xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	dma_resv_lock(dmabuf->resv, NULL);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	dma_resv_unlock(dmabuf->resv);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 	.d_dname = dmabuffs_dname,
59 };
60 
61 static struct vfsmount *dma_buf_mnt;
62 
63 static int dma_buf_fs_init_context(struct fs_context *fc)
64 {
65 	struct pseudo_fs_context *ctx;
66 
67 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 	if (!ctx)
69 		return -ENOMEM;
70 	ctx->dops = &dma_buf_dentry_ops;
71 	return 0;
72 }
73 
74 static struct file_system_type dma_buf_fs_type = {
75 	.name = "dmabuf",
76 	.init_fs_context = dma_buf_fs_init_context,
77 	.kill_sb = kill_anon_super,
78 };
79 
80 static int dma_buf_release(struct inode *inode, struct file *file)
81 {
82 	struct dma_buf *dmabuf;
83 
84 	if (!is_dma_buf_file(file))
85 		return -EINVAL;
86 
87 	dmabuf = file->private_data;
88 
89 	BUG_ON(dmabuf->vmapping_counter);
90 
91 	/*
92 	 * Any fences that a dma-buf poll can wait on should be signaled
93 	 * before releasing dma-buf. This is the responsibility of each
94 	 * driver that uses the reservation objects.
95 	 *
96 	 * If you hit this BUG() it means someone dropped their ref to the
97 	 * dma-buf while still having pending operation to the buffer.
98 	 */
99 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100 
101 	dmabuf->ops->release(dmabuf);
102 
103 	mutex_lock(&db_list.lock);
104 	list_del(&dmabuf->list_node);
105 	mutex_unlock(&db_list.lock);
106 
107 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 		dma_resv_fini(dmabuf->resv);
109 
110 	module_put(dmabuf->owner);
111 	kfree(dmabuf->name);
112 	kfree(dmabuf);
113 	return 0;
114 }
115 
116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
117 {
118 	struct dma_buf *dmabuf;
119 
120 	if (!is_dma_buf_file(file))
121 		return -EINVAL;
122 
123 	dmabuf = file->private_data;
124 
125 	/* check if buffer supports mmap */
126 	if (!dmabuf->ops->mmap)
127 		return -EINVAL;
128 
129 	/* check for overflowing the buffer's size */
130 	if (vma->vm_pgoff + vma_pages(vma) >
131 	    dmabuf->size >> PAGE_SHIFT)
132 		return -EINVAL;
133 
134 	return dmabuf->ops->mmap(dmabuf, vma);
135 }
136 
137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
138 {
139 	struct dma_buf *dmabuf;
140 	loff_t base;
141 
142 	if (!is_dma_buf_file(file))
143 		return -EBADF;
144 
145 	dmabuf = file->private_data;
146 
147 	/* only support discovering the end of the buffer,
148 	   but also allow SEEK_SET to maintain the idiomatic
149 	   SEEK_END(0), SEEK_CUR(0) pattern */
150 	if (whence == SEEK_END)
151 		base = dmabuf->size;
152 	else if (whence == SEEK_SET)
153 		base = 0;
154 	else
155 		return -EINVAL;
156 
157 	if (offset != 0)
158 		return -EINVAL;
159 
160 	return base + offset;
161 }
162 
163 /**
164  * DOC: fence polling
165  *
166  * To support cross-device and cross-driver synchronization of buffer access
167  * implicit fences (represented internally in the kernel with &struct fence) can
168  * be attached to a &dma_buf. The glue for that and a few related things are
169  * provided in the &dma_resv structure.
170  *
171  * Userspace can query the state of these implicitly tracked fences using poll()
172  * and related system calls:
173  *
174  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
175  *   most recent write or exclusive fence.
176  *
177  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
178  *   all attached fences, shared and exclusive ones.
179  *
180  * Note that this only signals the completion of the respective fences, i.e. the
181  * DMA transfers are complete. Cache flushing and any other necessary
182  * preparations before CPU access can begin still need to happen.
