xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	dma_resv_lock(dmabuf->resv, NULL);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	dma_resv_unlock(dmabuf->resv);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 	.d_dname = dmabuffs_dname,
59 };
60 
61 static struct vfsmount *dma_buf_mnt;
62 
63 static int dma_buf_fs_init_context(struct fs_context *fc)
64 {
65 	struct pseudo_fs_context *ctx;
66 
67 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 	if (!ctx)
69 		return -ENOMEM;
70 	ctx->dops = &dma_buf_dentry_ops;
71 	return 0;
72 }
73 
74 static struct file_system_type dma_buf_fs_type = {
75 	.name = "dmabuf",
76 	.init_fs_context = dma_buf_fs_init_context,
77 	.kill_sb = kill_anon_super,
78 };
79 
80 static int dma_buf_release(struct inode *inode, struct file *file)
81 {
82 	struct dma_buf *dmabuf;
83 
84 	if (!is_dma_buf_file(file))
85 		return -EINVAL;
86 
87 	dmabuf = file->private_data;
88 
89 	BUG_ON(dmabuf->vmapping_counter);
90 
91 	/*
92 	 * Any fences that a dma-buf poll can wait on should be signaled
93 	 * before releasing dma-buf. This is the responsibility of each
94 	 * driver that uses the reservation objects.
95 	 *
96 	 * If you hit this BUG() it means someone dropped their ref to the
97 	 * dma-buf while still having pending operation to the buffer.
98 	 */
99 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100 
101 	dmabuf->ops->release(dmabuf);
102 
103 	mutex_lock(&db_list.lock);
104 	list_del(&dmabuf->list_node);
105 	mutex_unlock(&db_list.lock);
106 
107 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 		dma_resv_fini(dmabuf->resv);
109 
110 	module_put(dmabuf->owner);
111 	kfree(dmabuf->name);
112 	kfree(dmabuf);
113 	return 0;
114 }
115 
116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
117 {
118 	struct dma_buf *dmabuf;
119 
120 	if (!is_dma_buf_file(file))
121 		return -EINVAL;
122 
123 	dmabuf = file->private_data;
124 
125 	/* check if buffer supports mmap */
126 	if (!dmabuf->ops->mmap)
127 		return -EINVAL;
128 
129 	/* check for overflowing the buffer's size */
130 	if (vma->vm_pgoff + vma_pages(vma) >
131 	    dmabuf->size >> PAGE_SHIFT)
132 		return -EINVAL;
133 
134 	return dmabuf->ops->mmap(dmabuf, vma);
135 }
136 
137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
138 {
139 	struct dma_buf *dmabuf;
140 	loff_t base;
141 
142 	if (!is_dma_buf_file(file))
143 		return -EBADF;
144 
145 	dmabuf = file->private_data;
146 
147 	/* only support discovering the end of the buffer,
148 	   but also allow SEEK_SET to maintain the idiomatic
149 	   SEEK_END(0), SEEK_CUR(0) pattern */
150 	if (whence == SEEK_END)
151 		base = dmabuf->size;
152 	else if (whence == SEEK_SET)
153 		base = 0;
154 	else
155 		return -EINVAL;
156 
157 	if (offset != 0)
158 		return -EINVAL;
159 
160 	return base + offset;
161 }
162 
163 /**
164  * DOC: fence polling
165  *
166  * To support cross-device and cross-driver synchronization of buffer access
167  * implicit fences (represented internally in the kernel with &struct fence) can
168  * be attached to a &dma_buf. The glue for that and a few related things are
169  * provided in the &dma_resv structure.
170  *
171  * Userspace can query the state of these implicitly tracked fences using poll()
172  * and related system calls:
173  *
174  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
175  *   most recent write or exclusive fence.
176  *
177  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
178  *   all attached fences, shared and exclusive ones.
179  *
180  * Note that this only signals the completion of the respective fences, i.e. the
181  * DMA transfers are complete. Cache flushing and any other necessary
182  * preparations before CPU access can begin still need to happen.
183  */
184 
185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
186 {
187 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&dcb->poll->lock, flags);
191 	wake_up_locked_poll(dcb->poll, dcb->active);
192 	dcb->active = 0;
193 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
194 }
195 
196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
197 {
198 	struct dma_buf *dmabuf;
199 	struct dma_resv *resv;
200 	struct dma_resv_list *fobj;
201 	struct dma_fence *fence_excl;
202 	__poll_t events;
203 	unsigned shared_count, seq;
204 
205 	dmabuf = file->private_data;
206 	if (!dmabuf || !dmabuf->resv)
207 		return EPOLLERR;
208 
209 	resv = dmabuf->resv;
210 
211 	poll_wait(file, &dmabuf->poll, poll);
212 
213 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
214 	if (!events)
215 		return 0;
216 
217 retry:
218 	seq = read_seqcount_begin(&resv->seq);
219 	rcu_read_lock();
220 
221 	fobj = rcu_dereference(resv->fence);
222 	if (fobj)
223 		shared_count = fobj->shared_count;
224 	else
225 		shared_count = 0;
226 	fence_excl = rcu_dereference(resv->fence_excl);
227 	if (read_seqcount_retry(&resv->seq, seq)) {
228 		rcu_read_unlock();
229 		goto retry;
230 	}
231 
232 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
233 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
234 		__poll_t pevents = EPOLLIN;
235 
236 		if (shared_count == 0)
237 			pevents |= EPOLLOUT;
238 
239 		spin_lock_irq(&dmabuf->poll.lock);
240 		if (dcb->active) {
241 			dcb->active |= pevents;
242 			events &= ~pevents;
243 		} else
244 			dcb->active = pevents;
245 		spin_unlock_irq(&dmabuf->poll.lock);
246 
247 		if (events & pevents) {
248 			if (!dma_fence_get_rcu(fence_excl)) {
249 				/* force a recheck */
250 				events &= ~pevents;
251 				dma_buf_poll_cb(NULL, &dcb->cb);
252 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
253 							   dma_buf_poll_cb)) {
254 				events &= ~pevents;
255 				dma_fence_put(fence_excl);
256 			} else {
257 				/*
258 				 * No callback queued, wake up any additional
259 				 * waiters.
