1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 dma_resv_lock(dmabuf->resv, NULL); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 dma_resv_unlock(dmabuf->resv); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static const struct dentry_operations dma_buf_dentry_ops = { 58 .d_dname = dmabuffs_dname, 59 }; 60 61 static struct vfsmount *dma_buf_mnt; 62 63 static int dma_buf_fs_init_context(struct fs_context *fc) 64 { 65 struct pseudo_fs_context *ctx; 66 67 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 68 if (!ctx) 69 return -ENOMEM; 70 ctx->dops = &dma_buf_dentry_ops; 71 return 0; 72 } 73 74 static struct file_system_type dma_buf_fs_type = { 75 .name = "dmabuf", 76 .init_fs_context = dma_buf_fs_init_context, 77 .kill_sb = kill_anon_super, 78 }; 79 80 static int dma_buf_release(struct inode *inode, struct file *file) 81 { 82 struct dma_buf *dmabuf; 83 84 if (!is_dma_buf_file(file)) 85 return -EINVAL; 86 87 dmabuf = file->private_data; 88 89 BUG_ON(dmabuf->vmapping_counter); 90 91 /* 92 * Any fences that a dma-buf poll can wait on should be signaled 93 * before releasing dma-buf. This is the responsibility of each 94 * driver that uses the reservation objects. 95 * 96 * If you hit this BUG() it means someone dropped their ref to the 97 * dma-buf while still having pending operation to the buffer. 98 */ 99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 100 101 dmabuf->ops->release(dmabuf); 102 103 mutex_lock(&db_list.lock); 104 list_del(&dmabuf->list_node); 105 mutex_unlock(&db_list.lock); 106 107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 108 dma_resv_fini(dmabuf->resv); 109 110 module_put(dmabuf->owner); 111 kfree(dmabuf->name); 112 kfree(dmabuf); 113 return 0; 114 } 115 116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 117 { 118 struct dma_buf *dmabuf; 119 120 if (!is_dma_buf_file(file)) 121 return -EINVAL; 122 123 dmabuf = file->private_data; 124 125 /* check if buffer supports mmap */ 126 if (!dmabuf->ops->mmap) 127 return -EINVAL; 128 129 /* check for overflowing the buffer's size */ 130 if (vma->vm_pgoff + vma_pages(vma) > 131 dmabuf->size >> PAGE_SHIFT) 132 return -EINVAL; 133 134 return dmabuf->ops->mmap(dmabuf, vma); 135 } 136 137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 138 { 139 struct dma_buf *dmabuf; 140 loff_t base; 141 142 if (!is_dma_buf_file(file)) 143 return -EBADF; 144 145 dmabuf = file->private_data; 146 147 /* only support discovering the end of the buffer, 148 but also allow SEEK_SET to maintain the idiomatic 149 SEEK_END(0), SEEK_CUR(0) pattern */ 150 if (whence == SEEK_END) 151 base = dmabuf->size; 152 else if (whence == SEEK_SET) 153 base = 0; 154 else 155 return -EINVAL; 156 157 if (offset != 0) 158 return -EINVAL; 159 160 return base + offset; 161 } 162 163 /** 164 * DOC: fence polling 165 * 166 * To support cross-device and cross-driver synchronization of buffer access 167 * implicit fences (represented internally in the kernel with &struct fence) can 168 * be attached to a &dma_buf. The glue for that and a few related things are 169 * provided in the &dma_resv structure. 170 * 171 * Userspace can query the state of these implicitly tracked fences using poll() 172 * and related system calls: 173 * 174 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 175 * most recent write or exclusive fence. 176 * 177 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 178 * all attached fences, shared and exclusive ones. 179 * 180 * Note that this only signals the completion of the respective fences, i.e. the 181 * DMA transfers are complete. Cache flushing and any other necessary 182 * preparations before CPU access can begin still need to happen. 183 */ 184 185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 186 { 187 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 188 unsigned long flags; 189 190 spin_lock_irqsave(&dcb->poll->lock, flags); 191 wake_up_locked_poll(dcb->poll, dcb->active); 192 dcb->active = 0; 193 spin_unlock_irqrestore(&dcb->poll->lock, flags); 194 } 195 196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 197 { 198 struct dma_buf *dmabuf; 199 struct dma_resv *resv; 200 struct dma_resv_list *fobj; 201 struct dma_fence *fence_excl; 202 __poll_t events; 203 unsigned shared_count, seq; 204 205 dmabuf = file->private_data; 206 if (!dmabuf || !dmabuf->resv) 207 return EPOLLERR; 208 209 resv = dmabuf->resv; 210 211 poll_wait(file, &dmabuf->poll, poll); 212 213 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 214 if (!events) 215 return 0; 216 217 retry: 218 seq = read_seqcount_begin(&resv->seq); 219 rcu_read_lock(); 220 221 fobj = rcu_dereference(resv->fence); 222 if (fobj) 223 shared_count = fobj->shared_count; 224 else 225 shared_count = 0; 226 fence_excl = rcu_dereference(resv->fence_excl); 227 if (read_seqcount_retry(&resv->seq, seq)) { 228 rcu_read_unlock(); 229 goto retry; 230 } 231 232 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 233 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 234 __poll_t pevents = EPOLLIN; 235 236 if (shared_count == 0) 237 pevents |= EPOLLOUT; 238 239 spin_lock_irq(&dmabuf->poll.lock); 240 if (dcb->active) { 241 dcb->active |= pevents; 242 events &= ~pevents; 243 } else 244 dcb->active = pevents; 245 spin_unlock_irq(&dmabuf->poll.lock); 246 247 if (events & pevents) { 248 if (!dma_fence_get_rcu(fence_excl)) { 249 /* force a recheck */ 250 events &= ~pevents; 251 dma_buf_poll_cb(NULL, &dcb->cb); 252 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 253 dma_buf_poll_cb)) { 254 events &= ~pevents; 255 dma_fence_put(fence_excl); 256 } else { 257 /* 258 * No callback queued, wake up any additional 259 * waiters. 