183  */
184 
185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
186 {
187 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&dcb->poll->lock, flags);
191 	wake_up_locked_poll(dcb->poll, dcb->active);
192 	dcb->active = 0;
193 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
194 }
195 
196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
197 {
198 	struct dma_buf *dmabuf;
199 	struct dma_resv *resv;
200 	struct dma_resv_list *fobj;
201 	struct dma_fence *fence_excl;
202 	__poll_t events;
203 	unsigned shared_count, seq;
204 
205 	dmabuf = file->private_data;
206 	if (!dmabuf || !dmabuf->resv)
207 		return EPOLLERR;
208 
209 	resv = dmabuf->resv;
210 
211 	poll_wait(file, &dmabuf->poll, poll);
212 
213 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
214 	if (!events)
215 		return 0;
216 
217 retry:
218 	seq = read_seqcount_begin(&resv->seq);
219 	rcu_read_lock();
220 
221 	fobj = rcu_dereference(resv->fence);
222 	if (fobj)
223 		shared_count = fobj->shared_count;
224 	else
225 		shared_count = 0;
226 	fence_excl = rcu_dereference(resv->fence_excl);
227 	if (read_seqcount_retry(&resv->seq, seq)) {
228 		rcu_read_unlock();
229 		goto retry;
230 	}
231 
232 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
233 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
234 		__poll_t pevents = EPOLLIN;
235 
236 		if (shared_count == 0)
237 			pevents |= EPOLLOUT;
238 
239 		spin_lock_irq(&dmabuf->poll.lock);
240 		if (dcb->active) {
241 			dcb->active |= pevents;
242 			events &= ~pevents;
243 		} else
244 			dcb->active = pevents;
245 		spin_unlock_irq(&dmabuf->poll.lock);
246 
247 		if (events & pevents) {
248 			if (!dma_fence_get_rcu(fence_excl)) {
249 				/* force a recheck */
250 				events &= ~pevents;
251 				dma_buf_poll_cb(NULL, &dcb->cb);
252 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
253 							   dma_buf_poll_cb)) {
254 				events &= ~pevents;
255 				dma_fence_put(fence_excl);
256 			} else {
257 				/*
258 				 * No callback queued, wake up any additional
259 				 * waiters.
260 				 */
261 				dma_fence_put(fence_excl);
262 				dma_buf_poll_cb(NULL, &dcb->cb);
263 			}
264 		}
265 	}
266 
267 	if ((events & EPOLLOUT) && shared_count > 0) {
268 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
269 		int i;
270 
271 		/* Only queue a new callback if no event has fired yet */
272 		spin_lock_irq(&dmabuf->poll.lock);
273 		if (dcb->active)
274 			events &= ~EPOLLOUT;
275 		else
276 			dcb->active = EPOLLOUT;
277 		spin_unlock_irq(&dmabuf->poll.lock);
278 
279 		if (!(events & EPOLLOUT))
280 			goto out;
281 
282 		for (i = 0; i < shared_count; ++i) {
283 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
284 
285 			if (!dma_fence_get_rcu(fence)) {
286 				/*
287 				 * fence refcount dropped to zero, this means
288 				 * that fobj has been freed
289 				 *
290 				 * call dma_buf_poll_cb and force a recheck!
291 				 */
292 				events &= ~EPOLLOUT;
293 				dma_buf_poll_cb(NULL, &dcb->cb);
294 				break;
295 			}
296 			if (!dma_fence_add_callback(fence, &dcb->cb,
297 						    dma_buf_poll_cb)) {
298 				dma_fence_put(fence);
299 				events &= ~EPOLLOUT;
300 				break;
301 			}
302 			dma_fence_put(fence);
303 		}
304 
305 		/* No callback queued, wake up any additional waiters. */
306 		if (i == shared_count)
307 			dma_buf_poll_cb(NULL, &dcb->cb);
308 	}
309 
310 out:
311 	rcu_read_unlock();
312 	return events;
313 }
314 
315 /**
316  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
317  * The name of the dma-buf buffer can only be set when the dma-buf is not
318  * attached to any devices. It could theoritically support changing the
319  * name of the dma-buf if the same piece of memory is used for multiple
320  * purpose between different devices.
321  *
322  * @dmabuf [in]     dmabuf buffer that will be renamed.
323  * @buf:   [in]     A piece of userspace memory that contains the name of
324  *                  the dma-buf.
325  *
326  * Returns 0 on success. If the dma-buf buffer is already attached to
327  * devices, return -EBUSY.