260 				 */
261 				dma_fence_put(fence_excl);
262 				dma_buf_poll_cb(NULL, &dcb->cb);
263 			}
264 		}
265 	}
266 
267 	if ((events & EPOLLOUT) && shared_count > 0) {
268 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
269 		int i;
270 
271 		/* Only queue a new callback if no event has fired yet */
272 		spin_lock_irq(&dmabuf->poll.lock);
273 		if (dcb->active)
274 			events &= ~EPOLLOUT;
275 		else
276 			dcb->active = EPOLLOUT;
277 		spin_unlock_irq(&dmabuf->poll.lock);
278 
279 		if (!(events & EPOLLOUT))
280 			goto out;
281 
282 		for (i = 0; i < shared_count; ++i) {
283 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
284 
285 			if (!dma_fence_get_rcu(fence)) {
286 				/*
287 				 * fence refcount dropped to zero, this means
288 				 * that fobj has been freed
289 				 *
290 				 * call dma_buf_poll_cb and force a recheck!
291 				 */
292 				events &= ~EPOLLOUT;
293 				dma_buf_poll_cb(NULL, &dcb->cb);
294 				break;
295 			}
296 			if (!dma_fence_add_callback(fence, &dcb->cb,
297 						    dma_buf_poll_cb)) {
298 				dma_fence_put(fence);
299 				events &= ~EPOLLOUT;
300 				break;
301 			}
302 			dma_fence_put(fence);
303 		}
304 
305 		/* No callback queued, wake up any additional waiters. */
306 		if (i == shared_count)
307 			dma_buf_poll_cb(NULL, &dcb->cb);
308 	}
309 
310 out:
311 	rcu_read_unlock();
312 	return events;
313 }
314 
315 /**
316  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
317  * The name of the dma-buf buffer can only be set when the dma-buf is not
318  * attached to any devices. It could theoritically support changing the
319  * name of the dma-buf if the same piece of memory is used for multiple
320  * purpose between different devices.
321  *
322  * @dmabuf [in]     dmabuf buffer that will be renamed.
323  * @buf:   [in]     A piece of userspace memory that contains the name of
324  *                  the dma-buf.
325  *
326  * Returns 0 on success. If the dma-buf buffer is already attached to
327  * devices, return -EBUSY.
328  *
329  */
330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
331 {
332 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
333 	long ret = 0;
334 
335 	if (IS_ERR(name))
336 		return PTR_ERR(name);
337 
338 	dma_resv_lock(dmabuf->resv, NULL);
339 	if (!list_empty(&dmabuf->attachments)) {
340 		ret = -EBUSY;
341 		kfree(name);
342 		goto out_unlock;
343 	}
344 	kfree(dmabuf->name);
345 	dmabuf->name = name;
346 
347 out_unlock:
348 	dma_resv_unlock(dmabuf->resv);
349 	return ret;
350 }
351 
352 static long dma_buf_ioctl(struct file *file,
353 			  unsigned int cmd, unsigned long arg)
354 {
355 	struct dma_buf *dmabuf;
356 	struct dma_buf_sync sync;
357 	enum dma_data_direction direction;
358 	int ret;
359 
360 	dmabuf = file->private_data;
361 
362 	switch (cmd) {
363 	case DMA_BUF_IOCTL_SYNC:
364 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
365 			return -EFAULT;
366 
367 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
368 			return -EINVAL;
369 
370 		switch (sync.flags & DMA_BUF_SYNC_RW) {
371 		case DMA_BUF_SYNC_READ:
372 			direction = DMA_FROM_DEVICE;
373 			break;
374 		case DMA_BUF_SYNC_WRITE:
375 			direction = DMA_TO_DEVICE;
376 			break;
377 		case DMA_BUF_SYNC_RW:
378 			direction = DMA_BIDIRECTIONAL;
379 			break;
380 		default:
381 			return -EINVAL;
382 		}
383 
384 		if (sync.flags & DMA_BUF_SYNC_END)
385 			ret = dma_buf_end_cpu_access(dmabuf, direction);
386 		else
387 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
388 
389 		return ret;
390 
391 	case DMA_BUF_SET_NAME:
392 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
393 
394 	default:
395 		return -ENOTTY;
396 	}
397 }
398 
399 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
400 {
401 	struct dma_buf *dmabuf = file->private_data;
402 
403 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
404 	/* Don't count the temporary reference taken inside procfs seq_show */
405 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
406 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
407 	dma_resv_lock(dmabuf->resv, NULL);
408 	if (dmabuf->name)
409 		seq_printf(m, "name:\t%s\n", dmabuf->name);
410 	dma_resv_unlock(dmabuf->resv);
411 }
412 
413 static const struct file_operations dma_buf_fops = {
414 	.release	= dma_buf_release,
415 	.mmap		= dma_buf_mmap_internal,
416 	.llseek		= dma_buf_llseek,
417 	.poll		= dma_buf_poll,
418 	.unlocked_ioctl	= dma_buf_ioctl,
419 	.compat_ioctl	= compat_ptr_ioctl,
420 	.show_fdinfo	= dma_buf_show_fdinfo,
421 };
422 
423 /*
424  * is_dma_buf_file - Check if struct file* is associated with dma_buf
425  */
426 static inline int is_dma_buf_file(struct file *file)
427 {
428 	return file->f_op == &dma_buf_fops;
429 }
430 
431 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
432 {
433 	struct file *file;
434 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
435 
436 	if (IS_ERR(inode))
437 		return ERR_CAST(inode);
438 
439 	inode->i_size = dmabuf->size;
