1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/dma-fence-unwrap.h> 19 #include <linux/anon_inodes.h> 20 #include <linux/export.h> 21 #include <linux/debugfs.h> 22 #include <linux/module.h> 23 #include <linux/seq_file.h> 24 #include <linux/sync_file.h> 25 #include <linux/poll.h> 26 #include <linux/dma-resv.h> 27 #include <linux/mm.h> 28 #include <linux/mount.h> 29 #include <linux/pseudo_fs.h> 30 31 #include <uapi/linux/dma-buf.h> 32 #include <uapi/linux/magic.h> 33 34 #include "dma-buf-sysfs-stats.h" 35 36 static inline int is_dma_buf_file(struct file *); 37 38 struct dma_buf_list { 39 struct list_head head; 40 struct mutex lock; 41 }; 42 43 static struct dma_buf_list db_list; 44 45 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 46 { 47 struct dma_buf *dmabuf; 48 char name[DMA_BUF_NAME_LEN]; 49 size_t ret = 0; 50 51 dmabuf = dentry->d_fsdata; 52 spin_lock(&dmabuf->name_lock); 53 if (dmabuf->name) 54 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 55 spin_unlock(&dmabuf->name_lock); 56 57 return dynamic_dname(buffer, buflen, "/%s:%s", 58 dentry->d_name.name, ret > 0 ? name : ""); 59 } 60 61 static void dma_buf_release(struct dentry *dentry) 62 { 63 struct dma_buf *dmabuf; 64 65 dmabuf = dentry->d_fsdata; 66 if (unlikely(!dmabuf)) 67 return; 68 69 BUG_ON(dmabuf->vmapping_counter); 70 71 /* 72 * If you hit this BUG() it could mean: 73 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 74 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 75 */ 76 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 77 78 dma_buf_stats_teardown(dmabuf); 79 dmabuf->ops->release(dmabuf); 80 81 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 82 dma_resv_fini(dmabuf->resv); 83 84 WARN_ON(!list_empty(&dmabuf->attachments)); 85 module_put(dmabuf->owner); 86 kfree(dmabuf->name); 87 kfree(dmabuf); 88 } 89 90 static int dma_buf_file_release(struct inode *inode, struct file *file) 91 { 92 struct dma_buf *dmabuf; 93 94 if (!is_dma_buf_file(file)) 95 return -EINVAL; 96 97 dmabuf = file->private_data; 98 if (dmabuf) { 99 mutex_lock(&db_list.lock); 100 list_del(&dmabuf->list_node); 101 mutex_unlock(&db_list.lock); 102 } 103 104 return 0; 105 } 106 107 static const struct dentry_operations dma_buf_dentry_ops = { 108 .d_dname = dmabuffs_dname, 109 .d_release = dma_buf_release, 110 }; 111 112 static struct vfsmount *dma_buf_mnt; 113 114 static int dma_buf_fs_init_context(struct fs_context *fc) 115 { 116 struct pseudo_fs_context *ctx; 117 118 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 119 if (!ctx) 120 return -ENOMEM; 121 ctx->dops = &dma_buf_dentry_ops; 122 return 0; 123 } 124 125 static struct file_system_type dma_buf_fs_type = { 126 .name = "dmabuf", 127 .init_fs_context = dma_buf_fs_init_context, 128 .kill_sb = kill_anon_super, 129 }; 130 131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 132 { 133 struct dma_buf *dmabuf; 134 int ret; 135 136 if (!is_dma_buf_file(file)) 137 return -EINVAL; 138 139 dmabuf = file->private_data; 140 141 /* check if buffer supports mmap */ 142 if (!dmabuf->ops->mmap) 143 return -EINVAL; 144 145 /* check for overflowing the buffer's size */ 146 if (vma->vm_pgoff + vma_pages(vma) > 147 dmabuf->size >> PAGE_SHIFT) 148 return -EINVAL; 149 150 dma_resv_lock(dmabuf->resv, NULL); 151 ret = dmabuf->ops->mmap(dmabuf, vma); 152 dma_resv_unlock(dmabuf->resv); 153 154 return ret; 155 } 156 157 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 158 { 159 struct dma_buf *dmabuf; 160 loff_t base; 161 162 if (!is_dma_buf_file(file)) 163 return -EBADF; 164 165 dmabuf = file->private_data; 166 167 /* only support discovering the end of the buffer, 168 but also allow SEEK_SET to maintain the idiomatic 169 SEEK_END(0), SEEK_CUR(0) pattern */ 170 if (whence == SEEK_END) 171 base = dmabuf->size; 172 else if (whence == SEEK_SET) 173 base = 0; 174 else 175 return -EINVAL; 176 177 if (offset != 0) 178 return -EINVAL; 179 180 return base + offset; 181 } 182 183 /** 184 * DOC: implicit fence polling 185 * 186 * To support cross-device and cross-driver synchronization of buffer access 187 * implicit fences (represented internally in the kernel with &struct dma_fence) 188 * can be attached to a &dma_buf. The glue for that and a few related things are 189 * provided in the &dma_resv structure. 190 * 191 * Userspace can query the state of these implicitly tracked fences using poll() 192 * and related system calls: 193 * 194 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 195 * most recent write or exclusive fence. 196 * 197 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 198 * all attached fences, shared and exclusive ones. 199 * 200 * Note that this only signals the completion of the respective fences, i.e. the 201 * DMA transfers are complete. Cache flushing and any other necessary 202 * preparations before CPU access can begin still need to happen. 203 * 204 * As an alternative to poll(), the set of fences on DMA buffer can be 205 * exported as a &sync_file using &dma_buf_sync_file_export. 206 */ 207 208 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 209 { 210 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 211 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 212 unsigned long flags; 213 214 spin_lock_irqsave(&dcb->poll->lock, flags); 215 wake_up_locked_poll(dcb->poll, dcb->active); 216 dcb->active = 0; 217 spin_unlock_irqrestore(&dcb->poll->lock, flags); 218 dma_fence_put(fence); 219 /* Paired with get_file in dma_buf_poll */ 220 fput(dmabuf->file); 221 } 222 223 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 224 struct dma_buf_poll_cb_t *dcb) 225 { 226 struct dma_resv_iter cursor; 227 struct dma_fence *fence; 228 int r; 229 230 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 231 fence) { 232 dma_fence_get(fence); 233 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 234 if (!r) 235 return true; 236 dma_fence_put(fence); 237 } 238 239 return false; 240 } 241 242 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 243 { 244 struct dma_buf *dmabuf; 245 struct dma_resv *resv; 246 __poll_t events; 247 248 dmabuf = file->private_data; 249 if (!dmabuf || !dmabuf->resv) 250 return EPOLLERR; 251 252 resv = dmabuf->resv; 253 254 poll_wait(file, &dmabuf->poll, poll); 255 256 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 257 if (!events) 258 return 0; 259 