328  *
329  */
330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
331 {
332 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
333 	long ret = 0;
334 
335 	if (IS_ERR(name))
336 		return PTR_ERR(name);
337 
338 	dma_resv_lock(dmabuf->resv, NULL);
339 	if (!list_empty(&dmabuf->attachments)) {
340 		ret = -EBUSY;
341 		kfree(name);
342 		goto out_unlock;
343 	}
344 	kfree(dmabuf->name);
345 	dmabuf->name = name;
346 
347 out_unlock:
348 	dma_resv_unlock(dmabuf->resv);
349 	return ret;
350 }
351 
352 static long dma_buf_ioctl(struct file *file,
353 			  unsigned int cmd, unsigned long arg)
354 {
355 	struct dma_buf *dmabuf;
356 	struct dma_buf_sync sync;
357 	enum dma_data_direction direction;
358 	int ret;
359 
360 	dmabuf = file->private_data;
361 
362 	switch (cmd) {
363 	case DMA_BUF_IOCTL_SYNC:
364 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
365 			return -EFAULT;
366 
367 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
368 			return -EINVAL;
369 
370 		switch (sync.flags & DMA_BUF_SYNC_RW) {
371 		case DMA_BUF_SYNC_READ:
372 			direction = DMA_FROM_DEVICE;
373 			break;
374 		case DMA_BUF_SYNC_WRITE:
375 			direction = DMA_TO_DEVICE;
376 			break;
377 		case DMA_BUF_SYNC_RW:
378 			direction = DMA_BIDIRECTIONAL;
379 			break;
380 		default:
381 			return -EINVAL;
382 		}
383 
384 		if (sync.flags & DMA_BUF_SYNC_END)
385 			ret = dma_buf_end_cpu_access(dmabuf, direction);
386 		else
387 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
388 
389 		return ret;
390 
391 	case DMA_BUF_SET_NAME_A:
392 	case DMA_BUF_SET_NAME_B:
393 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
394 
395 	default:
396 		return -ENOTTY;
397 	}
398 }
399 
400 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
401 {
402 	struct dma_buf *dmabuf = file->private_data;
403 
404 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
405 	/* Don't count the temporary reference taken inside procfs seq_show */
406 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
407 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
408 	dma_resv_lock(dmabuf->resv, NULL);
409 	if (dmabuf->name)
410 		seq_printf(m, "name:\t%s\n", dmabuf->name);
411 	dma_resv_unlock(dmabuf->resv);
412 }
413 
414 static const struct file_operations dma_buf_fops = {
415 	.release	= dma_buf_release,
416 	.mmap		= dma_buf_mmap_internal,
417 	.llseek		= dma_buf_llseek,
418 	.poll		= dma_buf_poll,
419 	.unlocked_ioctl	= dma_buf_ioctl,
420 	.compat_ioctl	= compat_ptr_ioctl,
421 	.show_fdinfo	= dma_buf_show_fdinfo,
422 };
423 
424 /*
425  * is_dma_buf_file - Check if struct file* is associated with dma_buf
426  */
427 static inline int is_dma_buf_file(struct file *file)
428 {
429 	return file->f_op == &dma_buf_fops;
430 }
431 
432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
433 {
434 	struct file *file;
435 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
436 
437 	if (IS_ERR(inode))
438 		return ERR_CAST(inode);
439 
440 	inode->i_size = dmabuf->size;
441 	inode_set_bytes(inode, dmabuf->size);
442 
443 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
444 				 flags, &dma_buf_fops);
445 	if (IS_ERR(file))
446 		goto err_alloc_file;
447 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
448 	file->private_data = dmabuf;
449 	file->f_path.dentry->d_fsdata = dmabuf;
450 
451 	return file;
452 
453 err_alloc_file:
454 	iput(inode);
455 	return file;
456 }
457 
458 /**
459  * DOC: dma buf device access
460  *
461  * For device DMA access to a shared DMA buffer the usual sequence of operations
462  * is fairly simple:
463  *
464  * 1. The exporter defines his exporter instance using
465  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467  *    as a file descriptor by calling dma_buf_fd().
468  *
469  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470  *    to share with: First the filedescriptor is converted to a &dma_buf using
471  *    dma_buf_get(). Then the buffer is attached to the device using
472  *    dma_buf_attach().
473  *
474  *    Up to this stage the exporter is still free to migrate or reallocate the
475  *    backing storage.