440 	inode_set_bytes(inode, dmabuf->size);
441 
442 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
443 				 flags, &dma_buf_fops);
444 	if (IS_ERR(file))
445 		goto err_alloc_file;
446 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
447 	file->private_data = dmabuf;
448 	file->f_path.dentry->d_fsdata = dmabuf;
449 
450 	return file;
451 
452 err_alloc_file:
453 	iput(inode);
454 	return file;
455 }
456 
457 /**
458  * DOC: dma buf device access
459  *
460  * For device DMA access to a shared DMA buffer the usual sequence of operations
461  * is fairly simple:
462  *
463  * 1. The exporter defines his exporter instance using
464  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
465  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
466  *    as a file descriptor by calling dma_buf_fd().
467  *
468  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
469  *    to share with: First the filedescriptor is converted to a &dma_buf using
470  *    dma_buf_get(). Then the buffer is attached to the device using
471  *    dma_buf_attach().
472  *
473  *    Up to this stage the exporter is still free to migrate or reallocate the
474  *    backing storage.
475  *
476  * 3. Once the buffer is attached to all devices userspace can initiate DMA
477  *    access to the shared buffer. In the kernel this is done by calling
478  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
479  *
480  * 4. Once a driver is done with a shared buffer it needs to call
481  *    dma_buf_detach() (after cleaning up any mappings) and then release the
482  *    reference acquired with dma_buf_get by calling dma_buf_put().
483  *
484  * For the detailed semantics exporters are expected to implement see
485  * &dma_buf_ops.
486  */
487 
488 /**
489  * dma_buf_export - Creates a new dma_buf, and associates an anon file
490  * with this buffer, so it can be exported.
491  * Also connect the allocator specific data and ops to the buffer.
492  * Additionally, provide a name string for exporter; useful in debugging.
493  *
494  * @exp_info:	[in]	holds all the export related information provided
495  *			by the exporter. see &struct dma_buf_export_info
496  *			for further details.
497  *
498  * Returns, on success, a newly created dma_buf object, which wraps the
499  * supplied private data and operations for dma_buf_ops. On either missing
500  * ops, or error in allocating struct dma_buf, will return negative error.
501  *
502  * For most cases the easiest way to create @exp_info is through the
503  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
504  */
505 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
506 {
507 	struct dma_buf *dmabuf;
508 	struct dma_resv *resv = exp_info->resv;
509 	struct file *file;
510 	size_t alloc_size = sizeof(struct dma_buf);
511 	int ret;
512 
513 	if (!exp_info->resv)
514 		alloc_size += sizeof(struct dma_resv);
515 	else
516 		/* prevent &dma_buf[1] == dma_buf->resv */
517 		alloc_size += 1;
518 
519 	if (WARN_ON(!exp_info->priv
520 			  || !exp_info->ops
521 			  || !exp_info->ops->map_dma_buf
522 			  || !exp_info->ops->unmap_dma_buf
523 			  || !exp_info->ops->release)) {
524 		return ERR_PTR(-EINVAL);
525 	}
526 
527 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
528 		    (exp_info->ops->pin || exp_info->ops->unpin)))
529 		return ERR_PTR(-EINVAL);
530 
531 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
532 		return ERR_PTR(-EINVAL);
533 
534 	if (!try_module_get(exp_info->owner))
535 		return ERR_PTR(-ENOENT);
536 
537 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
538 	if (!dmabuf) {
539 		ret = -ENOMEM;
540 		goto err_module;
541 	}
542 
543 	dmabuf->priv = exp_info->priv;
544 	dmabuf->ops = exp_info->ops;
545 	dmabuf->size = exp_info->size;
546 	dmabuf->exp_name = exp_info->exp_name;
547 	dmabuf->owner = exp_info->owner;
548 	init_waitqueue_head(&dmabuf->poll);
549 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
550 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
551 
552 	if (!resv) {
553 		resv = (struct dma_resv *)&dmabuf[1];
554 		dma_resv_init(resv);
555 	}
556 	dmabuf->resv = resv;
557 
558 	file = dma_buf_getfile(dmabuf, exp_info->flags);
559 	if (IS_ERR(file)) {
560 		ret = PTR_ERR(file);
561 		goto err_dmabuf;
562 	}
563 
564 	file->f_mode |= FMODE_LSEEK;
565 	dmabuf->file = file;
566 
567 	mutex_init(&dmabuf->lock);
568 	INIT_LIST_HEAD(&dmabuf->attachments);
569 
570 	mutex_lock(&db_list.lock);
571 	list_add(&dmabuf->list_node, &db_list.head);
572 	mutex_unlock(&db_list.lock);
573 
574 	return dmabuf;
575 
576 err_dmabuf:
577 	kfree(dmabuf);
578 err_module:
579 	module_put(exp_info->owner);
580 	return ERR_PTR(ret);
581 }
582 EXPORT_SYMBOL_GPL(dma_buf_export);
583 
584 /**
585  * dma_buf_fd - returns a file descriptor for the given dma_buf
586  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
587  * @flags:      [in]    flags to give to fd
588  *
589  * On success, returns an associated 'fd'. Else, returns error.