260 */ 261 dma_fence_put(fence_excl); 262 dma_buf_poll_cb(NULL, &dcb->cb); 263 } 264 } 265 } 266 267 if ((events & EPOLLOUT) && shared_count > 0) { 268 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 269 int i; 270 271 /* Only queue a new callback if no event has fired yet */ 272 spin_lock_irq(&dmabuf->poll.lock); 273 if (dcb->active) 274 events &= ~EPOLLOUT; 275 else 276 dcb->active = EPOLLOUT; 277 spin_unlock_irq(&dmabuf->poll.lock); 278 279 if (!(events & EPOLLOUT)) 280 goto out; 281 282 for (i = 0; i < shared_count; ++i) { 283 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 284 285 if (!dma_fence_get_rcu(fence)) { 286 /* 287 * fence refcount dropped to zero, this means 288 * that fobj has been freed 289 * 290 * call dma_buf_poll_cb and force a recheck! 291 */ 292 events &= ~EPOLLOUT; 293 dma_buf_poll_cb(NULL, &dcb->cb); 294 break; 295 } 296 if (!dma_fence_add_callback(fence, &dcb->cb, 297 dma_buf_poll_cb)) { 298 dma_fence_put(fence); 299 events &= ~EPOLLOUT; 300 break; 301 } 302 dma_fence_put(fence); 303 } 304 305 /* No callback queued, wake up any additional waiters. */ 306 if (i == shared_count) 307 dma_buf_poll_cb(NULL, &dcb->cb); 308 } 309 310 out: 311 rcu_read_unlock(); 312 return events; 313 } 314 315 /** 316 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 317 * The name of the dma-buf buffer can only be set when the dma-buf is not 318 * attached to any devices. It could theoritically support changing the 319 * name of the dma-buf if the same piece of memory is used for multiple 320 * purpose between different devices. 321 * 322 * @dmabuf [in] dmabuf buffer that will be renamed. 323 * @buf: [in] A piece of userspace memory that contains the name of 324 * the dma-buf. 325 * 326 * Returns 0 on success. If the dma-buf buffer is already attached to 327 * devices, return -EBUSY. 328 * 329 */ 330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 331 { 332 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 333 long ret = 0; 334 335 if (IS_ERR(name)) 336 return PTR_ERR(name); 337 338 dma_resv_lock(dmabuf->resv, NULL); 339 if (!list_empty(&dmabuf->attachments)) { 340 ret = -EBUSY; 341 kfree(name); 342 goto out_unlock; 343 } 344 kfree(dmabuf->name); 345 dmabuf->name = name; 346 347 out_unlock: 348 dma_resv_unlock(dmabuf->resv); 349 return ret; 350 } 351 352 static long dma_buf_ioctl(struct file *file, 353 unsigned int cmd, unsigned long arg) 354 { 355 struct dma_buf *dmabuf; 356 struct dma_buf_sync sync; 357 enum dma_data_direction direction; 358 int ret; 359 360 dmabuf = file->private_data; 361 362 switch (cmd) { 363 case DMA_BUF_IOCTL_SYNC: 364 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 365 return -EFAULT; 366 367 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 368 return -EINVAL; 369 370 switch (sync.flags & DMA_BUF_SYNC_RW) { 371 case DMA_BUF_SYNC_READ: 372 direction = DMA_FROM_DEVICE; 373 break; 374 case DMA_BUF_SYNC_WRITE: 375 direction = DMA_TO_DEVICE; 376 break; 377 case DMA_BUF_SYNC_RW: 378 direction = DMA_BIDIRECTIONAL; 379 break; 380 default: 381 return -EINVAL; 382 } 383 384 if (sync.flags & DMA_BUF_SYNC_END) 385 ret = dma_buf_end_cpu_access(dmabuf, direction); 386 else 387 ret = dma_buf_begin_cpu_access(dmabuf, direction); 388 389 return ret; 390 391 case DMA_BUF_SET_NAME_A: 392 case DMA_BUF_SET_NAME_B: 393 return dma_buf_set_name(dmabuf, (const char __user *)arg); 394 395 default: 396 return -ENOTTY; 397 } 398 } 399 400 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 401 { 402 struct dma_buf *dmabuf = file->private_data; 403 404 seq_printf(m, "size:\t%zu\n", dmabuf->size); 405 /* Don't count the temporary reference taken inside procfs seq_show */ 406 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 407 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 408 dma_resv_lock(dmabuf->resv, NULL); 409 if (dmabuf->name) 410 seq_printf(m, "name:\t%s\n", dmabuf->name); 411 dma_resv_unlock(dmabuf->resv); 412 } 413 414 static const struct file_operations dma_buf_fops = { 415 .release = dma_buf_release, 416 .mmap = dma_buf_mmap_internal, 417 .llseek = dma_buf_llseek, 418 .poll = dma_buf_poll, 419 .unlocked_ioctl = dma_buf_ioctl, 420 .compat_ioctl = compat_ptr_ioctl, 421 .show_fdinfo = dma_buf_show_fdinfo, 422 }; 423 424 /* 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf 426 */ 