476  *
477  * 3. Once the buffer is attached to all devices userspace can initiate DMA
478  *    access to the shared buffer. In the kernel this is done by calling
479  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
480  *
481  * 4. Once a driver is done with a shared buffer it needs to call
482  *    dma_buf_detach() (after cleaning up any mappings) and then release the
483  *    reference acquired with dma_buf_get by calling dma_buf_put().
484  *
485  * For the detailed semantics exporters are expected to implement see
486  * &dma_buf_ops.
487  */
488 
489 /**
490  * dma_buf_export - Creates a new dma_buf, and associates an anon file
491  * with this buffer, so it can be exported.
492  * Also connect the allocator specific data and ops to the buffer.
493  * Additionally, provide a name string for exporter; useful in debugging.
494  *
495  * @exp_info:	[in]	holds all the export related information provided
496  *			by the exporter. see &struct dma_buf_export_info
497  *			for further details.
498  *
499  * Returns, on success, a newly created dma_buf object, which wraps the
500  * supplied private data and operations for dma_buf_ops. On either missing
501  * ops, or error in allocating struct dma_buf, will return negative error.
502  *
503  * For most cases the easiest way to create @exp_info is through the
504  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
505  */
506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
507 {
508 	struct dma_buf *dmabuf;
509 	struct dma_resv *resv = exp_info->resv;
510 	struct file *file;
511 	size_t alloc_size = sizeof(struct dma_buf);
512 	int ret;
513 
514 	if (!exp_info->resv)
515 		alloc_size += sizeof(struct dma_resv);
516 	else
517 		/* prevent &dma_buf[1] == dma_buf->resv */
518 		alloc_size += 1;
519 
520 	if (WARN_ON(!exp_info->priv
521 			  || !exp_info->ops
522 			  || !exp_info->ops->map_dma_buf
523 			  || !exp_info->ops->unmap_dma_buf
524 			  || !exp_info->ops->release)) {
525 		return ERR_PTR(-EINVAL);
526 	}
527 
528 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
529 		    (exp_info->ops->pin || exp_info->ops->unpin)))
530 		return ERR_PTR(-EINVAL);
531 
532 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
533 		return ERR_PTR(-EINVAL);
534 
535 	if (!try_module_get(exp_info->owner))
536 		return ERR_PTR(-ENOENT);
537 
538 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
539 	if (!dmabuf) {
540 		ret = -ENOMEM;
541 		goto err_module;
542 	}
543 
544 	dmabuf->priv = exp_info->priv;
545 	dmabuf->ops = exp_info->ops;
546 	dmabuf->size = exp_info->size;
547 	dmabuf->exp_name = exp_info->exp_name;
548 	dmabuf->owner = exp_info->owner;
549 	init_waitqueue_head(&dmabuf->poll);
550 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
551 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
552 
553 	if (!resv) {
554 		resv = (struct dma_resv *)&dmabuf[1];
555 		dma_resv_init(resv);
556 	}
557 	dmabuf->resv = resv;
558 
559 	file = dma_buf_getfile(dmabuf, exp_info->flags);
560 	if (IS_ERR(file)) {
561 		ret = PTR_ERR(file);
562 		goto err_dmabuf;
563 	}
564 
565 	file->f_mode |= FMODE_LSEEK;
566 	dmabuf->file = file;
567 
568 	mutex_init(&dmabuf->lock);
569 	INIT_LIST_HEAD(&dmabuf->attachments);
570 
571 	mutex_lock(&db_list.lock);
572 	list_add(&dmabuf->list_node, &db_list.head);
573 	mutex_unlock(&db_list.lock);
574 
575 	return dmabuf;
576 
577 err_dmabuf:
578 	kfree(dmabuf);
579 err_module:
580 	module_put(exp_info->owner);
581 	return ERR_PTR(ret);
582 }
583 EXPORT_SYMBOL_GPL(dma_buf_export);
584 
585 /**
586  * dma_buf_fd - returns a file descriptor for the given dma_buf
587  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
588  * @flags:      [in]    flags to give to fd
589  *
590  * On success, returns an associated 'fd'. Else, returns error.
