resv, NULL); 692 list_add(&attach->node, &dmabuf->attachments); 693 dma_resv_unlock(dmabuf->resv); 694 695 /* When either the importer or the exporter can't handle dynamic 696 * mappings we cache the mapping here to avoid issues with the 697 * reservation object lock. 698 */ 699 if (dma_buf_attachment_is_dynamic(attach) != 700 dma_buf_is_dynamic(dmabuf)) { 701 struct sg_table *sgt; 702 703 if (dma_buf_is_dynamic(attach->dmabuf)) 704 dma_resv_lock(attach->dmabuf->resv, NULL); 705 706 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 707 if (!sgt) 708 sgt = ERR_PTR(-ENOMEM); 709 if (IS_ERR(sgt)) { 710 ret = PTR_ERR(sgt); 711 goto err_unlock; 712 } 713 if (dma_buf_is_dynamic(attach->dmabuf)) 714 dma_resv_unlock(attach->dmabuf->resv); 715 attach->sgt = sgt; 716 attach->dir = DMA_BIDIRECTIONAL; 717 } 718 719 return attach; 720 721 err_attach: 722 kfree(attach); 723 return ERR_PTR(ret); 724 725 err_unlock: 726 if (dma_buf_is_dynamic(attach->dmabuf)) 727 dma_resv_unlock(attach->dmabuf->resv); 728 729 dma_buf_detach(dmabuf, attach); 730 return ERR_PTR(ret); 731 } 732 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 733 734 /** 735 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 736 * @dmabuf: [in] buffer to attach device to. 737 * @dev: [in] device to be attached. 738 * 739 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 740 * mapping. 741 */ 742 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 743 struct device *dev) 744 { 745 return dma_buf_dynamic_attach(dmabuf, dev, false); 746 } 747 EXPORT_SYMBOL_GPL(dma_buf_attach); 748 749 /** 750 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 751 * optionally calls detach() of dma_buf_ops for device-specific detach 752 * @dmabuf: [in] buffer to detach from. 753 * @attach: [in] attachment to be detached; is free'd after this call. 754 * 755 * Clean up a device attachment obtained by calling dma_buf_attach(). 756 */ 757 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 758 { 759 if (WARN_ON(!dmabuf || !attach)) 760 return; 761 762 if (attach->sgt) { 763 if (dma_buf_is_dynamic(attach->dmabuf)) 764 dma_resv_lock(attach->dmabuf->resv, NULL); 765 766 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 767 768 if (dma_buf_is_dynamic(attach->dmabuf)) 769 dma_resv_unlock(attach->dmabuf->resv); 770 } 771 772 dma_resv_lock(dmabuf->resv, NULL); 773 list_del(&attach->node); 774 dma_resv_unlock(dmabuf->resv); 775 if (dmabuf->ops->detach) 776 dmabuf->ops->detach(dmabuf, attach); 777 778 kfree(attach); 779 } 780 EXPORT_SYMBOL_GPL(dma_buf_detach); 781 782 /** 783 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 784 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 785 * dma_buf_ops. 786 * @attach: [in] attachment whose scatterlist is to be returned 787 * @direction: [in] direction of DMA transfer 788 * 789 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 790 * on error. May return -EINTR if it is interrupted by a signal. 791 * 792 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 793 * the underlying backing storage is pinned for as long as a mapping exists, 794 * therefore users/importers should not hold onto a mapping for undue amounts of 795 * time. 796 */ 797 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 798 enum dma_data_direction direction) 799 { 800 struct sg_table *sg_table; 801 802 might_sleep(); 803 804 if (WARN_ON(!attach || !attach->dmabuf)) 805 return ERR_PTR(-EINVAL); 806 807 if (dma_buf_attachment_is_dynamic(attach)) 808 dma_resv_assert_held(attach->dmabuf->resv); 809 810 if (attach->sgt) { 811 /* 812 * Two mappings with different directions for the same 813 * attachment are not allowed. 814 */ 815 if (attach->dir != direction && 816 attach->dir != DMA_BIDIRECTIONAL) 817 return ERR_PTR(-EBUSY); 818 819 return attach->sgt; 820 } 821 822 if (dma_buf_is_dynamic(attach->dmabuf)) 823 dma_resv_assert_held(attach->dmabuf->resv); 824 825 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 826 if (!sg_table) 827 sg_table = ERR_PTR(-ENOMEM); 828 829 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 830 attach->sgt = sg_table; 831 attach->dir = direction; 832 } 833 834 return sg_table; 835 } 836 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 837 838 /** 839 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 840 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 841 * dma_buf_ops. 