427 static inline int is_dma_buf_file(struct file *file) 428 { 429 return file->f_op == &dma_buf_fops; 430 } 431 432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 433 { 434 struct file *file; 435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 436 437 if (IS_ERR(inode)) 438 return ERR_CAST(inode); 439 440 inode->i_size = dmabuf->size; 441 inode_set_bytes(inode, dmabuf->size); 442 443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 444 flags, &dma_buf_fops); 445 if (IS_ERR(file)) 446 goto err_alloc_file; 447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 448 file->private_data = dmabuf; 449 file->f_path.dentry->d_fsdata = dmabuf; 450 451 return file; 452 453 err_alloc_file: 454 iput(inode); 455 return file; 456 } 457 458 /** 459 * DOC: dma buf device access 460 * 461 * For device DMA access to a shared DMA buffer the usual sequence of operations 462 * is fairly simple: 463 * 464 * 1. The exporter defines his exporter instance using 465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 467 * as a file descriptor by calling dma_buf_fd(). 468 * 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 470 * to share with: First the filedescriptor is converted to a &dma_buf using 471 * dma_buf_get(). Then the buffer is attached to the device using 472 * dma_buf_attach(). 473 * 474 * Up to this stage the exporter is still free to migrate or reallocate the 475 * backing storage. 476 * 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA 478 * access to the shared buffer. In the kernel this is done by calling 479 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 480 * 481 * 4. Once a driver is done with a shared buffer it needs to call 482 * dma_buf_detach() (after cleaning up any mappings) and then release the 483 * reference acquired with dma_buf_get by calling dma_buf_put(). 484 * 485 * For the detailed semantics exporters are expected to implement see 486 * &dma_buf_ops. 487 */ 488 489 /** 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file 491 * with this buffer, so it can be exported. 492 * Also connect the allocator specific data and ops to the buffer. 493 * Additionally, provide a name string for exporter; useful in debugging. 494 * 495 * @exp_info: [in] holds all the export related information provided 496 * by the exporter. see &struct dma_buf_export_info 497 * for further details. 498 * 499 * Returns, on success, a newly created dma_buf object, which wraps the 500 * supplied private data and operations for dma_buf_ops. On either missing 501 * ops, or error in allocating struct dma_buf, will return negative error. 502 * 503 * For most cases the easiest way to create @exp_info is through the 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 505 */ 506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 507 { 508 struct dma_buf *dmabuf; 509 struct dma_resv *resv = exp_info->resv; 510 struct file *file; 511 size_t alloc_size = sizeof(struct dma_buf); 512 int ret; 513 514 if (!exp_info->resv) 515 alloc_size += sizeof(struct dma_resv); 516 else 517 /* prevent &dma_buf[1] == dma_buf->resv */ 518 alloc_size += 1; 519 520 if (WARN_ON(!exp_info->priv 521 || !exp_info->ops 522 || !exp_info->ops->map_dma_buf 523 || !exp_info->ops->unmap_dma_buf 524 || !exp_info->ops->release)) { 525 return ERR_PTR(-EINVAL); 526 } 527 528 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 529 (exp_info->ops->pin || exp_info->ops->unpin))) 530 return ERR_PTR(-EINVAL); 531 532 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 533 return ERR_PTR(-EINVAL); 534 535 if (!try_module_get(exp_info->owner)) 536 return ERR_PTR(-ENOENT); 537 538 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 539 if (!dmabuf) { 540 ret = -ENOMEM; 541 goto err_module; 542 } 543 544 dmabuf->priv = exp_info->priv; 545 dmabuf->ops = exp_info->ops; 546 dmabuf->size = exp_info->size; 547 dmabuf->exp_name = exp_info->exp_name; 548 dmabuf->owner = exp_info->owner; 549 init_waitqueue_head(&dmabuf->poll); 550 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 551 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 552 553 if (!resv) { 554 resv = (struct dma_resv *)&dmabuf[1]; 555 dma_resv_init(resv); 556 } 557 dmabuf->resv = resv; 558 559 file = dma_buf_getfile(dmabuf, exp_info->flags); 560 if (IS_ERR(file)) { 561 ret = PTR_ERR(file); 562 goto err_dmabuf; 563 } 564 565 file->f_mode |= FMODE_LSEEK; 566 dmabuf->file = file; 567 568 mutex_init(&dmabuf->lock); 569 INIT_LIST_HEAD(&dmabuf->attachments); 570 571 mutex_lock(&db_list.lock); 572 list_add(&dmabuf->list_node, &db_list.head); 573 mutex_unlock(&db_list.lock); 574 575 return dmabuf; 576 577 err_dmabuf: 578 kfree(dmabuf); 579 err_module: 580 module_put(exp_info->owner); 581 return ERR_PTR(ret); 582 } 583 EXPORT_SYMBOL_GPL(dma_buf_export); 584 585 /** 586 * dma_buf_fd - returns a file descriptor for the given dma_buf 587 * @dmabuf: [in] pointer to dma_buf for which fd is required. 588 * @flags: [in] flags to give to fd 589 * 590 * On success, returns an associated 'fd'. Else, returns error. 