590  */
591 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
592 {
593 	int fd;
594 
595 	if (!dmabuf || !dmabuf->file)
596 		return -EINVAL;
597 
598 	fd = get_unused_fd_flags(flags);
599 	if (fd < 0)
600 		return fd;
601 
602 	fd_install(fd, dmabuf->file);
603 
604 	return fd;
605 }
606 EXPORT_SYMBOL_GPL(dma_buf_fd);
607 
608 /**
609  * dma_buf_get - returns the dma_buf structure related to an fd
610  * @fd:	[in]	fd associated with the dma_buf to be returned
611  *
612  * On success, returns the dma_buf structure associated with an fd; uses
613  * file's refcounting done by fget to increase refcount. returns ERR_PTR
614  * otherwise.
615  */
616 struct dma_buf *dma_buf_get(int fd)
617 {
618 	struct file *file;
619 
620 	file = fget(fd);
621 
622 	if (!file)
623 		return ERR_PTR(-EBADF);
624 
625 	if (!is_dma_buf_file(file)) {
626 		fput(file);
627 		return ERR_PTR(-EINVAL);
628 	}
629 
630 	return file->private_data;
631 }
632 EXPORT_SYMBOL_GPL(dma_buf_get);
633 
634 /**
635  * dma_buf_put - decreases refcount of the buffer
636  * @dmabuf:	[in]	buffer to reduce refcount of
637  *
638  * Uses file's refcounting done implicitly by fput().
639  *
640  * If, as a result of this call, the refcount becomes 0, the 'release' file
641  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
642  * in turn, and frees the memory allocated for dmabuf when exported.
643  */
644 void dma_buf_put(struct dma_buf *dmabuf)
645 {
646 	if (WARN_ON(!dmabuf || !dmabuf->file))
647 		return;
648 
649 	fput(dmabuf->file);
650 }
651 EXPORT_SYMBOL_GPL(dma_buf_put);
652 
653 /**
654  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
655  * calls attach() of dma_buf_ops to allow device-specific attach functionality
656  * @dmabuf:		[in]	buffer to attach device to.
657  * @dev:		[in]	device to be attached.
658  * @importer_ops	[in]	importer operations for the attachment
659  * @importer_priv	[in]	importer private pointer for the attachment
660  *
661  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
662  * must be cleaned up by calling dma_buf_detach().
663  *
664  * Returns:
665  *
666  * A pointer to newly created &dma_buf_attachment on success, or a negative
667  * error code wrapped into a pointer on failure.
668  *
669  * Note that this can fail if the backing storage of @dmabuf is in a place not
670  * accessible to @dev, and cannot be moved to a more suitable place. This is
671  * indicated with the error code -EBUSY.
672  */
673 struct dma_buf_attachment *
674 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
675 		       const struct dma_buf_attach_ops *importer_ops,
676 		       void *importer_priv)
677 {
678 	struct dma_buf_attachment *attach;
679 	int ret;
680 
681 	if (WARN_ON(!dmabuf || !dev))
682 		return ERR_PTR(-EINVAL);
683 
684 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
685 		return ERR_PTR(-EINVAL);
686 
687 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
688 	if (!attach)
689 		return ERR_PTR(-ENOMEM);
690 
691 	attach->dev = dev;
692 	attach->dmabuf = dmabuf;
693 	attach->importer_ops = importer_ops;
694 	attach->importer_priv = importer_priv;
695 
696 	if (dmabuf->ops->attach) {
697 		ret = dmabuf->ops->attach(dmabuf, attach);
698 		if (ret)
699 			goto err_attach;
700 	}
701 	dma_resv_lock(dmabuf->resv, NULL);
702 	list_add(&attach->node, &dmabuf->attachments);
703 	dma_resv_unlock(dmabuf->resv);
704 
705 	/* When either the importer or the exporter can't handle dynamic
706 	 * mappings we cache the mapping here to avoid issues with the
707 	 * reservation object lock.