260 dma_resv_lock(resv, NULL); 261 262 if (events & EPOLLOUT) { 263 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 264 265 /* Check that callback isn't busy */ 266 spin_lock_irq(&dmabuf->poll.lock); 267 if (dcb->active) 268 events &= ~EPOLLOUT; 269 else 270 dcb->active = EPOLLOUT; 271 spin_unlock_irq(&dmabuf->poll.lock); 272 273 if (events & EPOLLOUT) { 274 /* Paired with fput in dma_buf_poll_cb */ 275 get_file(dmabuf->file); 276 277 if (!dma_buf_poll_add_cb(resv, true, dcb)) 278 /* No callback queued, wake up any other waiters */ 279 dma_buf_poll_cb(NULL, &dcb->cb); 280 else 281 events &= ~EPOLLOUT; 282 } 283 } 284 285 if (events & EPOLLIN) { 286 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 287 288 /* Check that callback isn't busy */ 289 spin_lock_irq(&dmabuf->poll.lock); 290 if (dcb->active) 291 events &= ~EPOLLIN; 292 else 293 dcb->active = EPOLLIN; 294 spin_unlock_irq(&dmabuf->poll.lock); 295 296 if (events & EPOLLIN) { 297 /* Paired with fput in dma_buf_poll_cb */ 298 get_file(dmabuf->file); 299 300 if (!dma_buf_poll_add_cb(resv, false, dcb)) 301 /* No callback queued, wake up any other waiters */ 302 dma_buf_poll_cb(NULL, &dcb->cb); 303 else 304 events &= ~EPOLLIN; 305 } 306 } 307 308 dma_resv_unlock(resv); 309 return events; 310 } 311 312 /** 313 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 314 * It could support changing the name of the dma-buf if the same 315 * piece of memory is used for multiple purpose between different devices. 316 * 317 * @dmabuf: [in] dmabuf buffer that will be renamed. 318 * @buf: [in] A piece of userspace memory that contains the name of 319 * the dma-buf. 320 * 321 * Returns 0 on success. If the dma-buf buffer is already attached to 322 * devices, return -EBUSY. 323 * 324 */ 325 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 326 { 327 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 328 329 if (IS_ERR(name)) 330 return PTR_ERR(name); 331 332 spin_lock(&dmabuf->name_lock); 333 kfree(dmabuf->name); 334 dmabuf->name = name; 335 spin_unlock(&dmabuf->name_lock); 336 337 return 0; 338 } 339 340 #if IS_ENABLED(CONFIG_SYNC_FILE) 341 static long dma_buf_export_sync_file(struct dma_buf *dmabuf, 342 void __user *user_data) 343 { 344 struct dma_buf_export_sync_file arg; 345 enum dma_resv_usage usage; 346 struct dma_fence *fence = NULL; 347 struct sync_file *sync_file; 348 int fd, ret; 349 350 if (copy_from_user(&arg, user_data, sizeof(arg))) 351 return -EFAULT; 352 353 if (arg.flags & ~DMA_BUF_SYNC_RW) 354 return -EINVAL; 355 356 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 357 return -EINVAL; 358 359 fd = get_unused_fd_flags(O_CLOEXEC); 360 if (fd < 0) 361 return fd; 362 363 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); 364 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); 365 if (ret) 366 goto err_put_fd; 367 368 if (!fence) 369 fence = dma_fence_get_stub(); 370 371 sync_file = sync_file_create(fence); 372 373 dma_fence_put(fence); 374 375 if (!sync_file) { 376 ret = -ENOMEM; 377 goto err_put_fd; 378 } 379 380 arg.fd = fd; 381 if (copy_to_user(user_data, &arg, sizeof(arg))) { 382 ret = -EFAULT; 383 goto err_put_file; 384 } 385 386 fd_install(fd, sync_file->file); 387 388 return 0; 389 390 err_put_file: 391 fput(sync_file->file); 392 err_put_fd: 393 put_unused_fd(fd); 394 return ret; 395 } 396 397 static long dma_buf_import_sync_file(struct dma_buf *dmabuf, 398 const void __user *user_data) 399 { 400 struct dma_buf_import_sync_file arg; 401 struct dma_fence *fence, *f; 402 enum dma_resv_usage usage; 403 struct dma_fence_unwrap iter; 404 unsigned int num_fences; 405 int ret = 0; 406 407 if (copy_from_user(&arg, user_data, sizeof(arg))) 408 return -EFAULT; 409 410 if (arg.flags & ~DMA_BUF_SYNC_RW) 411 return -EINVAL; 412 413 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 414 return -EINVAL; 415 416 fence = sync_file_get_fence(arg.fd); 417 if (!fence) 418 return -EINVAL; 419 420 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : 421 DMA_RESV_USAGE_READ; 422 423 num_fences = 0; 424 dma_fence_unwrap_for_each(f, &iter, fence) 425 ++num_fences; 426 427 if (num_fences > 0) { 428 dma_resv_lock(dmabuf->resv, NULL); 429 430 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences); 431 if (!ret) { 432 dma_fence_unwrap_for_each(f, &iter, fence) 433 dma_resv_add_fence(dmabuf->resv, f, usage); 434 } 435 436 dma_resv_unlock(dmabuf->resv); 437 } 438 439 dma_fence_put(fence); 440 441 return ret; 442 } 443 #endif 444 445 static long dma_buf_ioctl(struct file *file, 446 unsigned int cmd, unsigned long arg) 447 { 448 struct dma_buf *dmabuf; 449 struct dma_buf_sync sync; 450 enum dma_data_direction direction; 451 int ret; 452 453 dmabuf = file->private_data; 454 455 switch (cmd) { 456 case DMA_BUF_IOCTL_SYNC: 457 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 458 return -EFAULT; 459 460 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 461 return -EINVAL; 462 463 switch (sync.flags & DMA_BUF_SYNC_RW) { 464 case DMA_BUF_SYNC_READ: 465 direction = DMA_FROM_DEVICE; 466 break; 467 case DMA_BUF_SYNC_WRITE: 468 direction = DMA_TO_DEVICE; 469 break; 470 case DMA_BUF_SYNC_RW: 471 direction = DMA_BIDIRECTIONAL; 472 break; 473 default: 474 return -EINVAL; 475 } 476 477 if (sync.flags & DMA_BUF_SYNC_END) 478 ret = dma_buf_end_cpu_access(dmabuf, direction); 479 else 480 ret = dma_buf_begin_cpu_access(dmabuf, direction); 481 482 return ret; 483 484 case DMA_BUF_SET_NAME_A: 485 case DMA_BUF_SET_NAME_B: 486 return dma_buf_set_name(dmabuf, (const char __user *)arg); 487 488 #if IS_ENABLED(CONFIG_SYNC_FILE) 489 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: 490 return dma_buf_export_sync_file(dmabuf, (void __user *)arg); 491 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: 492 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); 493 #endif 494 495 default: 496 return -ENOTTY; 497 } 498 } 499 500 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 501 { 502 struct dma_buf *dmabuf = file->private_data; 503 504 seq_printf(m, "size:\t%zu\n", dmabuf->size); 505 /* Don't count the temporary reference taken inside procfs seq_show */ 506 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 507 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 508 spin_lock(&dmabuf->name_lock); 509 if (dmabuf->name) 510 seq_printf(m, "name:\t%s\n", dmabuf->name); 