591 */ 592 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 593 { 594 int fd; 595 596 if (!dmabuf || !dmabuf->file) 597 return -EINVAL; 598 599 fd = get_unused_fd_flags(flags); 600 if (fd < 0) 601 return fd; 602 603 fd_install(fd, dmabuf->file); 604 605 return fd; 606 } 607 EXPORT_SYMBOL_GPL(dma_buf_fd); 608 609 /** 610 * dma_buf_get - returns the dma_buf structure related to an fd 611 * @fd: [in] fd associated with the dma_buf to be returned 612 * 613 * On success, returns the dma_buf structure associated with an fd; uses 614 * file's refcounting done by fget to increase refcount. returns ERR_PTR 615 * otherwise. 616 */ 617 struct dma_buf *dma_buf_get(int fd) 618 { 619 struct file *file; 620 621 file = fget(fd); 622 623 if (!file) 624 return ERR_PTR(-EBADF); 625 626 if (!is_dma_buf_file(file)) { 627 fput(file); 628 return ERR_PTR(-EINVAL); 629 } 630 631 return file->private_data; 632 } 633 EXPORT_SYMBOL_GPL(dma_buf_get); 634 635 /** 636 * dma_buf_put - decreases refcount of the buffer 637 * @dmabuf: [in] buffer to reduce refcount of 638 * 639 * Uses file's refcounting done implicitly by fput(). 640 * 641 * If, as a result of this call, the refcount becomes 0, the 'release' file 642 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 643 * in turn, and frees the memory allocated for dmabuf when exported. 644 */ 645 void dma_buf_put(struct dma_buf *dmabuf) 646 { 647 if (WARN_ON(!dmabuf || !dmabuf->file)) 648 return; 649 650 fput(dmabuf->file); 651 } 652 EXPORT_SYMBOL_GPL(dma_buf_put); 653 654 /** 655 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 656 * calls attach() of dma_buf_ops to allow device-specific attach functionality 657 * @dmabuf: [in] buffer to attach device to. 658 * @dev: [in] device to be attached. 659 * @importer_ops: [in] importer operations for the attachment 660 * @importer_priv: [in] importer private pointer for the attachment 661 * 662 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 663 * must be cleaned up by calling dma_buf_detach(). 664 * 665 * Returns: 666 * 667 * A pointer to newly created &dma_buf_attachment on success, or a negative 668 * error code wrapped into a pointer on failure. 669 * 670 * Note that this can fail if the backing storage of @dmabuf is in a place not 671 * accessible to @dev, and cannot be moved to a more suitable place. This is 672 * indicated with the error code -EBUSY. 673 */ 674 struct dma_buf_attachment * 675 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 676 const struct dma_buf_attach_ops *importer_ops, 677 void *importer_priv) 678 { 679 struct dma_buf_attachment *attach; 680 int ret; 681 682 if (WARN_ON(!dmabuf || !dev)) 683 return ERR_PTR(-EINVAL); 684 685 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 686 return ERR_PTR(-EINVAL); 687 688 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 689 if (!attach) 690 return ERR_PTR(-ENOMEM); 691 692 attach->dev = dev; 693 attach->dmabuf = dmabuf; 694 if (importer_ops) 695 attach->peer2peer = importer_ops->allow_peer2peer; 696 attach->importer_ops = importer_ops; 697 attach->importer_priv = importer_priv; 698 699 if (dmabuf->ops->attach) { 700 ret = dmabuf->ops->attach(dmabuf, attach); 701 if (ret) 702 goto err_attach; 703 } 704 dma_resv_lock(dmabuf->resv, NULL); 705 list_add(&attach->node, &dmabuf->attachments); 706 dma_resv_unlock(dmabuf->resv); 707 708 /* When either the importer or the exporter can't handle dynamic 709 * mappings we cache the mapping here to avoid issues with the 710 * reservation object lock. 711 */ 712 if (dma_buf_attachment_is_dynamic(attach) != 713 dma_buf_is_dynamic(dmabuf)) { 714 struct sg_table *sgt; 715 716 if (dma_buf_is_dynamic(attach->dmabuf)) { 717 dma_resv_lock(attach->dmabuf->resv, NULL); 718 ret = dma_buf_pin(attach); 719 if (ret) 720 goto err_unlock; 721 } 722 723 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 724 if (!sgt) 725 sgt = ERR_PTR(-ENOMEM); 726 if (IS_ERR(sgt)) { 727 ret = PTR_ERR(sgt); 728 goto err_unpin; 729 } 730 if (dma_buf_is_dynamic(attach->dmabuf)) 731 dma_resv_unlock(attach->dmabuf->resv); 732 attach->sgt = sgt; 733 attach->dir = DMA_BIDIRECTIONAL; 734 } 735 736 return attach; 737 738 err_attach: 739 kfree(attach); 740 return ERR_PTR(ret); 741 742 err_unpin: 743 if (dma_buf_is_dynamic(attach->dmabuf)) 744 dma_buf_unpin(attach); 745 746 err_unlock: 747 if (dma_buf_is_dynamic(attach->dmabuf)) 748 dma_resv_unlock(attach->dmabuf->resv); 749 750 dma_buf_detach(dmabuf, attach); 751 return ERR_PTR(ret); 752 } 753 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 754 755 /** 756 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 757 * @dmabuf: [in] buffer to attach device to. 758 * @dev: [in] device to be attached. 759 * 760 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 761 * mapping. 