708 	 */
709 	if (dma_buf_attachment_is_dynamic(attach) !=
710 	    dma_buf_is_dynamic(dmabuf)) {
711 		struct sg_table *sgt;
712 
713 		if (dma_buf_is_dynamic(attach->dmabuf)) {
714 			dma_resv_lock(attach->dmabuf->resv, NULL);
715 			ret = dma_buf_pin(attach);
716 			if (ret)
717 				goto err_unlock;
718 		}
719 
720 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
721 		if (!sgt)
722 			sgt = ERR_PTR(-ENOMEM);
723 		if (IS_ERR(sgt)) {
724 			ret = PTR_ERR(sgt);
725 			goto err_unpin;
726 		}
727 		if (dma_buf_is_dynamic(attach->dmabuf))
728 			dma_resv_unlock(attach->dmabuf->resv);
729 		attach->sgt = sgt;
730 		attach->dir = DMA_BIDIRECTIONAL;
731 	}
732 
733 	return attach;
734 
735 err_attach:
736 	kfree(attach);
737 	return ERR_PTR(ret);
738 
739 err_unpin:
740 	if (dma_buf_is_dynamic(attach->dmabuf))
741 		dma_buf_unpin(attach);
742 
743 err_unlock:
744 	if (dma_buf_is_dynamic(attach->dmabuf))
745 		dma_resv_unlock(attach->dmabuf->resv);
746 
747 	dma_buf_detach(dmabuf, attach);
748 	return ERR_PTR(ret);
749 }
750 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
751 
752 /**
753  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
754  * @dmabuf:	[in]	buffer to attach device to.
755  * @dev:	[in]	device to be attached.
756  *
757  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
758  * mapping.
759  */
760 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
761 					  struct device *dev)
762 {
763 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dma_buf_attach);
766 
767 /**
768  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
769  * optionally calls detach() of dma_buf_ops for device-specific detach
770  * @dmabuf:	[in]	buffer to detach from.
771  * @attach:	[in]	attachment to be detached; is free'd after this call.
772  *
773  * Clean up a device attachment obtained by calling dma_buf_attach().
774  */
775 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
776 {
777 	if (WARN_ON(!dmabuf || !attach))
778 		return;
779 
780 	if (attach->sgt) {
781 		if (dma_buf_is_dynamic(attach->dmabuf))
782 			dma_resv_lock(attach->dmabuf->resv, NULL);
783 
784 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
785 
786 		if (dma_buf_is_dynamic(attach->dmabuf)) {
787 			dma_buf_unpin(attach);
788 			dma_resv_unlock(attach->dmabuf->resv);
789 		}
790 	}
791 
792 	dma_resv_lock(dmabuf->resv, NULL);
793 	list_del(&attach->node);
794 	dma_resv_unlock(dmabuf->resv);
795 	if (dmabuf->ops->detach)
796 		dmabuf->ops->detach(dmabuf, attach);
797 
798 	kfree(attach);
799 }
800 EXPORT_SYMBOL_GPL(dma_buf_detach);
801 
802 /**
803  * dma_buf_pin - Lock down the DMA-buf
804  *
805  * @attach:	[in]	attachment which should be pinned
806  *
807  * Returns:
808  * 0 on success, negative error code on failure.
809  */
810 int dma_buf_pin(struct dma_buf_attachment *attach)
811 {
812 	struct dma_buf *dmabuf = attach->dmabuf;
813 	int ret = 0;
814 
815 	dma_resv_assert_held(dmabuf->resv);
816 
817 	if (dmabuf->ops->pin)
818 		ret = dmabuf->ops->pin(attach);
819 
820 	return ret;
821 }
822 EXPORT_SYMBOL_GPL(dma_buf_pin);
823 
824 /**
825  * dma_buf_unpin - Remove lock from DMA-buf
826  *
827  * @attach:	[in]	attachment which should be unpinned
828  */
829 void dma_buf_unpin(struct dma_buf_attachment *attach)
830 {
831 	struct dma_buf *dmabuf = attach->dmabuf;
832 
833 	dma_resv_assert_held(dmabuf->resv);
834 
835 	if (dmabuf->ops->unpin)
836 		dmabuf->ops->unpin(attach);
837 }
838 EXPORT_SYMBOL_GPL(dma_buf_unpin);
839 
840 /**
841  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
842  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
843  * dma_buf_ops.
844  * @attach:	[in]	attachment whose scatterlist is to be returned
845  * @direction:	[in]	direction of DMA transfer
846  *
847  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
848  * on error. May return -EINTR if it is interrupted by a signal.
849  *
850  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
851  * the underlying backing storage is pinned for as long as a mapping exists,
852  * therefore users/importers should not hold onto a mapping for undue amounts of
853  * time.
854  */
855 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
856 					enum dma_data_direction direction)
857 {
858 	struct sg_table *sg_table;
859 	int r;
860 
861 	might_sleep();
862 
863 	if (WARN_ON(!attach || !attach->dmabuf))
864 		return ERR_PTR(-EINVAL);
865 
866 	if (dma_buf_attachment_is_dynamic(attach))
867 		dma_resv_assert_held(attach->dmabuf->resv);
868 
869 	if (attach->sgt) {
870 		/*
871 		 * Two mappings with different directions for the same
872 		 * attachment are not allowed.
873 		 */
874 		if (attach->dir != direction &&
875 		    attach->dir != DMA_BIDIRECTIONAL)
876 			return ERR_PTR(-EBUSY);
877 
878 		return attach->sgt;
879 	}
880 
881 	if (dma_buf_is_dynamic(attach->dmabuf)) {
882 		dma_resv_assert_held(attach->dmabuf->resv);
883 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
884 			r = dma_buf_pin(attach);
885 			if (r)
886 				return ERR_PTR(r);
887 		}
888 	}
889 
890 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
891 	if (!sg_table)
892 		sg_table = ERR_PTR(-ENOMEM);
893 
894 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
895 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
896 		dma_buf_unpin(attach);
897 
898 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
899 		attach->sgt = sg_table;
900 		attach->dir = direction;
901 	}
902 
903 	return sg_table;
904 }
905 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
906 
907 /**
908  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
909  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
910  * dma_buf_ops.