511 spin_unlock(&dmabuf->name_lock); 512 } 513 514 static const struct file_operations dma_buf_fops = { 515 .release = dma_buf_file_release, 516 .mmap = dma_buf_mmap_internal, 517 .llseek = dma_buf_llseek, 518 .poll = dma_buf_poll, 519 .unlocked_ioctl = dma_buf_ioctl, 520 .compat_ioctl = compat_ptr_ioctl, 521 .show_fdinfo = dma_buf_show_fdinfo, 522 }; 523 524 /* 525 * is_dma_buf_file - Check if struct file* is associated with dma_buf 526 */ 527 static inline int is_dma_buf_file(struct file *file) 528 { 529 return file->f_op == &dma_buf_fops; 530 } 531 532 static struct file *dma_buf_getfile(size_t size, int flags) 533 { 534 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 535 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 536 struct file *file; 537 538 if (IS_ERR(inode)) 539 return ERR_CAST(inode); 540 541 inode->i_size = size; 542 inode_set_bytes(inode, size); 543 544 /* 545 * The ->i_ino acquired from get_next_ino() is not unique thus 546 * not suitable for using it as dentry name by dmabuf stats. 547 * Override ->i_ino with the unique and dmabuffs specific 548 * value. 549 */ 550 inode->i_ino = atomic64_add_return(1, &dmabuf_inode); 551 flags &= O_ACCMODE | O_NONBLOCK; 552 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 553 flags, &dma_buf_fops); 554 if (IS_ERR(file)) 555 goto err_alloc_file; 556 557 return file; 558 559 err_alloc_file: 560 iput(inode); 561 return file; 562 } 563 564 /** 565 * DOC: dma buf device access 566 * 567 * For device DMA access to a shared DMA buffer the usual sequence of operations 568 * is fairly simple: 569 * 570 * 1. The exporter defines his exporter instance using 571 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 572 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 573 * as a file descriptor by calling dma_buf_fd(). 574 * 575 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 576 * to share with: First the file descriptor is converted to a &dma_buf using 577 * dma_buf_get(). Then the buffer is attached to the device using 578 * dma_buf_attach(). 579 * 580 * Up to this stage the exporter is still free to migrate or reallocate the 581 * backing storage. 582 * 583 * 3. Once the buffer is attached to all devices userspace can initiate DMA 584 * access to the shared buffer. In the kernel this is done by calling 585 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 586 * 587 * 4. Once a driver is done with a shared buffer it needs to call 588 * dma_buf_detach() (after cleaning up any mappings) and then release the 589 * reference acquired with dma_buf_get() by calling dma_buf_put(). 590 * 591 * For the detailed semantics exporters are expected to implement see 592 * &dma_buf_ops. 593 */ 594 595 /** 596 * dma_buf_export - Creates a new dma_buf, and associates an anon file 597 * with this buffer, so it can be exported. 598 * Also connect the allocator specific data and ops to the buffer. 599 * Additionally, provide a name string for exporter; useful in debugging. 600 * 601 * @exp_info: [in] holds all the export related information provided 602 * by the exporter. see &struct dma_buf_export_info 603 * for further details. 604 * 605 * Returns, on success, a newly created struct dma_buf object, which wraps the 606 * supplied private data and operations for struct dma_buf_ops. On either 607 * missing ops, or error in allocating struct dma_buf, will return negative 608 * error. 609 * 610 * For most cases the easiest way to create @exp_info is through the 611 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 612 */ 613 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 614 { 615 struct dma_buf *dmabuf; 616 struct dma_resv *resv = exp_info->resv; 617 struct file *file; 618 size_t alloc_size = sizeof(struct dma_buf); 619 int ret; 620 621 if (WARN_ON(!exp_info->priv || !exp_info->ops 622 || !exp_info->ops->map_dma_buf 623 || !exp_info->ops->unmap_dma_buf 624 || !exp_info->ops->release)) 625 return ERR_PTR(-EINVAL); 626 627 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 628 (exp_info->ops->pin || exp_info->ops->unpin))) 629 return ERR_PTR(-EINVAL); 630 631 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 632 return ERR_PTR(-EINVAL); 633 634 if (!try_module_get(exp_info->owner)) 635 return ERR_PTR(-ENOENT); 636 637 file = dma_buf_getfile(exp_info->size, exp_info->flags); 638 if (IS_ERR(file)) { 639 ret = PTR_ERR(file); 640 goto err_module; 641 } 642 643 if (!exp_info->resv) 644 alloc_size += sizeof(struct dma_resv); 645 else 646 /* prevent &dma_buf[1] == dma_buf->resv */ 647 alloc_size += 1; 648 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 649 if (!dmabuf) { 650 ret = -ENOMEM; 651 goto err_file; 652 } 653 654 dmabuf->priv = exp_info->priv; 655 dmabuf->ops = exp_info->ops; 656 dmabuf->size = exp_info->size; 657 dmabuf->exp_name = exp_info->exp_name; 658 dmabuf->owner = exp_info->owner; 659 spin_lock_init(&dmabuf->name_lock); 660 init_waitqueue_head(&dmabuf->poll); 661 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 662 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 663 INIT_LIST_HEAD(&dmabuf->attachments); 664 665 if (!resv) { 666 dmabuf->resv = (struct dma_resv *)&dmabuf[1]; 667 dma_resv_init(dmabuf->resv); 668 } else { 669 dmabuf->resv = resv; 670 } 671 672 ret = dma_buf_stats_setup(dmabuf, file); 673 if (ret) 674 goto err_dmabuf; 675 676 file->private_data = dmabuf; 677 file->f_path.dentry->d_fsdata = dmabuf; 678 dmabuf->file = file; 679 680 mutex_lock(&db_list.lock); 681 list_add(&dmabuf->list_node, &db_list.head); 682 mutex_unlock(&db_list.lock); 683 684 return dmabuf; 685 686 err_dmabuf: 687 if (!resv) 688 dma_resv_fini(dmabuf->resv); 689 kfree(dmabuf); 690 err_file: 691 fput(file); 692 err_module: 693 module_put(exp_info->owner); 694 return ERR_PTR(ret); 695 } 696 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 697 698 /** 699 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 700 * @dmabuf: [in] pointer to dma_buf for which fd is required. 701 * @flags: [in] flags to give to fd 702 * 703 * On success, returns an associated 'fd'. Else, returns error. 