762 */ 763 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 764 struct device *dev) 765 { 766 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 767 } 768 EXPORT_SYMBOL_GPL(dma_buf_attach); 769 770 /** 771 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 772 * optionally calls detach() of dma_buf_ops for device-specific detach 773 * @dmabuf: [in] buffer to detach from. 774 * @attach: [in] attachment to be detached; is free'd after this call. 775 * 776 * Clean up a device attachment obtained by calling dma_buf_attach(). 777 */ 778 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 779 { 780 if (WARN_ON(!dmabuf || !attach)) 781 return; 782 783 if (attach->sgt) { 784 if (dma_buf_is_dynamic(attach->dmabuf)) 785 dma_resv_lock(attach->dmabuf->resv, NULL); 786 787 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 788 789 if (dma_buf_is_dynamic(attach->dmabuf)) { 790 dma_buf_unpin(attach); 791 dma_resv_unlock(attach->dmabuf->resv); 792 } 793 } 794 795 dma_resv_lock(dmabuf->resv, NULL); 796 list_del(&attach->node); 797 dma_resv_unlock(dmabuf->resv); 798 if (dmabuf->ops->detach) 799 dmabuf->ops->detach(dmabuf, attach); 800 801 kfree(attach); 802 } 803 EXPORT_SYMBOL_GPL(dma_buf_detach); 804 805 /** 806 * dma_buf_pin - Lock down the DMA-buf 807 * 808 * @attach: [in] attachment which should be pinned 809 * 810 * Returns: 811 * 0 on success, negative error code on failure. 812 */ 813 int dma_buf_pin(struct dma_buf_attachment *attach) 814 { 815 struct dma_buf *dmabuf = attach->dmabuf; 816 int ret = 0; 817 818 dma_resv_assert_held(dmabuf->resv); 819 820 if (dmabuf->ops->pin) 821 ret = dmabuf->ops->pin(attach); 822 823 return ret; 824 } 825 EXPORT_SYMBOL_GPL(dma_buf_pin); 826 827 /** 828 * dma_buf_unpin - Remove lock from DMA-buf 829 * 830 * @attach: [in] attachment which should be unpinned 831 */ 832 void dma_buf_unpin(struct dma_buf_attachment *attach) 833 { 834 struct dma_buf *dmabuf = attach->dmabuf; 835 836 dma_resv_assert_held(dmabuf->resv); 837 838 if (dmabuf->ops->unpin) 839 dmabuf->ops->unpin(attach); 840 } 841 EXPORT_SYMBOL_GPL(dma_buf_unpin); 842 843 /** 844 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 845 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 846 * dma_buf_ops. 847 * @attach: [in] attachment whose scatterlist is to be returned 848 * @direction: [in] direction of DMA transfer 849 * 850 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 851 * on error. May return -EINTR if it is interrupted by a signal. 852 * 853 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 854 * the underlying backing storage is pinned for as long as a mapping exists, 855 * therefore users/importers should not hold onto a mapping for undue amounts of 856 * time. 857 */ 858 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 859 enum dma_data_direction direction) 860 { 861 struct sg_table *sg_table; 862 int r; 863 864 might_sleep(); 865 866 if (WARN_ON(!attach || !attach->dmabuf)) 867 return ERR_PTR(-EINVAL); 868 869 if (dma_buf_attachment_is_dynamic(attach)) 870 dma_resv_assert_held(attach->dmabuf->resv); 871 872 if (attach->sgt) { 873 /* 874 * Two mappings with different directions for the same 875 * attachment are not allowed. 876 */ 877 if (attach->dir != direction && 878 attach->dir != DMA_BIDIRECTIONAL) 879 return ERR_PTR(-EBUSY); 880 881 return attach->sgt; 882 } 883 884 if (dma_buf_is_dynamic(attach->dmabuf)) { 885 dma_resv_assert_held(attach->dmabuf->resv); 886 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 887 r = dma_buf_pin(attach); 888 if (r) 889 return ERR_PTR(r); 890 } 891 } 892 893 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 894 if (!sg_table) 895 sg_table = ERR_PTR(-ENOMEM); 896 897 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 898 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 899 dma_buf_unpin(attach); 900 901 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 902 attach->sgt = sg_table; 903 attach->dir = direction; 904 } 905 906 return sg_table; 907 } 908 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 909 910 /** 911 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 912 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 913 * dma_buf_ops. 914 * @attach: [in] attachment to unmap buffer from 915 * @sg_table: [in] scatterlist info of the buffer to unmap 916 * @direction: [in] direction of DMA transfer 917 * 918 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 919 */ 920 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 921 struct sg_table *sg_table, 922 enum dma_data_direction direction) 923 { 924 might_sleep(); 925 926 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 927 return; 928 929 if (dma_buf_attachment_is_dynamic(attach)) 930 dma_resv_assert_held(attach->dmabuf->resv); 931 932 if (attach->sgt == sg_table) 933 return; 934 935 if (dma_buf_is_dynamic(attach->dmabuf)) 936 dma_resv_assert_held(attach->dmabuf->resv); 937 938 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 939 940 if (dma_buf_is_dynamic(attach->dmabuf) && 941 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 942 dma_buf_unpin(attach); 943 } 944 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 945 946 /** 947 * dma_buf_move_notify - notify attachments that DMA-buf is moving 948 * 949 * @dmabuf: [in] buffer which is moving 950 * 951 * Informs all attachmenst that they need to destroy and recreated all their 952 * mappings. 