842 * @attach: [in] attachment to unmap buffer from 843 * @sg_table: [in] scatterlist info of the buffer to unmap 844 * @direction: [in] direction of DMA transfer 845 * 846 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 847 */ 848 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 849 struct sg_table *sg_table, 850 enum dma_data_direction direction) 851 { 852 might_sleep(); 853 854 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 855 return; 856 857 if (dma_buf_attachment_is_dynamic(attach)) 858 dma_resv_assert_held(attach->dmabuf->resv); 859 860 if (attach->sgt == sg_table) 861 return; 862 863 if (dma_buf_is_dynamic(attach->dmabuf)) 864 dma_resv_assert_held(attach->dmabuf->resv); 865 866 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 867 } 868 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 869 870 /** 871 * DOC: cpu access 872 * 873 * There are mutliple reasons for supporting CPU access to a dma buffer object: 874 * 875 * - Fallback operations in the kernel, for example when a device is connected 876 * over USB and the kernel needs to shuffle the data around first before 877 * sending it away. Cache coherency is handled by braketing any transactions 878 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 879 * access. 880 * 881 * To support dma_buf objects residing in highmem cpu access is page-based 882 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks 883 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which 884 * returns a pointer in kernel virtual address space. Afterwards the chunk 885 * needs to be unmapped again. There is no limit on how often a given chunk 886 * can be mapped and unmapped, i.e. the importer does not need to call 887 * begin_cpu_access again before mapping the same chunk again. 888 * 889 * Interfaces:: 890 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long); 891 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*); 892 * 893 * Implementing the functions is optional for exporters and for importers all 894 * the restrictions of using kmap apply. 895 * 896 * dma_buf kmap calls outside of the range specified in begin_cpu_access are 897 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on 898 * the partial chunks at the beginning and end but may return stale or bogus 899 * data outside of the range (in these partial chunks). 900 * 901 * For some cases the overhead of kmap can be too high, a vmap interface 902 * is introduced. This interface should be used very carefully, as vmalloc 903 * space is a limited resources on many architectures. 904 * 905 * Interfaces:: 906 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 907 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 908 * 909 * The vmap call can fail if there is no vmap support in the exporter, or if 910 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 911 * that the dma-buf layer keeps a reference count for all vmap access and 912 * calls down into the exporter's vmap function only when no vmapping exists, 913 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 914 * provided by taking the dma_buf->lock mutex. 915 * 916 * - For full compatibility on the importer side with existing userspace 917 * interfaces, which might already support mmap'ing buffers. This is needed in 918 * many processing pipelines (e.g. feeding a software rendered image into a 919 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 920 * framework already supported this and for DMA buffer file descriptors to 921 * replace ION buffers mmap support was needed. 922 * 923 * There is no special interfaces, userspace simply calls mmap on the dma-buf 924 * fd. But like for CPU access there's a need to braket the actual access, 925 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 926 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 927 * be restarted. 928 * 929 * Some systems might need some sort of cache coherency management e.g. when 930 * CPU and GPU domains are being accessed through dma-buf at the same time. 931 * To circumvent this problem there are begin/end coherency markers, that 932 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 933 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 934 * sequence would be used like following: 935 * 936 * - mmap dma-buf fd 937 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 938 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 939 * want (with the new data being consumed by say the GPU or the scanout 940 * device) 941 * - munmap once you don't need the buffer any more 942 * 943 * For correctness and optimal performance, it is always required to use 944 * SYNC_START and SYNC_END before and after, respectively, when accessing the 945 * mapped address. Userspace cannot rely on coherent access, even when there 946 * are systems where it just works without calling these ioctls. 