704 */ 705 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 706 { 707 int fd; 708 709 if (!dmabuf || !dmabuf->file) 710 return -EINVAL; 711 712 fd = get_unused_fd_flags(flags); 713 if (fd < 0) 714 return fd; 715 716 fd_install(fd, dmabuf->file); 717 718 return fd; 719 } 720 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 721 722 /** 723 * dma_buf_get - returns the struct dma_buf related to an fd 724 * @fd: [in] fd associated with the struct dma_buf to be returned 725 * 726 * On success, returns the struct dma_buf associated with an fd; uses 727 * file's refcounting done by fget to increase refcount. returns ERR_PTR 728 * otherwise. 729 */ 730 struct dma_buf *dma_buf_get(int fd) 731 { 732 struct file *file; 733 734 file = fget(fd); 735 736 if (!file) 737 return ERR_PTR(-EBADF); 738 739 if (!is_dma_buf_file(file)) { 740 fput(file); 741 return ERR_PTR(-EINVAL); 742 } 743 744 return file->private_data; 745 } 746 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 747 748 /** 749 * dma_buf_put - decreases refcount of the buffer 750 * @dmabuf: [in] buffer to reduce refcount of 751 * 752 * Uses file's refcounting done implicitly by fput(). 753 * 754 * If, as a result of this call, the refcount becomes 0, the 'release' file 755 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 756 * in turn, and frees the memory allocated for dmabuf when exported. 757 */ 758 void dma_buf_put(struct dma_buf *dmabuf) 759 { 760 if (WARN_ON(!dmabuf || !dmabuf->file)) 761 return; 762 763 fput(dmabuf->file); 764 } 765 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 766 767 static void mangle_sg_table(struct sg_table *sg_table) 768 { 769 #ifdef CONFIG_DMABUF_DEBUG 770 int i; 771 struct scatterlist *sg; 772 773 /* To catch abuse of the underlying struct page by importers mix 774 * up the bits, but take care to preserve the low SG_ bits to 775 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 776 * before passing the sgt back to the exporter. */ 777 for_each_sgtable_sg(sg_table, sg, i) 778 sg->page_link ^= ~0xffUL; 779 #endif 780 781 } 782 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 783 enum dma_data_direction direction) 784 { 785 struct sg_table *sg_table; 786 signed long ret; 787 788 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 789 if (IS_ERR_OR_NULL(sg_table)) 790 return sg_table; 791 792 if (!dma_buf_attachment_is_dynamic(attach)) { 793 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 794 DMA_RESV_USAGE_KERNEL, true, 795 MAX_SCHEDULE_TIMEOUT); 796 if (ret < 0) { 797 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 798 direction); 799 return ERR_PTR(ret); 800 } 801 } 802 803 mangle_sg_table(sg_table); 804 return sg_table; 805 } 806 807 /** 808 * DOC: locking convention 809 * 810 * In order to avoid deadlock situations between dma-buf exports and importers, 811 * all dma-buf API users must follow the common dma-buf locking convention. 812 * 813 * Convention for importers 814 * 815 * 1. Importers must hold the dma-buf reservation lock when calling these 816 * functions: 817 * 818 * - dma_buf_pin() 819 * - dma_buf_unpin() 820 * - dma_buf_map_attachment() 821 * - dma_buf_unmap_attachment() 822 * - dma_buf_vmap() 823 * - dma_buf_vunmap() 824 * 825 * 2. Importers must not hold the dma-buf reservation lock when calling these 826 * functions: 827 * 828 * - dma_buf_attach() 829 * - dma_buf_dynamic_attach() 830 * - dma_buf_detach() 831 * - dma_buf_export( 832 * - dma_buf_fd() 833 * - dma_buf_get() 834 * - dma_buf_put() 835 * - dma_buf_mmap() 836 * - dma_buf_begin_cpu_access() 837 * - dma_buf_end_cpu_access() 838 * - dma_buf_map_attachment_unlocked() 839 * - dma_buf_unmap_attachment_unlocked() 840 * - dma_buf_vmap_unlocked() 841 * - dma_buf_vunmap_unlocked() 842 * 843 * Convention for exporters 844 * 845 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf 846 * reservation and exporter can take the lock: 847 * 848 * - &dma_buf_ops.attach() 849 * - &dma_buf_ops.detach() 850 * - &dma_buf_ops.release() 851 * - &dma_buf_ops.begin_cpu_access() 852 * - &dma_buf_ops.end_cpu_access() 853 * 854 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf 855 * reservation and exporter can't take the lock: 856 * 857 * - &dma_buf_ops.pin() 858 * - &dma_buf_ops.unpin() 859 * - &dma_buf_ops.map_dma_buf() 860 * - &dma_buf_ops.unmap_dma_buf() 861 * - &dma_buf_ops.mmap() 862 * - &dma_buf_ops.vmap() 863 * - &dma_buf_ops.vunmap() 864 * 865 * 3. Exporters must hold the dma-buf reservation lock when calling these 866 * functions: 867 * 868 * - dma_buf_move_notify() 869 */ 870 871 /** 872 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 873 * @dmabuf: [in] buffer to attach device to. 874 * @dev: [in] device to be attached. 875 * @importer_ops: [in] importer operations for the attachment 876 * @importer_priv: [in] importer private pointer for the attachment 877 * 878 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 879 * must be cleaned up by calling dma_buf_detach(). 880 * 881 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 882 * functionality. 883 * 884 * Returns: 885 * 886 * A pointer to newly created &dma_buf_attachment on success, or a negative 887 * error code wrapped into a pointer on failure. 888 * 889 * Note that this can fail if the backing storage of @dmabuf is in a place not 890 * accessible to @dev, and cannot be moved to a more suitable place. This is 891 * indicated with the error code -EBUSY. 892 */ 893 struct dma_buf_attachment * 894 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 895 const struct dma_buf_attach_ops *importer_ops, 896 void *importer_priv) 897 { 898 struct dma_buf_attachment *attach; 899 int ret; 900 901 if (WARN_ON(!dmabuf || !dev)) 902 return ERR_PTR(-EINVAL); 903 904 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 905 return ERR_PTR(-EINVAL); 906 907 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 908 if (!attach) 909 return ERR_PTR(-ENOMEM); 910 911 attach->dev = dev; 912 attach->dmabuf = dmabuf; 913 if (importer_ops) 914 attach->peer2peer = importer_ops->allow_peer2peer; 915 attach->importer_ops = importer_ops; 916 attach->importer_priv = importer_priv; 917 918 if (dmabuf->ops->attach) { 919 ret = dmabuf->ops->attach(dmabuf, attach); 920 if (ret) 921 goto err_attach; 922 } 923 dma_resv_lock(dmabuf->resv, NULL); 924 list_add(&attach->node, &dmabuf->attachments); 925 dma_resv_unlock(dmabuf->resv); 926 927 /* When either the importer or the exporter can't handle dynamic 928 * mappings we cache the mapping here to avoid issues with the 929 * reservation object lock. 930 */ 931 if (dma_buf_attachment_is_dynamic(attach) != 932 