911  * @attach:	[in]	attachment to unmap buffer from
912  * @sg_table:	[in]	scatterlist info of the buffer to unmap
913  * @direction:  [in]    direction of DMA transfer
914  *
915  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
916  */
917 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
918 				struct sg_table *sg_table,
919 				enum dma_data_direction direction)
920 {
921 	might_sleep();
922 
923 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
924 		return;
925 
926 	if (dma_buf_attachment_is_dynamic(attach))
927 		dma_resv_assert_held(attach->dmabuf->resv);
928 
929 	if (attach->sgt == sg_table)
930 		return;
931 
932 	if (dma_buf_is_dynamic(attach->dmabuf))
933 		dma_resv_assert_held(attach->dmabuf->resv);
934 
935 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
936 
937 	if (dma_buf_is_dynamic(attach->dmabuf) &&
938 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
939 		dma_buf_unpin(attach);
940 }
941 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
942 
943 /**
944  * dma_buf_move_notify - notify attachments that DMA-buf is moving
945  *
946  * @dmabuf:	[in]	buffer which is moving
947  *
948  * Informs all attachmenst that they need to destroy and recreated all their
949  * mappings.
950  */
951 void dma_buf_move_notify(struct dma_buf *dmabuf)
952 {
953 	struct dma_buf_attachment *attach;
954 
955 	dma_resv_assert_held(dmabuf->resv);
956 
957 	list_for_each_entry(attach, &dmabuf->attachments, node)
958 		if (attach->importer_ops)
959 			attach->importer_ops->move_notify(attach);
960 }
961 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
962 
963 /**
964  * DOC: cpu access
965  *
966  * There are mutliple reasons for supporting CPU access to a dma buffer object:
967  *
968  * - Fallback operations in the kernel, for example when a device is connected
969  *   over USB and the kernel needs to shuffle the data around first before
970  *   sending it away. Cache coherency is handled by braketing any transactions
971  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
972  *   access.
973  *
974  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
975  *   vmap interface is introduced. Note that on very old 32-bit architectures
976  *   vmalloc space might be limited and result in vmap calls failing.
977  *
978  *   Interfaces::
979  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
980  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
981  *
982  *   The vmap call can fail if there is no vmap support in the exporter, or if
983  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
984  *   that the dma-buf layer keeps a reference count for all vmap access and
985  *   calls down into the exporter's vmap function only when no vmapping exists,
986  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
987  *   provided by taking the dma_buf->lock mutex.
988  *
989  * - For full compatibility on the importer side with existing userspace
990  *   interfaces, which might already support mmap'ing buffers. This is needed in
991  *   many processing pipelines (e.g. feeding a software rendered image into a
992  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
993  *   framework already supported this and for DMA buffer file descriptors to
994  *   replace ION buffers mmap support was needed.
995  *
996  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
997  *   fd. But like for CPU access there's a need to braket the actual access,
998  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
999  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1000  *   be restarted.
1001  *
1002  *   Some systems might need some sort of cache coherency management e.g. when
1003  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1004  *   To circumvent this problem there are begin/end coherency markers, that
1005  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1006  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1007  *   sequence would be used like following:
1008  *
1009  *     - mmap dma-buf fd
1010  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1011  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1012  *       want (with the new data being consumed by say the GPU or the scanout
1013  *       device)
1014  *     - munmap once you don't need the buffer any more
1015  *
1016  *    For correctness and optimal performance, it is always required to use
1017  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1018  *    mapped address. Userspace cannot rely on coherent access, even when there
1019  *    are systems where it just works without calling these ioctls.
1020  *
1021  * - And as a CPU fallback in userspace processing pipelines.
1022  *
1023  *   Similar to the motivation for kernel cpu access it is again important that
1024  *   the userspace code of a given importing subsystem can use the same
1025  *   interfaces with a imported dma-buf buffer object as with a native buffer
1026  *   object. This is especially important for drm where the userspace part of
1027  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1028  *   use a different way to mmap a buffer rather invasive.
1029  *
1030  *   The assumption in the current dma-buf interfaces is that redirecting the
1031  *   initial mmap is all that's needed. A survey of some of the existing
1032  *   subsystems shows that no driver seems to do any nefarious thing like
1033  *   syncing up with outstanding asynchronous processing on the device or
1034  *   allocating special resources at fault time. So hopefully this is good
1035  *   enough, since adding interfaces to intercept pagefaults and allow pte
1036  *   shootdowns would increase the complexity quite a bit.
1037  *
1038  *   Interface::
1039  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1040  *		       unsigned long);
1041  *
1042  *   If the importing subsystem simply provides a special-purpose mmap call to
1043  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1044  *   equally achieve that for a dma-buf object.
1045  */
1046 
1047 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1048 				      enum dma_data_direction direction)
1049 {
1050 	bool write = (direction == DMA_BIDIRECTIONAL ||
1051 		      direction == DMA_TO_DEVICE);
1052 	struct dma_resv *resv = dmabuf->resv;
1053 	long ret;
1054 
1055 	/* Wait on any implicit rendering fences */
1056 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
1057 						  MAX_SCHEDULE_TIMEOUT);
1058 	if (ret < 0)
1059 		return ret;
1060 
1061 	return 0;
1062 }
1063 
1064 /**
1065  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1066  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1067  * preparations. Coherency is only guaranteed in the specified range for the
1068  * specified access direction.