947 * 948 * - And as a CPU fallback in userspace processing pipelines. 949 * 950 * Similar to the motivation for kernel cpu access it is again important that 951 * the userspace code of a given importing subsystem can use the same 952 * interfaces with a imported dma-buf buffer object as with a native buffer 953 * object. This is especially important for drm where the userspace part of 954 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 955 * use a different way to mmap a buffer rather invasive. 956 * 957 * The assumption in the current dma-buf interfaces is that redirecting the 958 * initial mmap is all that's needed. A survey of some of the existing 959 * subsystems shows that no driver seems to do any nefarious thing like 960 * syncing up with outstanding asynchronous processing on the device or 961 * allocating special resources at fault time. So hopefully this is good 962 * enough, since adding interfaces to intercept pagefaults and allow pte 963 * shootdowns would increase the complexity quite a bit. 964 * 965 * Interface:: 966 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 967 * unsigned long); 968 * 969 * If the importing subsystem simply provides a special-purpose mmap call to 970 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 971 * equally achieve that for a dma-buf object. 972 */ 973 974 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 975 enum dma_data_direction direction) 976 { 977 bool write = (direction == DMA_BIDIRECTIONAL || 978 direction == DMA_TO_DEVICE); 979 struct dma_resv *resv = dmabuf->resv; 980 long ret; 981 982 /* Wait on any implicit rendering fences */ 983 ret = dma_resv_wait_timeout_rcu(resv, write, true, 984 MAX_SCHEDULE_TIMEOUT); 985 if (ret < 0) 986 return ret; 987 988 return 0; 989 } 990 991 /** 992 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 993 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 994 * preparations. Coherency is only guaranteed in the specified range for the 995 * specified access direction. 996 * @dmabuf: [in] buffer to prepare cpu access for. 997 * @direction: [in] length of range for cpu access. 998 * 999 * After the cpu access is complete the caller should call 1000 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1001 * it guaranteed to be coherent with other DMA access. 1002 * 1003 * Can return negative error values, returns 0 on success. 1004 */ 1005 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1006 enum dma_data_direction direction) 1007 { 1008 int ret = 0; 1009 1010 if (WARN_ON(!dmabuf)) 1011 return -EINVAL; 1012 1013 if (dmabuf->ops->begin_cpu_access) 1014 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1015 1016 /* Ensure that all fences are waited upon - but we first allow 1017 * the native handler the chance to do so more efficiently if it 1018 * chooses. A double invocation here will be reasonably cheap no-op. 1019 */ 1020 if (ret == 0) 1021 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1022 1023 return ret; 1024 } 1025 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1026 1027 /** 1028 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1029 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1030 * actions. Coherency is only guaranteed in the specified range for the 1031 * specified access direction. 1032 * @dmabuf: [in] buffer to complete cpu access for. 1033 * @direction: [in] length of range for cpu access. 1034 * 1035 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1036 * 1037 * Can return negative error values, returns 0 on success. 1038 */ 1039 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1040 enum dma_data_direction direction) 1041 { 1042 int ret = 0; 1043 1044 WARN_ON(!dmabuf); 1045 1046 if (dmabuf->ops->end_cpu_access) 1047 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1048 1049 return ret; 1050 } 1051 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1052 1053 /** 1054 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The 1055 * same restrictions as for kmap and friends apply. 