dma_buf_is_dynamic(dmabuf)) { 933 struct sg_table *sgt; 934 935 dma_resv_lock(attach->dmabuf->resv, NULL); 936 if (dma_buf_is_dynamic(attach->dmabuf)) { 937 ret = dmabuf->ops->pin(attach); 938 if (ret) 939 goto err_unlock; 940 } 941 942 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 943 if (!sgt) 944 sgt = ERR_PTR(-ENOMEM); 945 if (IS_ERR(sgt)) { 946 ret = PTR_ERR(sgt); 947 goto err_unpin; 948 } 949 dma_resv_unlock(attach->dmabuf->resv); 950 attach->sgt = sgt; 951 attach->dir = DMA_BIDIRECTIONAL; 952 } 953 954 return attach; 955 956 err_attach: 957 kfree(attach); 958 return ERR_PTR(ret); 959 960 err_unpin: 961 if (dma_buf_is_dynamic(attach->dmabuf)) 962 dmabuf->ops->unpin(attach); 963 964 err_unlock: 965 dma_resv_unlock(attach->dmabuf->resv); 966 967 dma_buf_detach(dmabuf, attach); 968 return ERR_PTR(ret); 969 } 970 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 971 972 /** 973 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 974 * @dmabuf: [in] buffer to attach device to. 975 * @dev: [in] device to be attached. 976 * 977 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 978 * mapping. 979 */ 980 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 981 struct device *dev) 982 { 983 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 984 } 985 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 986 987 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 988 struct sg_table *sg_table, 989 enum dma_data_direction direction) 990 { 991 /* uses XOR, hence this unmangles */ 992 mangle_sg_table(sg_table); 993 994 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 995 } 996 997 /** 998 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 999 * @dmabuf: [in] buffer to detach from. 1000 * @attach: [in] attachment to be detached; is free'd after this call. 1001 * 1002 * Clean up a device attachment obtained by calling dma_buf_attach(). 1003 * 1004 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 1005 */ 1006 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 1007 { 1008 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf)) 1009 return; 1010 1011 dma_resv_lock(dmabuf->resv, NULL); 1012 1013 if (attach->sgt) { 1014 1015 __unmap_dma_buf(attach, attach->sgt, attach->dir); 1016 1017 if (dma_buf_is_dynamic(attach->dmabuf)) 1018 dmabuf->ops->unpin(attach); 1019 } 1020 list_del(&attach->node); 1021 1022 dma_resv_unlock(dmabuf->resv); 1023 1024 if (dmabuf->ops->detach) 1025 dmabuf->ops->detach(dmabuf, attach); 1026 1027 kfree(attach); 1028 } 1029 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 1030 1031 /** 1032 * dma_buf_pin - Lock down the DMA-buf 1033 * @attach: [in] attachment which should be pinned 1034 * 1035 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 1036 * call this, and only for limited use cases like scanout and not for temporary 1037 * pin operations. It is not permitted to allow userspace to pin arbitrary 1038 * amounts of buffers through this interface. 1039 * 1040 * Buffers must be unpinned by calling dma_buf_unpin(). 1041 * 1042 * Returns: 1043 * 0 on success, negative error code on failure. 1044 */ 1045 int dma_buf_pin(struct dma_buf_attachment *attach) 1046 { 1047 struct dma_buf *dmabuf = attach->dmabuf; 1048 int ret = 0; 1049 1050 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1051 1052 dma_resv_assert_held(dmabuf->resv); 1053 1054 if (dmabuf->ops->pin) 1055 ret = dmabuf->ops->pin(attach); 1056 1057 return ret; 1058 } 1059 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 1060 1061 /** 1062 * dma_buf_unpin - Unpin a DMA-buf 1063 * @attach: [in] attachment which should be unpinned 1064 * 1065 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 1066 * any mapping of @attach again and inform the importer through 1067 * &dma_buf_attach_ops.move_notify. 1068 */ 1069 void dma_buf_unpin(struct dma_buf_attachment *attach) 1070 { 1071 struct dma_buf *dmabuf = attach->dmabuf; 1072 1073 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1074 1075 dma_resv_assert_held(dmabuf->resv); 1076 1077 if (dmabuf->ops->unpin) 1078 dmabuf->ops->unpin(attach); 1079 } 1080 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 1081 1082 /** 1083 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 1084 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1085 * dma_buf_ops. 1086 * @attach: [in] attachment whose scatterlist is to be returned 1087 * @direction: [in] direction of DMA transfer 1088 * 1089 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 1090 * on error. May return -EINTR if it is interrupted by a signal. 1091 * 1092 * On success, the DMA addresses and lengths in the returned scatterlist are 1093 * PAGE_SIZE aligned. 1094 * 1095 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 1096 * the underlying backing storage is pinned for as long as a mapping exists, 1097 * therefore users/importers should not hold onto a mapping for undue amounts of 1098 * time. 1099 * 1100 * Important: Dynamic importers must wait for the exclusive fence of the struct 1101 * dma_resv attached to the DMA-BUF first. 1102 */ 1103 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 1104 enum dma_data_direction direction) 1105 { 1106 struct sg_table *sg_table; 1107 int r; 1108 1109 might_sleep(); 1110 1111 if (WARN_ON(!attach || !attach->dmabuf)) 1112 return ERR_PTR(-EINVAL); 1113 1114 dma_resv_assert_held(attach->dmabuf->resv); 1115 1116 if (attach->sgt) { 1117 /* 1118 * Two mappings with different directions for the same 1119 * attachment are not allowed. 1120 */ 1121 if (attach->dir != direction && 1122 attach->dir != DMA_BIDIRECTIONAL) 1123 return ERR_PTR(-EBUSY); 1124 1125 return attach->sgt; 1126 } 1127 1128 if (dma_buf_is_dynamic(attach->dmabuf)) { 1129 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 1130 r = attach->dmabuf->ops->pin(attach); 1131 if (r) 1132 return ERR_PTR(r); 1133 } 1134 } 1135 1136 sg_table = __map_dma_buf(attach, direction); 1137 if (!sg_table) 1138 sg_table = ERR_PTR(-ENOMEM); 1139 1140 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 1141 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1142 attach->dmabuf->ops->unpin(attach); 1143 1144 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 1145 attach->sgt = sg_table; 1146 attach->dir = direction; 1147 } 1148 1149 #ifdef CONFIG_DMA_API_DEBUG 1150 if (!IS_ERR(sg_table)) { 1151 struct scatterlist *sg; 1152 u64 addr; 1153 int len; 1154 int i; 1155 1156 for_each_sgtable_dma_sg(sg_table, sg, i) { 1157 addr = sg_dma_address(sg); 1158 len = sg_dma_len(sg); 1159 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 1160 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 1161 __func__, addr, len); 1162 } 1163 } 1164 } 1165 #endif /* CONFIG_DMA_API_DEBUG */ 1166 return sg_table; 1167 } 1168 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 1169 1170 /** 1171 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment; 1172 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1173 * dma_buf_ops. 1174 * @attach: [in] attachment whose scatterlist is to be returned 1175 * @direction: [in] direction of DMA transfer 1176 * 1177 * Unlocked variant of dma_buf_map_attachment(). 