1069  * @dmabuf:	[in]	buffer to prepare cpu access for.
1070  * @direction:	[in]	length of range for cpu access.
1071  *
1072  * After the cpu access is complete the caller should call
1073  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1074  * it guaranteed to be coherent with other DMA access.
1075  *
1076  * Can return negative error values, returns 0 on success.
1077  */
1078 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1079 			     enum dma_data_direction direction)
1080 {
1081 	int ret = 0;
1082 
1083 	if (WARN_ON(!dmabuf))
1084 		return -EINVAL;
1085 
1086 	if (dmabuf->ops->begin_cpu_access)
1087 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1088 
1089 	/* Ensure that all fences are waited upon - but we first allow
1090 	 * the native handler the chance to do so more efficiently if it
1091 	 * chooses. A double invocation here will be reasonably cheap no-op.
1092 	 */
1093 	if (ret == 0)
1094 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1095 
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1099 
1100 /**
1101  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1102  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1103  * actions. Coherency is only guaranteed in the specified range for the
1104  * specified access direction.
1105  * @dmabuf:	[in]	buffer to complete cpu access for.
1106  * @direction:	[in]	length of range for cpu access.
1107  *
1108  * This terminates CPU access started with dma_buf_begin_cpu_access().
1109  *
1110  * Can return negative error values, returns 0 on success.
1111  */
1112 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1113 			   enum dma_data_direction direction)
1114 {
1115 	int ret = 0;
1116 
1117 	WARN_ON(!dmabuf);
1118 
1119 	if (dmabuf->ops->end_cpu_access)
1120 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1121 
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1125 
1126 
1127 /**
1128  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1129  * @dmabuf:	[in]	buffer that should back the vma
1130  * @vma:	[in]	vma for the mmap
1131  * @pgoff:	[in]	offset in pages where this mmap should start within the
1132  *			dma-buf buffer.
1133  *
1134  * This function adjusts the passed in vma so that it points at the file of the
1135  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1136  * checking on the size of the vma. Then it calls the exporters mmap function to
1137  * set up the mapping.
1138  *
1139  * Can return negative error values, returns 0 on success.
1140  */
1141 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1142 		 unsigned long pgoff)
1143 {
1144 	struct file *oldfile;
1145 	int ret;
1146 
1147 	if (WARN_ON(!dmabuf || !vma))
1148 		return -EINVAL;
1149 
1150 	/* check if buffer supports mmap */
1151 	if (!dmabuf->ops->mmap)
1152 		return -EINVAL;
1153 
1154 	/* check for offset overflow */
1155 	if (pgoff + vma_pages(vma) < pgoff)
1156 		return -EOVERFLOW;
1157 
1158 	/* check for overflowing the buffer's size */
1159 	if (pgoff + vma_pages(vma) >
1160 	    dmabuf->size >> PAGE_SHIFT)
1161 		return -EINVAL;
1162 
1163 	/* readjust the vma */
1164 	get_file(dmabuf->file);
1165 	oldfile = vma->vm_file;
1166 	vma->vm_file = dmabuf->file;
1167 	vma->vm_pgoff = pgoff;
1168 
1169 	ret = dmabuf->ops->mmap(dmabuf, vma);
1170 	if (ret) {
1171 		/* restore old parameters on failure */
1172 		vma->vm_file = oldfile;
1173 		fput(dmabuf->file);
1174 	} else {
1175 		if (oldfile)
1176 			fput(oldfile);
1177 	}
1178 	return ret;
1179 
1180 }
1181 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1182 
1183 /**
1184  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1185  * address space. Same restrictions as for vmap and friends apply.
1186  * @dmabuf:	[in]	buffer to vmap
1187  *
1188  * This call may fail due to lack of virtual mapping address space.
1189  * These calls are optional in drivers. The intended use for them
1190  * is for mapping objects linear in kernel space for high use objects.
1191  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1192  *
1193  * Returns NULL on error.