1056 * @dmabuf: [in] buffer to map page from. 1057 * @page_num: [in] page in PAGE_SIZE units to map. 1058 * 1059 * This call must always succeed, any necessary preparations that might fail 1060 * need to be done in begin_cpu_access. 1061 */ 1062 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num) 1063 { 1064 WARN_ON(!dmabuf); 1065 1066 if (!dmabuf->ops->map) 1067 return NULL; 1068 return dmabuf->ops->map(dmabuf, page_num); 1069 } 1070 EXPORT_SYMBOL_GPL(dma_buf_kmap); 1071 1072 /** 1073 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap. 1074 * @dmabuf: [in] buffer to unmap page from. 1075 * @page_num: [in] page in PAGE_SIZE units to unmap. 1076 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap. 1077 * 1078 * This call must always succeed. 1079 */ 1080 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num, 1081 void *vaddr) 1082 { 1083 WARN_ON(!dmabuf); 1084 1085 if (dmabuf->ops->unmap) 1086 dmabuf->ops->unmap(dmabuf, page_num, vaddr); 1087 } 1088 EXPORT_SYMBOL_GPL(dma_buf_kunmap); 1089 1090 1091 /** 1092 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1093 * @dmabuf: [in] buffer that should back the vma 1094 * @vma: [in] vma for the mmap 1095 * @pgoff: [in] offset in pages where this mmap should start within the 1096 * dma-buf buffer. 1097 * 1098 * This function adjusts the passed in vma so that it points at the file of the 1099 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1100 * checking on the size of the vma. Then it calls the exporters mmap function to 1101 * set up the mapping. 1102 * 1103 * Can return negative error values, returns 0 on success. 1104 */ 1105 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1106 unsigned long pgoff) 1107 { 1108 struct file *oldfile; 1109 int ret; 1110 1111 if (WARN_ON(!dmabuf || !vma)) 1112 return -EINVAL; 1113 1114 /* check if buffer supports mmap */ 1115 if (!dmabuf->ops->mmap) 1116 return -EINVAL; 1117 1118 /* check for offset overflow */ 1119 if (pgoff + vma_pages(vma) < pgoff) 1120 return -EOVERFLOW; 1121 1122 /* check for overflowing the buffer's size */ 1123 if (pgoff + vma_pages(vma) > 1124 dmabuf->size >> PAGE_SHIFT) 1125 return -EINVAL; 1126 1127 /* readjust the vma */ 1128 get_file(dmabuf->file); 1129 oldfile = vma->vm_file; 1130 vma->vm_file = dmabuf->file; 1131 vma->vm_pgoff = pgoff; 1132 1133 ret = dmabuf->ops->mmap(dmabuf, vma); 1134 if (ret) { 1135 /* restore old parameters on failure */ 1136 vma->vm_file = oldfile; 1137 fput(dmabuf->file); 1138 } else { 1139 if (oldfile) 1140 fput(oldfile); 1141 } 1142 return ret; 1143 1144 } 1145 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1146 1147 /** 1148 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1149 * address space. Same restrictions as for vmap and friends apply. 1150 * @dmabuf: [in] buffer to vmap 1151 * 1152 * This call may fail due to lack of virtual mapping address space. 1153 * These calls are optional in drivers. The intended use for them 1154 * is for mapping objects linear in kernel space for high use objects. 1155 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1156 * 1157 * Returns NULL on error. 1158 */ 1159 void *dma_buf_vmap(struct dma_buf *dmabuf) 1160 { 1161 void *ptr; 1162 1163 if (WARN_ON(!dmabuf)) 1164 return NULL; 1165 1166 if (!dmabuf->ops->vmap) 1167 return NULL; 1168 1169 mutex_lock(&dmabuf->lock); 1170 if (dmabuf->vmapping_counter) { 1171 dmabuf->vmapping_counter++; 1172 BUG_ON(!dmabuf->vmap_ptr); 1173 ptr = dmabuf->vmap_ptr; 1174 goto out_unlock; 1175 } 1176 1177 BUG_ON(dmabuf->vmap_ptr); 1178 1179 ptr = dmabuf->ops->vmap(dmabuf); 1180 if (WARN_ON_ONCE(IS_ERR(ptr))) 1181 ptr = NULL; 1182 if (!ptr) 1183 goto out_unlock; 1184 1185 dmabuf->vmap_ptr = ptr; 1186 dmabuf->vmapping_counter = 1; 1187 1188 out_unlock: 1189 mutex_unlock(&dmabuf->lock); 1190 return ptr; 1191 } 1192 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1193 1194 /** 1195 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1196 * @dmabuf: [in] buffer to vunmap 1197 * @vaddr: [in] vmap to vunmap 1198 */ 1199 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1200 { 1201 if (WARN_ON(!dmabuf)) 1202 return; 1203 1204 BUG_ON(!dmabuf->vmap_ptr); 1205 BUG_ON(dmabuf->vmapping_counter == 0); 1206 BUG_ON(dmabuf->vmap_ptr != vaddr); 1207 1208 mutex_lock(&dmabuf->lock); 1209 if (--dmabuf->vmapping_counter == 0) { 1210 if (dmabuf->ops->vunmap) 1211 dmabuf->ops->vunmap(dmabuf, vaddr); 1212 dmabuf->vmap_ptr = NULL; 1213 } 1214 mutex_unlock(&dmabuf->lock); 1215 } 1216 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1217 1218 #ifdef CONFIG_DEBUG_FS 1219 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1220 { 1221 int ret; 1222 struct dma_buf *buf_obj; 1223 struct dma_buf_attachment *attach_obj; 1224 struct dma_resv *robj; 1225 struct dma_resv_list *fobj; 1226 struct dma_fence *fence; 1227 unsigned seq; 1228 int count = 0, attach_count, shared_count, i; 1229 size_t size = 0; 1230 1231 ret = mutex_lock_interruptible(&db_list.lock); 1232 1233 if (ret) 1234 return ret; 1235 1236 seq_puts(s, "\nDma-buf Objects:\n"); 1237 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1238 "size", "flags", "mode", "count", "ino"); 1239 1240 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1241 1242 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1243 if (ret) 1244 goto error_unlock; 1245 1246 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1247 buf_obj->size, 1248 buf_obj->file->f_flags, buf_obj->file->f_mode, 1249 file_count(buf_obj->file), 1250 buf_obj->exp_name, 1251 file_inode(buf_obj->file)->i_ino, 1252 buf_obj->name ?: ""); 1253 1254 robj = buf_obj->resv; 1255 while (true) { 1256 seq = read_seqcount_begin(&robj->seq); 1257 rcu_read_lock(); 1258 fobj = rcu_dereference(robj->fence); 1259 shared_count = fobj ? fobj->shared_count : 0; 1260 fence = rcu_dereference(robj->fence_excl); 1261 if (!read_seqcount_retry(&robj->seq, seq)) 1262 break; 1263 rcu_read_unlock(); 1264 } 1265 1266 if (fence) 1267 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1268 fence->ops->get_driver_name(fence), 1269 fence->ops->get_timeline_name(fence), 1270 dma_fence_is_signaled(fence) ? "" : "un"); 1271 for (i = 0; i < shared_count; i++) { 1272 fence = rcu_dereference(fobj->shared[i]); 1273 if (!dma_fence_get_rcu(fence)) 1274 continue; 1275 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1276 fence->ops->get_driver_name(fence), 1277 fence->ops->get_timeline_name(fence), 1278 dma_fence_is_signaled(fence) ? "" : "un"); 1279 dma_fence_put(fence); 1280 } 1281 rcu_read_unlock(); 1282 1283 seq_puts(s, "\tAttached Devices:\n"); 1284 attach_count = 0; 1285 1286 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1287 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1288 attach_count++; 1289 } 1290 dma_resv_unlock(buf_obj->resv); 1291 1292 seq_printf(s, "Total %d devices attached\n\n", 1293 attach_count); 1294 1295 count++; 1296 size += buf_obj->size; 1297 } 1298 1299 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1300 1301 mutex_unlock(&db_list.lock); 1302 return 0; 1303 1304 error_unlock: 1305 mutex_unlock(&db_list.lock); 1306 return ret; 1307 } 1308 1309 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1310 1311 static struct dentry *dma_buf_debugfs_dir; 1312 1313 static int dma_buf_init_debugfs(void) 1314 { 1315 struct dentry *d; 1316 int err = 0; 1317 1318 d = debugfs_create_dir("dma_buf", NULL); 1319 if (IS_ERR(d)) 1320 return PTR_ERR(d); 1321 1322 dma_buf_debugfs_dir = d; 1323 1324 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1325 NULL, &dma_buf_debug_fops); 1326 if (IS_ERR(d)) { 1327 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1328 debugfs_remove_recursive(dma_buf_debugfs_dir); 1329 dma_buf_debugfs_dir = NULL; 1330 err = PTR_ERR(d); 1331 } 1332 1333 return err; 1334 } 1335 1336 static void dma_buf_uninit_debugfs(void) 1337 { 1338 debugfs_remove_recursive(dma_buf_debugfs_dir); 1339 } 1340 #else 1341 static inline int dma_buf_init_debugfs(void) 1342 { 1343 return 0; 1344 } 1345 static inline void dma_buf_uninit_debugfs(void) 1346 { 1347 } 1348 #endif 1349 1350 static int __init dma_buf_init(void) 1351 { 1352 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1353 if (IS_ERR(dma_buf_mnt)) 1354 return PTR_ERR(dma_buf_mnt); 1355 1356 mutex_init(&db_list.lock); 1357 INIT_LIST_HEAD(&db_list.head); 1358 dma_buf_init_debugfs(); 1359 return 0; 1360 } 1361 subsys_initcall(dma_buf_init); 1362 1363 static void __exit dma_buf_deinit(void) 1364 { 1365 dma_buf_uninit_debugfs(); 1366 kern_unmount(dma_buf_mnt); 1367 } 1368 __exitcall(dma_buf_deinit); 1369