591  */
592 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
593 {
594 	int fd;
595 
596 	if (!dmabuf || !dmabuf->file)
597 		return -EINVAL;
598 
599 	fd = get_unused_fd_flags(flags);
600 	if (fd < 0)
601 		return fd;
602 
603 	fd_install(fd, dmabuf->file);
604 
605 	return fd;
606 }
607 EXPORT_SYMBOL_GPL(dma_buf_fd);
608 
609 /**
610  * dma_buf_get - returns the dma_buf structure related to an fd
611  * @fd:	[in]	fd associated with the dma_buf to be returned
612  *
613  * On success, returns the dma_buf structure associated with an fd; uses
614  * file's refcounting done by fget to increase refcount. returns ERR_PTR
615  * otherwise.
616  */
617 struct dma_buf *dma_buf_get(int fd)
618 {
619 	struct file *file;
620 
621 	file = fget(fd);
622 
623 	if (!file)
624 		return ERR_PTR(-EBADF);
625 
626 	if (!is_dma_buf_file(file)) {
627 		fput(file);
628 		return ERR_PTR(-EINVAL);
629 	}
630 
631 	return file->private_data;
632 }
633 EXPORT_SYMBOL_GPL(dma_buf_get);
634 
635 /**
636  * dma_buf_put - decreases refcount of the buffer
637  * @dmabuf:	[in]	buffer to reduce refcount of
638  *
639  * Uses file's refcounting done implicitly by fput().
640  *
641  * If, as a result of this call, the refcount becomes 0, the 'release' file
642  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
643  * in turn, and frees the memory allocated for dmabuf when exported.
644  */
645 void dma_buf_put(struct dma_buf *dmabuf)
646 {
647 	if (WARN_ON(!dmabuf || !dmabuf->file))
648 		return;
649 
650 	fput(dmabuf->file);
651 }
652 EXPORT_SYMBOL_GPL(dma_buf_put);
653 
654 /**
655  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
656  * calls attach() of dma_buf_ops to allow device-specific attach functionality
657  * @dmabuf:		[in]	buffer to attach device to.
658  * @dev:		[in]	device to be attached.
659  * @importer_ops:	[in]	importer operations for the attachment
660  * @importer_priv:	[in]	importer private pointer for the attachment
661  *
662  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
663  * must be cleaned up by calling dma_buf_detach().
664  *
665  * Returns:
666  *
667  * A pointer to newly created &dma_buf_attachment on success, or a negative
668  * error code wrapped into a pointer on failure.
669  *
670  * Note that this can fail if the backing storage of @dmabuf is in a place not
671  * accessible to @dev, and cannot be moved to a more suitable place. This is
672  * indicated with the error code -EBUSY.
673  */
674 struct dma_buf_attachment *
675 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
676 		       const struct dma_buf_attach_ops *importer_ops,
677 		       void *importer_priv)
678 {
679 	struct dma_buf_attachment *attach;
680 	int ret;
681 
682 	if (WARN_ON(!dmabuf || !dev))
683 		return ERR_PTR(-EINVAL);
684 
685 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
686 		return ERR_PTR(-EINVAL);
687 
688 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
689 	if (!attach)
690 		return ERR_PTR(-ENOMEM);
691 
692 	attach->dev = dev;
693 	attach->dmabuf = dmabuf;
694 	if (importer_ops)
695 		attach->peer2peer = importer_ops->allow_peer2peer;
696 	attach->importer_ops = importer_ops;
697 	attach->importer_priv = importer_priv;
698 
699 	if (dmabuf->ops->attach) {
700 		ret = dmabuf->ops->attach(dmabuf, attach);
701 		if (ret)
702 			goto err_attach;
703 	}
704 	dma_resv_lock(dmabuf->resv, NULL);
705 	list_add(&attach->node, &dmabuf->attachments);
706 	dma_resv_unlock(dmabuf->resv);
707 
708 	/* When either the importer or the exporter can't handle dynamic
709 	 * mappings we cache the mapping here to avoid issues with the
710 	 * reservation object lock.