1194  */
1195 void *dma_buf_vmap(struct dma_buf *dmabuf)
1196 {
1197 	void *ptr;
1198 
1199 	if (WARN_ON(!dmabuf))
1200 		return NULL;
1201 
1202 	if (!dmabuf->ops->vmap)
1203 		return NULL;
1204 
1205 	mutex_lock(&dmabuf->lock);
1206 	if (dmabuf->vmapping_counter) {
1207 		dmabuf->vmapping_counter++;
1208 		BUG_ON(!dmabuf->vmap_ptr);
1209 		ptr = dmabuf->vmap_ptr;
1210 		goto out_unlock;
1211 	}
1212 
1213 	BUG_ON(dmabuf->vmap_ptr);
1214 
1215 	ptr = dmabuf->ops->vmap(dmabuf);
1216 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1217 		ptr = NULL;
1218 	if (!ptr)
1219 		goto out_unlock;
1220 
1221 	dmabuf->vmap_ptr = ptr;
1222 	dmabuf->vmapping_counter = 1;
1223 
1224 out_unlock:
1225 	mutex_unlock(&dmabuf->lock);
1226 	return ptr;
1227 }
1228 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1229 
1230 /**
1231  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1232  * @dmabuf:	[in]	buffer to vunmap
1233  * @vaddr:	[in]	vmap to vunmap
1234  */
1235 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1236 {
1237 	if (WARN_ON(!dmabuf))
1238 		return;
1239 
1240 	BUG_ON(!dmabuf->vmap_ptr);
1241 	BUG_ON(dmabuf->vmapping_counter == 0);
1242 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1243 
1244 	mutex_lock(&dmabuf->lock);
1245 	if (--dmabuf->vmapping_counter == 0) {
1246 		if (dmabuf->ops->vunmap)
1247 			dmabuf->ops->vunmap(dmabuf, vaddr);
1248 		dmabuf->vmap_ptr = NULL;
1249 	}
1250 	mutex_unlock(&dmabuf->lock);
1251 }
1252 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1253 
1254 #ifdef CONFIG_DEBUG_FS
1255 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1256 {
1257 	int ret;
1258 	struct dma_buf *buf_obj;
1259 	struct dma_buf_attachment *attach_obj;
1260 	struct dma_resv *robj;
1261 	struct dma_resv_list *fobj;
1262 	struct dma_fence *fence;
1263 	unsigned seq;
1264 	int count = 0, attach_count, shared_count, i;
1265 	size_t size = 0;
1266 
1267 	ret = mutex_lock_interruptible(&db_list.lock);
1268 
1269 	if (ret)
1270 		return ret;
1271 
1272 	seq_puts(s, "\nDma-buf Objects:\n");
1273 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1274 		   "size", "flags", "mode", "count", "ino");
1275 
1276 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1277 
1278 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1279 		if (ret)
1280 			goto error_unlock;
1281 
1282 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1283 				buf_obj->size,
1284 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1285 				file_count(buf_obj->file),
1286 				buf_obj->exp_name,
1287 				file_inode(buf_obj->file)->i_ino,
1288 				buf_obj->name ?: "");
1289 
1290 		robj = buf_obj->resv;
1291 		while (true) {
1292 			seq = read_seqcount_begin(&robj->seq);
1293 			rcu_read_lock();
1294 			fobj = rcu_dereference(robj->fence);
1295 			shared_count = fobj ? fobj->shared_count : 0;
1296 			fence = rcu_dereference(robj->fence_excl);
1297 			if (!read_seqcount_retry(&robj->seq, seq))
1298 				break;
1299 			rcu_read_unlock();
1300 		}
1301 
1302 		if (fence)
1303 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1304 				   fence->ops->get_driver_name(fence),
1305 				   fence->ops->get_timeline_name(fence),
1306 				   dma_fence_is_signaled(fence) ? "" : "un");
1307 		for (i = 0; i < shared_count; i++) {
1308 			fence = rcu_dereference(fobj->shared[i]);
1309 			if (!dma_fence_get_rcu(fence))
1310 				continue;
1311 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1312 				   fence->ops->get_driver_name(fence),
1313 				   fence->ops->get_timeline_name(fence),
1314 				   dma_fence_is_signaled(fence) ? "" : "un");
1315 			dma_fence_put(fence);
1316 		}
1317 		rcu_read_unlock();
1318 
1319 		seq_puts(s, "\tAttached Devices:\n");
1320 		attach_count = 0;
1321 
1322 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1323 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1324 			attach_count++;
1325 		}
1326 		dma_resv_unlock(buf_obj->resv);
1327 
1328 		seq_printf(s, "Total %d devices attached\n\n",
1329 				attach_count);
1330 
1331 		count++;
1332 		size += buf_obj->size;
1333 	}
1334 
1335 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1336 
1337 	mutex_unlock(&db_list.lock);
1338 	return 0;
1339 
1340 error_unlock:
1341 	mutex_unlock(&db_list.lock);
1342 	return ret;
1343 }
1344 
1345 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1346 
1347 static struct dentry *dma_buf_debugfs_dir;
1348 
1349 static int dma_buf_init_debugfs(void)
1350 {
1351 	struct dentry *d;
1352 	int err = 0;
1353 
1354 	d = debugfs_create_dir("dma_buf", NULL);
1355 	if (IS_ERR(d))
1356 		return PTR_ERR(d);
1357 
1358 	dma_buf_debugfs_dir = d;
1359 
1360 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1361 				NULL, &dma_buf_debug_fops);
1362 	if (IS_ERR(d)) {
1363 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1364 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1365 		dma_buf_debugfs_dir = NULL;
1366 		err = PTR_ERR(d);
1367 	}
1368 
1369 	return err;
1370 }
1371 
1372 static void dma_buf_uninit_debugfs(void)
1373 {
1374 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1375 }
1376 #else
1377 static inline int dma_buf_init_debugfs(void)
1378 {
1379 	return 0;
1380 }
1381 static inline void dma_buf_uninit_debugfs(void)
1382 {
1383 }
1384 #endif
1385 
1386 static int __init dma_buf_init(void)
1387 {
1388 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1389 	if (IS_ERR(dma_buf_mnt))
1390 		return PTR_ERR(dma_buf_mnt);
1391 
1392 	mutex_init(&db_list.lock);
1393 	INIT_LIST_HEAD(&db_list.head);
1394 	dma_buf_init_debugfs();
1395 	return 0;
1396 }
1397 subsys_initcall(dma_buf_init);
1398 
1399 static void __exit dma_buf_deinit(void)
1400 {
1401 	dma_buf_uninit_debugfs();
1402 	kern_unmount(dma_buf_mnt);
1403 }
1404 __exitcall(dma_buf_deinit);
1405