1178 */ 1179 struct sg_table * 1180 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach, 1181 enum dma_data_direction direction) 1182 { 1183 struct sg_table *sg_table; 1184 1185 might_sleep(); 1186 1187 if (WARN_ON(!attach || !attach->dmabuf)) 1188 return ERR_PTR(-EINVAL); 1189 1190 dma_resv_lock(attach->dmabuf->resv, NULL); 1191 sg_table = dma_buf_map_attachment(attach, direction); 1192 dma_resv_unlock(attach->dmabuf->resv); 1193 1194 return sg_table; 1195 } 1196 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF); 1197 1198 /** 1199 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1200 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1201 * dma_buf_ops. 1202 * @attach: [in] attachment to unmap buffer from 1203 * @sg_table: [in] scatterlist info of the buffer to unmap 1204 * @direction: [in] direction of DMA transfer 1205 * 1206 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1207 */ 1208 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1209 struct sg_table *sg_table, 1210 enum dma_data_direction direction) 1211 { 1212 might_sleep(); 1213 1214 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1215 return; 1216 1217 dma_resv_assert_held(attach->dmabuf->resv); 1218 1219 if (attach->sgt == sg_table) 1220 return; 1221 1222 __unmap_dma_buf(attach, sg_table, direction); 1223 1224 if (dma_buf_is_dynamic(attach->dmabuf) && 1225 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1226 dma_buf_unpin(attach); 1227 } 1228 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1229 1230 /** 1231 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might 1232 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1233 * dma_buf_ops. 1234 * @attach: [in] attachment to unmap buffer from 1235 * @sg_table: [in] scatterlist info of the buffer to unmap 1236 * @direction: [in] direction of DMA transfer 1237 * 1238 * Unlocked variant of dma_buf_unmap_attachment(). 1239 */ 1240 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach, 1241 struct sg_table *sg_table, 1242 enum dma_data_direction direction) 1243 { 1244 might_sleep(); 1245 1246 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1247 return; 1248 1249 dma_resv_lock(attach->dmabuf->resv, NULL); 1250 dma_buf_unmap_attachment(attach, sg_table, direction); 1251 dma_resv_unlock(attach->dmabuf->resv); 1252 } 1253 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF); 1254 1255 /** 1256 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1257 * 1258 * @dmabuf: [in] buffer which is moving 1259 * 1260 * Informs all attachments that they need to destroy and recreate all their 1261 * mappings. 1262 */ 1263 void dma_buf_move_notify(struct dma_buf *dmabuf) 1264 { 1265 struct dma_buf_attachment *attach; 1266 1267 dma_resv_assert_held(dmabuf->resv); 1268 1269 list_for_each_entry(attach, &dmabuf->attachments, node) 1270 if (attach->importer_ops) 1271 attach->importer_ops->move_notify(attach); 1272 } 1273 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1274 1275 /** 1276 * DOC: cpu access 1277 * 1278 * There are multiple reasons for supporting CPU access to a dma buffer object: 1279 * 1280 * - Fallback operations in the kernel, for example when a device is connected 1281 * over USB and the kernel needs to shuffle the data around first before 1282 * sending it away. Cache coherency is handled by bracketing any transactions 1283 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1284 * access. 1285 * 1286 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1287 * vmap interface is introduced. Note that on very old 32-bit architectures 1288 * vmalloc space might be limited and result in vmap calls failing. 1289 * 1290 * Interfaces:: 1291 * 1292 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1293 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1294 * 1295 * The vmap call can fail if there is no vmap support in the exporter, or if 1296 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1297 * count for all vmap access and calls down into the exporter's vmap function 1298 * only when no vmapping exists, and only unmaps it once. Protection against 1299 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1300 * 1301 * - For full compatibility on the importer side with existing userspace 1302 * interfaces, which might already support mmap'ing buffers. This is needed in 1303 * many processing pipelines (e.g. feeding a software rendered image into a 1304 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1305 * framework already supported this and for DMA buffer file descriptors to 1306 * replace ION buffers mmap support was needed. 1307 * 1308 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1309 * fd. But like for CPU access there's a need to bracket the actual access, 1310 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1311 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1312 * be restarted. 1313 * 1314 * Some systems might need some sort of cache coherency management e.g. when 1315 * CPU and GPU domains are being accessed through dma-buf at the same time. 1316 * To circumvent this problem there are begin/end coherency markers, that 1317 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1318 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1319 * sequence would be used like following: 1320 * 1321 * - mmap dma-buf fd 1322 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1323 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1324 * want (with the new data being consumed by say the GPU or the scanout 1325 * device) 1326 * - munmap once you don't need the buffer any more 1327 * 1328 * For correctness and optimal performance, it is always required to use 1329 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1330 * mapped address. Userspace cannot rely on coherent access, even when there 1331 * are systems where it just works without calling these ioctls. 