711 	 */
712 	if (dma_buf_attachment_is_dynamic(attach) !=
713 	    dma_buf_is_dynamic(dmabuf)) {
714 		struct sg_table *sgt;
715 
716 		if (dma_buf_is_dynamic(attach->dmabuf)) {
717 			dma_resv_lock(attach->dmabuf->resv, NULL);
718 			ret = dma_buf_pin(attach);
719 			if (ret)
720 				goto err_unlock;
721 		}
722 
723 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
724 		if (!sgt)
725 			sgt = ERR_PTR(-ENOMEM);
726 		if (IS_ERR(sgt)) {
727 			ret = PTR_ERR(sgt);
728 			goto err_unpin;
729 		}
730 		if (dma_buf_is_dynamic(attach->dmabuf))
731 			dma_resv_unlock(attach->dmabuf->resv);
732 		attach->sgt = sgt;
733 		attach->dir = DMA_BIDIRECTIONAL;
734 	}
735 
736 	return attach;
737 
738 err_attach:
739 	kfree(attach);
740 	return ERR_PTR(ret);
741 
742 err_unpin:
743 	if (dma_buf_is_dynamic(attach->dmabuf))
744 		dma_buf_unpin(attach);
745 
746 err_unlock:
747 	if (dma_buf_is_dynamic(attach->dmabuf))
748 		dma_resv_unlock(attach->dmabuf->resv);
749 
750 	dma_buf_detach(dmabuf, attach);
751 	return ERR_PTR(ret);
752 }
753 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
754 
755 /**
756  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
757  * @dmabuf:	[in]	buffer to attach device to.
758  * @dev:	[in]	device to be attached.
759  *
760  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
761  * mapping.
762  */
763 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
764 					  struct device *dev)
765 {
766 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
767 }
768 EXPORT_SYMBOL_GPL(dma_buf_attach);
769 
770 /**
771  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
772  * optionally calls detach() of dma_buf_ops for device-specific detach
773  * @dmabuf:	[in]	buffer to detach from.
774  * @attach:	[in]	attachment to be detached; is free'd after this call.
775  *
776  * Clean up a device attachment obtained by calling dma_buf_attach().
777  */
778 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
779 {
780 	if (WARN_ON(!dmabuf || !attach))
781 		return;
782 
783 	if (attach->sgt) {
784 		if (dma_buf_is_dynamic(attach->dmabuf))
785 			dma_resv_lock(attach->dmabuf->resv, NULL);
786 
787 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
788 
789 		if (dma_buf_is_dynamic(attach->dmabuf)) {
790 			dma_buf_unpin(attach);
791 			dma_resv_unlock(attach->dmabuf->resv);
792 		}
793 	}
794 
795 	dma_resv_lock(dmabuf->resv, NULL);
796 	list_del(&attach->node);
797 	dma_resv_unlock(dmabuf->resv);
798 	if (dmabuf->ops->detach)
799 		dmabuf->ops->detach(dmabuf, attach);
800 
801 	kfree(attach);
802 }
803 EXPORT_SYMBOL_GPL(dma_buf_detach);
804 
805 /**
806  * dma_buf_pin - Lock down the DMA-buf
807  *
808  * @attach:	[in]	attachment which should be pinned
809  *
810  * Returns:
811  * 0 on success, negative error code on failure.
812  */
813 int dma_buf_pin(struct dma_buf_attachment *attach)
814 {
815 	struct dma_buf *dmabuf = attach->dmabuf;
816 	int ret = 0;
817 
818 	dma_resv_assert_held(dmabuf->resv);
819 
820 	if (dmabuf->ops->pin)
821 		ret = dmabuf->ops->pin(attach);
822 
823 	return ret;
824 }
825 EXPORT_SYMBOL_GPL(dma_buf_pin);
826 
827 /**
828  * dma_buf_unpin - Remove lock from DMA-buf
829  *
830  * @attach:	[in]	attachment which should be unpinned
831  */
832 void dma_buf_unpin(struct dma_buf_attachment *attach)
833 {
834 	struct dma_buf *dmabuf = attach->dmabuf;
835 
836 	dma_resv_assert_held(dmabuf->resv);
837 
838 	if (dmabuf->ops->unpin)
839 		dmabuf->ops->unpin(attach);
840 }
841 EXPORT_SYMBOL_GPL(dma_buf_unpin);
842 
843 /**
844  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
845  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
846  * dma_buf_ops.
847  * @attach:	[in]	attachment whose scatterlist is to be returned
848  * @direction:	[in]	direction of DMA transfer
849  *
850  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
851  * on error. May return -EINTR if it is interrupted by a signal.