953 */ 954 void dma_buf_move_notify(struct dma_buf *dmabuf) 955 { 956 struct dma_buf_attachment *attach; 957 958 dma_resv_assert_held(dmabuf->resv); 959 960 list_for_each_entry(attach, &dmabuf->attachments, node) 961 if (attach->importer_ops) 962 attach->importer_ops->move_notify(attach); 963 } 964 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 965 966 /** 967 * DOC: cpu access 968 * 969 * There are mutliple reasons for supporting CPU access to a dma buffer object: 970 * 971 * - Fallback operations in the kernel, for example when a device is connected 972 * over USB and the kernel needs to shuffle the data around first before 973 * sending it away. Cache coherency is handled by braketing any transactions 974 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 975 * access. 976 * 977 * Since for most kernel internal dma-buf accesses need the entire buffer, a 978 * vmap interface is introduced. Note that on very old 32-bit architectures 979 * vmalloc space might be limited and result in vmap calls failing. 980 * 981 * Interfaces:: 982 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 983 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 984 * 985 * The vmap call can fail if there is no vmap support in the exporter, or if 986 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 987 * that the dma-buf layer keeps a reference count for all vmap access and 988 * calls down into the exporter's vmap function only when no vmapping exists, 989 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 990 * provided by taking the dma_buf->lock mutex. 991 * 992 * - For full compatibility on the importer side with existing userspace 993 * interfaces, which might already support mmap'ing buffers. This is needed in 994 * many processing pipelines (e.g. feeding a software rendered image into a 995 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 996 * framework already supported this and for DMA buffer file descriptors to 997 * replace ION buffers mmap support was needed. 998 * 999 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1000 * fd. But like for CPU access there's a need to braket the actual access, 1001 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1002 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1003 * be restarted. 1004 * 1005 * Some systems might need some sort of cache coherency management e.g. when 1006 * CPU and GPU domains are being accessed through dma-buf at the same time. 1007 * To circumvent this problem there are begin/end coherency markers, that 1008 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1009 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1010 * sequence would be used like following: 1011 * 1012 * - mmap dma-buf fd 1013 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1014 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1015 * want (with the new data being consumed by say the GPU or the scanout 1016 * device) 1017 * - munmap once you don't need the buffer any more 1018 * 1019 * For correctness and optimal performance, it is always required to use 1020 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1021 * mapped address. Userspace cannot rely on coherent access, even when there 1022 * are systems where it just works without calling these ioctls. 1023 * 1024 * - And as a CPU fallback in userspace processing pipelines. 1025 * 1026 * Similar to the motivation for kernel cpu access it is again important that 1027 * the userspace code of a given importing subsystem can use the same 1028 * interfaces with a imported dma-buf buffer object as with a native buffer 1029 * object. This is especially important for drm where the userspace part of 1030 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1031 * use a different way to mmap a buffer rather invasive. 1032 * 1033 * The assumption in the current dma-buf interfaces is that redirecting the 1034 * initial mmap is all that's needed. A survey of some of the existing 1035 * subsystems shows that no driver seems to do any nefarious thing like 1036 * syncing up with outstanding asynchronous processing on the device or 1037 * allocating special resources at fault time. So hopefully this is good 1038 * enough, since adding interfaces to intercept pagefaults and allow pte 1039 * shootdowns would increase the complexity quite a bit. 1040 * 1041 * Interface:: 1042 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1043 * unsigned long); 1044 * 1045 * If the importing subsystem simply provides a special-purpose mmap call to 1046 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 1047 * equally achieve that for a dma-buf object. 