1332 * 1333 * - And as a CPU fallback in userspace processing pipelines. 1334 * 1335 * Similar to the motivation for kernel cpu access it is again important that 1336 * the userspace code of a given importing subsystem can use the same 1337 * interfaces with a imported dma-buf buffer object as with a native buffer 1338 * object. This is especially important for drm where the userspace part of 1339 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1340 * use a different way to mmap a buffer rather invasive. 1341 * 1342 * The assumption in the current dma-buf interfaces is that redirecting the 1343 * initial mmap is all that's needed. A survey of some of the existing 1344 * subsystems shows that no driver seems to do any nefarious thing like 1345 * syncing up with outstanding asynchronous processing on the device or 1346 * allocating special resources at fault time. So hopefully this is good 1347 * enough, since adding interfaces to intercept pagefaults and allow pte 1348 * shootdowns would increase the complexity quite a bit. 1349 * 1350 * Interface:: 1351 * 1352 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1353 * unsigned long); 1354 * 1355 * If the importing subsystem simply provides a special-purpose mmap call to 1356 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1357 * equally achieve that for a dma-buf object. 1358 */ 1359 1360 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1361 enum dma_data_direction direction) 1362 { 1363 bool write = (direction == DMA_BIDIRECTIONAL || 1364 direction == DMA_TO_DEVICE); 1365 struct dma_resv *resv = dmabuf->resv; 1366 long ret; 1367 1368 /* Wait on any implicit rendering fences */ 1369 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1370 true, MAX_SCHEDULE_TIMEOUT); 1371 if (ret < 0) 1372 return ret; 1373 1374 return 0; 1375 } 1376 1377 /** 1378 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1379 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1380 * preparations. Coherency is only guaranteed in the specified range for the 1381 * specified access direction. 1382 * @dmabuf: [in] buffer to prepare cpu access for. 1383 * @direction: [in] direction of access. 1384 * 1385 * After the cpu access is complete the caller should call 1386 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is 1387 * it guaranteed to be coherent with other DMA access. 1388 * 1389 * This function will also wait for any DMA transactions tracked through 1390 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1391 * synchronization this function will only ensure cache coherency, callers must 1392 * ensure synchronization with such DMA transactions on their own. 1393 * 1394 * Can return negative error values, returns 0 on success. 1395 */ 1396 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1397 enum dma_data_direction direction) 1398 { 1399 int ret = 0; 1400 1401 if (WARN_ON(!dmabuf)) 1402 return -EINVAL; 1403 1404 might_lock(&dmabuf->resv->lock.base); 1405 1406 if (dmabuf->ops->begin_cpu_access) 1407 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1408 1409 /* Ensure that all fences are waited upon - but we first allow 1410 * the native handler the chance to do so more efficiently if it 1411 * chooses. A double invocation here will be reasonably cheap no-op. 1412 */ 1413 if (ret == 0) 1414 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1415 1416 return ret; 1417 } 1418 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1419 1420 /** 1421 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1422 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1423 * actions. Coherency is only guaranteed in the specified range for the 1424 * specified access direction. 1425 * @dmabuf: [in] buffer to complete cpu access for. 1426 * @direction: [in] direction of access. 1427 * 1428 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1429 * 1430 * Can return negative error values, returns 0 on success. 1431 */ 1432 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1433 enum dma_data_direction direction) 1434 { 1435 int ret = 0; 1436 1437 WARN_ON(!dmabuf); 1438 1439 might_lock(&dmabuf->resv->lock.base); 1440 1441 if (dmabuf->ops->end_cpu_access) 1442 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1443 1444 return ret; 1445 } 1446 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1447 1448 1449 /** 1450 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1451 * @dmabuf: [in] buffer that should back the vma 1452 * @vma: [in] vma for the mmap 1453 * @pgoff: [in] offset in pages where this mmap should start within the 1454 * dma-buf buffer. 1455 * 1456 * This function adjusts the passed in vma so that it points at the file of the 1457 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1458 * checking on the size of the vma. Then it calls the exporters mmap function to 1459 * set up the mapping. 1460 * 1461 * Can return negative error values, returns 0 on success. 1462 */ 1463 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1464 unsigned long pgoff) 1465 { 1466 int ret; 1467 1468 if (WARN_ON(!dmabuf || !vma)) 1469 return -EINVAL; 1470 1471 /* check if buffer supports mmap */ 1472 if (!dmabuf->ops->mmap) 1473 return -EINVAL; 1474 1475 /* check for offset overflow */ 1476 if (pgoff + vma_pages(vma) < pgoff) 1477 return -EOVERFLOW; 1478 1479 /* check for overflowing the buffer's size */ 1480 if (pgoff + vma_pages(vma) > 1481 dmabuf->size >> PAGE_SHIFT) 1482 return -EINVAL; 1483 1484 /* readjust the vma */ 1485 vma_set_file(vma, dmabuf->file); 1486 vma->vm_pgoff = pgoff; 1487 1488 dma_resv_lock(dmabuf->resv, NULL); 1489 ret = dmabuf->ops->mmap(dmabuf, vma); 1490 dma_resv_unlock(dmabuf->resv); 1491 1492 return ret; 1493 } 1494 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1495 1496 /** 1497 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1498 * address space. Same restrictions as for vmap and friends apply. 1499 * @dmabuf: [in] buffer to vmap 1500 * @map: [out] returns the vmap pointer 1501 * 1502 * This call may fail due to lack of virtual mapping address space. 