852  *
853  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
854  * the underlying backing storage is pinned for as long as a mapping exists,
855  * therefore users/importers should not hold onto a mapping for undue amounts of
856  * time.
857  */
858 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
859 					enum dma_data_direction direction)
860 {
861 	struct sg_table *sg_table;
862 	int r;
863 
864 	might_sleep();
865 
866 	if (WARN_ON(!attach || !attach->dmabuf))
867 		return ERR_PTR(-EINVAL);
868 
869 	if (dma_buf_attachment_is_dynamic(attach))
870 		dma_resv_assert_held(attach->dmabuf->resv);
871 
872 	if (attach->sgt) {
873 		/*
874 		 * Two mappings with different directions for the same
875 		 * attachment are not allowed.
876 		 */
877 		if (attach->dir != direction &&
878 		    attach->dir != DMA_BIDIRECTIONAL)
879 			return ERR_PTR(-EBUSY);
880 
881 		return attach->sgt;
882 	}
883 
884 	if (dma_buf_is_dynamic(attach->dmabuf)) {
885 		dma_resv_assert_held(attach->dmabuf->resv);
886 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
887 			r = dma_buf_pin(attach);
888 			if (r)
889 				return ERR_PTR(r);
890 		}
891 	}
892 
893 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
894 	if (!sg_table)
895 		sg_table = ERR_PTR(-ENOMEM);
896 
897 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
898 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
899 		dma_buf_unpin(attach);
900 
901 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
902 		attach->sgt = sg_table;
903 		attach->dir = direction;
904 	}
905 
906 	return sg_table;
907 }
908 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
909 
910 /**
911  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
912  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
913  * dma_buf_ops.
914  * @attach:	[in]	attachment to unmap buffer from
915  * @sg_table:	[in]	scatterlist info of the buffer to unmap
916  * @direction:  [in]    direction of DMA transfer
917  *
918  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
919  */
920 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
921 				struct sg_table *sg_table,
922 				enum dma_data_direction direction)
923 {
924 	might_sleep();
925 
926 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
927 		return;
928 
929 	if (dma_buf_attachment_is_dynamic(attach))
930 		dma_resv_assert_held(attach->dmabuf->resv);
931 
932 	if (attach->sgt == sg_table)
933 		return;
934 
935 	if (dma_buf_is_dynamic(attach->dmabuf))
936 		dma_resv_assert_held(attach->dmabuf->resv);
937 
938 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
939 
940 	if (dma_buf_is_dynamic(attach->dmabuf) &&
941 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
942 		dma_buf_unpin(attach);
943 }
944 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
945 
946 /**
947  * dma_buf_move_notify - notify attachments that DMA-buf is moving
948  *
949  * @dmabuf:	[in]	buffer which is moving
950  *
951  * Informs all attachmenst that they need to destroy and recreated all their
952  * mappings.
953  */
954 void dma_buf_move_notify(struct dma_buf *dmabuf)
955 {
956 	struct dma_buf_attachment *attach;
957 
958 	dma_resv_assert_held(dmabuf->resv);
959 
960 	list_for_each_entry(attach, &dmabuf->attachments, node)
961 		if (attach->importer_ops)
962 			attach->importer_ops->move_notify(attach);
963 }
964 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
965 
966 /**
967  * DOC: cpu access
968  *
969  * There are mutliple reasons for supporting CPU access to a dma buffer object:
970  *
971  * - Fallback operations in the kernel, for example when a device is connected
972  *   over USB and the kernel needs to shuffle the data around first before
973  *   sending it away. Cache coherency is handled by braketing any transactions
974  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
975  *   access.
976  *
977  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
978  *   vmap interface is introduced. Note that on very old 32-bit architectures
979  *   vmalloc space might be limited and result in vmap calls failing.
980  *
981  *   Interfaces::
982  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
983  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
984  *
985  *   The vmap call can fail if there is no vmap support in the exporter, or if
986  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
987  *   that the dma-buf layer keeps a reference count for all vmap access and
988  *   calls down into the exporter's vmap function only when no vmapping exists,
989  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
990  *   provided by taking the dma_buf->lock mutex.
991  *
992  * - For full compatibility on the importer side with existing userspace
993  *   interfaces, which might already support mmap'ing buffers. This is needed in
994  *   many processing pipelines (e.g. feeding a software rendered image into a
995  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
996  *   framework already supported this and for DMA buffer file descriptors to
997  *   replace ION buffers mmap support was needed.