1048 */ 1049 1050 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1051 enum dma_data_direction direction) 1052 { 1053 bool write = (direction == DMA_BIDIRECTIONAL || 1054 direction == DMA_TO_DEVICE); 1055 struct dma_resv *resv = dmabuf->resv; 1056 long ret; 1057 1058 /* Wait on any implicit rendering fences */ 1059 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1060 MAX_SCHEDULE_TIMEOUT); 1061 if (ret < 0) 1062 return ret; 1063 1064 return 0; 1065 } 1066 1067 /** 1068 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1069 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1070 * preparations. Coherency is only guaranteed in the specified range for the 1071 * specified access direction. 1072 * @dmabuf: [in] buffer to prepare cpu access for. 1073 * @direction: [in] length of range for cpu access. 1074 * 1075 * After the cpu access is complete the caller should call 1076 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1077 * it guaranteed to be coherent with other DMA access. 1078 * 1079 * Can return negative error values, returns 0 on success. 1080 */ 1081 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1082 enum dma_data_direction direction) 1083 { 1084 int ret = 0; 1085 1086 if (WARN_ON(!dmabuf)) 1087 return -EINVAL; 1088 1089 if (dmabuf->ops->begin_cpu_access) 1090 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1091 1092 /* Ensure that all fences are waited upon - but we first allow 1093 * the native handler the chance to do so more efficiently if it 1094 * chooses. A double invocation here will be reasonably cheap no-op. 1095 */ 1096 if (ret == 0) 1097 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1098 1099 return ret; 1100 } 1101 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1102 1103 /** 1104 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1105 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1106 * actions. Coherency is only guaranteed in the specified range for the 1107 * specified access direction. 1108 * @dmabuf: [in] buffer to complete cpu access for. 1109 * @direction: [in] length of range for cpu access. 1110 * 1111 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1112 * 1113 * Can return negative error values, returns 0 on success. 1114 */ 1115 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1116 enum dma_data_direction direction) 1117 { 1118 int ret = 0; 1119 1120 WARN_ON(!dmabuf); 1121 1122 if (dmabuf->ops->end_cpu_access) 1123 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1124 1125 return ret; 1126 } 1127 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1128 1129 1130 /** 1131 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1132 * @dmabuf: [in] buffer that should back the vma 1133 * @vma: [in] vma for the mmap 1134 * @pgoff: [in] offset in pages where this mmap should start within the 1135 * dma-buf buffer. 1136 * 1137 * This function adjusts the passed in vma so that it points at the file of the 1138 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1139 * checking on the size of the vma. Then it calls the exporters mmap function to 1140 * set up the mapping. 1141 * 1142 * Can return negative error values, returns 0 on success. 1143 */ 1144 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1145 unsigned long pgoff) 1146 { 1147 struct file *oldfile; 1148 int ret; 1149 1150 if (WARN_ON(!dmabuf || !vma)) 1151 return -EINVAL; 1152 1153 /* check if buffer supports mmap */ 1154 if (!dmabuf->ops->mmap) 1155 return -EINVAL; 1156 1157 /* check for offset overflow */ 1158 if (pgoff + vma_pages(vma) < pgoff) 1159 return -EOVERFLOW; 1160 1161 /* check for overflowing the buffer's size */ 1162 if (pgoff + vma_pages(vma) > 1163 dmabuf->size >> PAGE_SHIFT) 1164 return -EINVAL; 1165 1166 /* readjust the vma */ 1167 get_file(dmabuf->file); 1168 oldfile = vma->vm_file; 1169 vma->vm_file = dmabuf->file; 1170 vma->vm_pgoff = pgoff; 1171 1172 ret = dmabuf->ops->mmap(dmabuf, vma); 1173 if (ret) { 1174 /* restore old parameters on failure */ 1175 vma->vm_file = oldfile; 1176 fput(dmabuf->file); 1177 } else { 1178 if (oldfile) 1179 fput(oldfile); 1180 } 1181 return ret; 1182 1183 } 1184 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1185 1186 /** 1187 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1188 * address space. Same restrictions as for vmap and friends apply. 1189 * @dmabuf: [in] buffer to vmap 1190 * 1191 * This call may fail due to lack of virtual mapping address space. 1192 * These calls are optional in drivers. The intended use for them 1193 * is for mapping objects linear in kernel space for high use objects. 1194 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1195 * 1196 * Returns NULL on error. 