1503 * These calls are optional in drivers. The intended use for them 1504 * is for mapping objects linear in kernel space for high use objects. 1505 * 1506 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1507 * dma_buf_end_cpu_access() around any cpu access performed through this 1508 * mapping. 1509 * 1510 * Returns 0 on success, or a negative errno code otherwise. 1511 */ 1512 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1513 { 1514 struct iosys_map ptr; 1515 int ret; 1516 1517 iosys_map_clear(map); 1518 1519 if (WARN_ON(!dmabuf)) 1520 return -EINVAL; 1521 1522 dma_resv_assert_held(dmabuf->resv); 1523 1524 if (!dmabuf->ops->vmap) 1525 return -EINVAL; 1526 1527 if (dmabuf->vmapping_counter) { 1528 dmabuf->vmapping_counter++; 1529 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1530 *map = dmabuf->vmap_ptr; 1531 return 0; 1532 } 1533 1534 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1535 1536 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1537 if (WARN_ON_ONCE(ret)) 1538 return ret; 1539 1540 dmabuf->vmap_ptr = ptr; 1541 dmabuf->vmapping_counter = 1; 1542 1543 *map = dmabuf->vmap_ptr; 1544 1545 return 0; 1546 } 1547 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1548 1549 /** 1550 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel 1551 * address space. Same restrictions as for vmap and friends apply. 1552 * @dmabuf: [in] buffer to vmap 1553 * @map: [out] returns the vmap pointer 1554 * 1555 * Unlocked version of dma_buf_vmap() 1556 * 1557 * Returns 0 on success, or a negative errno code otherwise. 1558 */ 1559 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1560 { 1561 int ret; 1562 1563 iosys_map_clear(map); 1564 1565 if (WARN_ON(!dmabuf)) 1566 return -EINVAL; 1567 1568 dma_resv_lock(dmabuf->resv, NULL); 1569 ret = dma_buf_vmap(dmabuf, map); 1570 dma_resv_unlock(dmabuf->resv); 1571 1572 return ret; 1573 } 1574 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF); 1575 1576 /** 1577 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1578 * @dmabuf: [in] buffer to vunmap 1579 * @map: [in] vmap pointer to vunmap 1580 */ 1581 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1582 { 1583 if (WARN_ON(!dmabuf)) 1584 return; 1585 1586 dma_resv_assert_held(dmabuf->resv); 1587 1588 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1589 BUG_ON(dmabuf->vmapping_counter == 0); 1590 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1591 1592 if (--dmabuf->vmapping_counter == 0) { 1593 if (dmabuf->ops->vunmap) 1594 dmabuf->ops->vunmap(dmabuf, map); 1595 iosys_map_clear(&dmabuf->vmap_ptr); 1596 } 1597 } 1598 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1599 1600 /** 1601 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap. 1602 * @dmabuf: [in] buffer to vunmap 1603 * @map: [in] vmap pointer to vunmap 1604 */ 1605 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1606 { 1607 if (WARN_ON(!dmabuf)) 1608 return; 1609 1610 dma_resv_lock(dmabuf->resv, NULL); 1611 dma_buf_vunmap(dmabuf, map); 1612 dma_resv_unlock(dmabuf->resv); 1613 } 1614 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF); 1615 1616 #ifdef CONFIG_DEBUG_FS 1617 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1618 { 1619 struct dma_buf *buf_obj; 1620 struct dma_buf_attachment *attach_obj; 1621 int count = 0, attach_count; 1622 size_t size = 0; 1623 int ret; 1624 1625 ret = mutex_lock_interruptible(&db_list.lock); 1626 1627 if (ret) 1628 return ret; 1629 1630 seq_puts(s, "\nDma-buf Objects:\n"); 1631 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1632 "size", "flags", "mode", "count", "ino"); 1633 1634 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1635 1636 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1637 if (ret) 1638 goto error_unlock; 1639 1640 1641 spin_lock(&buf_obj->name_lock); 1642 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1643 buf_obj->size, 1644 buf_obj->file->f_flags, buf_obj->file->f_mode, 1645 file_count(buf_obj->file), 1646 buf_obj->exp_name, 1647 file_inode(buf_obj->file)->i_ino, 1648 buf_obj->name ?: "<none>"); 1649 spin_unlock(&buf_obj->name_lock); 1650 1651 dma_resv_describe(buf_obj->resv, s); 1652 1653 seq_puts(s, "\tAttached Devices:\n"); 1654 attach_count = 0; 1655 1656 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1657 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1658 attach_count++; 1659 } 1660 dma_resv_unlock(buf_obj->resv); 1661 1662 seq_printf(s, "Total %d devices attached\n\n", 1663 attach_count); 1664 1665 count++; 1666 size += buf_obj->size; 1667 } 1668 1669 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1670 1671 mutex_unlock(&db_list.lock); 1672 return 0; 1673 1674 error_unlock: 1675 mutex_unlock(&db_list.lock); 1676 return ret; 1677 } 1678 1679 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1680 1681 static struct dentry *dma_buf_debugfs_dir; 1682 1683 static int dma_buf_init_debugfs(void) 1684 { 1685 struct dentry *d; 1686 int err = 0; 1687 1688 d = debugfs_create_dir("dma_buf", NULL); 1689 if (IS_ERR(d)) 1690 return PTR_ERR(d); 1691 1692 dma_buf_debugfs_dir = d; 1693 1694 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1695 NULL, &dma_buf_debug_fops); 1696 if (IS_ERR(d)) { 1697 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1698 debugfs_remove_recursive(dma_buf_debugfs_dir); 1699 dma_buf_debugfs_dir = NULL; 1700 err = PTR_ERR(d); 1701 } 1702 1703 return err; 1704 } 1705 1706 static void dma_buf_uninit_debugfs(void) 1707 { 1708 debugfs_remove_recursive(dma_buf_debugfs_dir); 1709 } 1710 #else 1711 static inline int dma_buf_init_debugfs(void) 1712 { 1713 return 0; 1714 } 1715 static inline void dma_buf_uninit_debugfs(void) 1716 { 1717 } 1718 #endif 1719 1720 static int __init dma_buf_init(void) 1721 { 1722 int ret; 1723 1724 ret = dma_buf_init_sysfs_statistics(); 1725 if (ret) 1726 return ret; 1727 1728 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1729 if (IS_ERR(dma_buf_mnt)) 1730 return PTR_ERR(dma_buf_mnt); 1731 1732 mutex_init(&db_list.lock); 1733 INIT_LIST_HEAD(&db_list.head); 1734 dma_buf_init_debugfs(); 1735 return 0; 1736 } 1737 subsys_initcall(dma_buf_init); 1738 1739 static void __exit dma_buf_deinit(void) 1740 { 1741 dma_buf_uninit_debugfs(); 1742 kern_unmount(dma_buf_mnt); 1743 dma_buf_uninit_sysfs_statistics(); 1744 } 1745 __exitcall(dma_buf_deinit); 1746