1197 */ 1198 void *dma_buf_vmap(struct dma_buf *dmabuf) 1199 { 1200 void *ptr; 1201 1202 if (WARN_ON(!dmabuf)) 1203 return NULL; 1204 1205 if (!dmabuf->ops->vmap) 1206 return NULL; 1207 1208 mutex_lock(&dmabuf->lock); 1209 if (dmabuf->vmapping_counter) { 1210 dmabuf->vmapping_counter++; 1211 BUG_ON(!dmabuf->vmap_ptr); 1212 ptr = dmabuf->vmap_ptr; 1213 goto out_unlock; 1214 } 1215 1216 BUG_ON(dmabuf->vmap_ptr); 1217 1218 ptr = dmabuf->ops->vmap(dmabuf); 1219 if (WARN_ON_ONCE(IS_ERR(ptr))) 1220 ptr = NULL; 1221 if (!ptr) 1222 goto out_unlock; 1223 1224 dmabuf->vmap_ptr = ptr; 1225 dmabuf->vmapping_counter = 1; 1226 1227 out_unlock: 1228 mutex_unlock(&dmabuf->lock); 1229 return ptr; 1230 } 1231 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1232 1233 /** 1234 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1235 * @dmabuf: [in] buffer to vunmap 1236 * @vaddr: [in] vmap to vunmap 1237 */ 1238 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1239 { 1240 if (WARN_ON(!dmabuf)) 1241 return; 1242 1243 BUG_ON(!dmabuf->vmap_ptr); 1244 BUG_ON(dmabuf->vmapping_counter == 0); 1245 BUG_ON(dmabuf->vmap_ptr != vaddr); 1246 1247 mutex_lock(&dmabuf->lock); 1248 if (--dmabuf->vmapping_counter == 0) { 1249 if (dmabuf->ops->vunmap) 1250 dmabuf->ops->vunmap(dmabuf, vaddr); 1251 dmabuf->vmap_ptr = NULL; 1252 } 1253 mutex_unlock(&dmabuf->lock); 1254 } 1255 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1256 1257 #ifdef CONFIG_DEBUG_FS 1258 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1259 { 1260 int ret; 1261 struct dma_buf *buf_obj; 1262 struct dma_buf_attachment *attach_obj; 1263 struct dma_resv *robj; 1264 struct dma_resv_list *fobj; 1265 struct dma_fence *fence; 1266 unsigned seq; 1267 int count = 0, attach_count, shared_count, i; 1268 size_t size = 0; 1269 1270 ret = mutex_lock_interruptible(&db_list.lock); 1271 1272 if (ret) 1273 return ret; 1274 1275 seq_puts(s, "\nDma-buf Objects:\n"); 1276 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1277 "size", "flags", "mode", "count", "ino"); 1278 1279 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1280 1281 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1282 if (ret) 1283 goto error_unlock; 1284 1285 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1286 buf_obj->size, 1287 buf_obj->file->f_flags, buf_obj->file->f_mode, 1288 file_count(buf_obj->file), 1289 buf_obj->exp_name, 1290 file_inode(buf_obj->file)->i_ino, 1291 buf_obj->name ?: ""); 1292 1293 robj = buf_obj->resv; 1294 while (true) { 1295 seq = read_seqcount_begin(&robj->seq); 1296 rcu_read_lock(); 1297 fobj = rcu_dereference(robj->fence); 1298 shared_count = fobj ? fobj->shared_count : 0; 1299 fence = rcu_dereference(robj->fence_excl); 1300 if (!read_seqcount_retry(&robj->seq, seq)) 1301 break; 1302 rcu_read_unlock(); 1303 } 1304 1305 if (fence) 1306 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1307 fence->ops->get_driver_name(fence), 1308 fence->ops->get_timeline_name(fence), 1309 dma_fence_is_signaled(fence) ? "" : "un"); 1310 for (i = 0; i < shared_count; i++) { 1311 fence = rcu_dereference(fobj->shared[i]); 1312 if (!dma_fence_get_rcu(fence)) 1313 continue; 1314 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1315 fence->ops->get_driver_name(fence), 1316 fence->ops->get_timeline_name(fence), 1317 dma_fence_is_signaled(fence) ? "" : "un"); 1318 dma_fence_put(fence); 1319 } 1320 rcu_read_unlock(); 1321 1322 seq_puts(s, "\tAttached Devices:\n"); 1323 attach_count = 0; 1324 1325 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1326 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1327 attach_count++; 1328 } 1329 dma_resv_unlock(buf_obj->resv); 1330 1331 seq_printf(s, "Total %d devices attached\n\n", 1332 attach_count); 1333 1334 count++; 1335 size += buf_obj->size; 1336 } 1337 1338 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1339 1340 mutex_unlock(&db_list.lock); 1341 return 0; 1342 1343 error_unlock: 1344 mutex_unlock(&db_list.lock); 1345 return ret; 1346 } 1347 1348 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1349 1350 static struct dentry *dma_buf_debugfs_dir; 1351 1352 static int dma_buf_init_debugfs(void) 1353 { 1354 struct dentry *d; 1355 int err = 0; 1356 1357 d = debugfs_create_dir("dma_buf", NULL); 1358 if (IS_ERR(d)) 1359 return PTR_ERR(d); 1360 1361 dma_buf_debugfs_dir = d; 1362 1363 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1364 NULL, &dma_buf_debug_fops); 1365 if (IS_ERR(d)) { 1366 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1367 debugfs_remove_recursive(dma_buf_debugfs_dir); 1368 dma_buf_debugfs_dir = NULL; 1369 err = PTR_ERR(d); 1370 } 1371 1372 return err; 1373 } 1374 1375 static void dma_buf_uninit_debugfs(void) 1376 { 1377 debugfs_remove_recursive(dma_buf_debugfs_dir); 1378 } 1379 #else 1380 static inline int dma_buf_init_debugfs(void) 1381 { 1382 return 0; 1383 } 1384 static inline void dma_buf_uninit_debugfs(void) 1385 { 1386 } 1387 #endif 1388 1389 static int __init dma_buf_init(void) 1390 { 1391 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1392 if (IS_ERR(dma_buf_mnt)) 1393 return PTR_ERR(dma_buf_mnt); 1394 1395 mutex_init(&db_list.lock); 1396 INIT_LIST_HEAD(&db_list.head); 1397 dma_buf_init_debugfs(); 1398 return 0; 1399 } 1400 subsys_initcall(dma_buf_init); 1401 1402 static void __exit dma_buf_deinit(void) 1403 { 1404 dma_buf_uninit_debugfs(); 1405 kern_unmount(dma_buf_mnt); 1406 } 1407 __exitcall(dma_buf_deinit); 1408