998  *
999  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1000  *   fd. But like for CPU access there's a need to braket the actual access,
1001  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1002  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1003  *   be restarted.
1004  *
1005  *   Some systems might need some sort of cache coherency management e.g. when
1006  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1007  *   To circumvent this problem there are begin/end coherency markers, that
1008  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1009  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1010  *   sequence would be used like following:
1011  *
1012  *     - mmap dma-buf fd
1013  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1014  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1015  *       want (with the new data being consumed by say the GPU or the scanout
1016  *       device)
1017  *     - munmap once you don't need the buffer any more
1018  *
1019  *    For correctness and optimal performance, it is always required to use
1020  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1021  *    mapped address. Userspace cannot rely on coherent access, even when there
1022  *    are systems where it just works without calling these ioctls.
1023  *
1024  * - And as a CPU fallback in userspace processing pipelines.
1025  *
1026  *   Similar to the motivation for kernel cpu access it is again important that
1027  *   the userspace code of a given importing subsystem can use the same
1028  *   interfaces with a imported dma-buf buffer object as with a native buffer
1029  *   object. This is especially important for drm where the userspace part of
1030  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1031  *   use a different way to mmap a buffer rather invasive.
1032  *
1033  *   The assumption in the current dma-buf interfaces is that redirecting the
1034  *   initial mmap is all that's needed. A survey of some of the existing
1035  *   subsystems shows that no driver seems to do any nefarious thing like
1036  *   syncing up with outstanding asynchronous processing on the device or
1037  *   allocating special resources at fault time. So hopefully this is good
1038  *   enough, since adding interfaces to intercept pagefaults and allow pte
1039  *   shootdowns would increase the complexity quite a bit.
1040  *
1041  *   Interface::
1042  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1043  *		       unsigned long);
1044  *
1045  *   If the importing subsystem simply provides a special-purpose mmap call to
1046  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1047  *   equally achieve that for a dma-buf object.
1048  */
1049 
1050 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1051 				      enum dma_data_direction direction)
1052 {
1053 	bool write = (direction == DMA_BIDIRECTIONAL ||
1054 		      direction == DMA_TO_DEVICE);
1055 	struct dma_resv *resv = dmabuf->resv;
1056 	long ret;
1057 
1058 	/* Wait on any implicit rendering fences */
1059 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
1060 						  MAX_SCHEDULE_TIMEOUT);
1061 	if (ret < 0)
1062 		return ret;
1063 
1064 	return 0;
1065 }
1066 
1067 /**
1068  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1069  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1070  * preparations. Coherency is only guaranteed in the specified range for the
1071  * specified access direction.
1072  * @dmabuf:	[in]	buffer to prepare cpu access for.
1073  * @direction:	[in]	length of range for cpu access.
1074  *
1075  * After the cpu access is complete the caller should call
1076  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1077  * it guaranteed to be coherent with other DMA access.
1078  *
1079  * Can return negative error values, returns 0 on success.
1080  */
1081 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1082 			     enum dma_data_direction direction)
1083 {
1084 	int ret = 0;
1085 
1086 	if (WARN_ON(!dmabuf))
1087 		return -EINVAL;
1088 
1089 	if (dmabuf->ops->begin_cpu_access)
1090 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1091 
1092 	/* Ensure that all fences are waited upon - but we first allow
1093 	 * the native handler the chance to do so more efficiently if it
1094 	 * chooses. A double invocation here will be reasonably cheap no-op.
1095 	 */
1096 	if (ret == 0)
1097 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1098 
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1102 
1103 /**
1104  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1105  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1106  * actions. Coherency is only guaranteed in the specified range for the
1107  * specified access direction.
1108  * @dmabuf:	[in]	buffer to complete cpu access for.
1109  * @direction:	[in]	length of range for cpu access.
1110  *
1111  * This terminates CPU access started with dma_buf_begin_cpu_access().
1112  *
1113  * Can return negative error values, returns 0 on success.
1114  */
1115 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1116 			   enum dma_data_direction direction)
1117 {
1118 	int ret = 0;
1119 
1120 	WARN_ON(!dmabuf);
1121 
1122 	if (dmabuf->ops->end_cpu_access)
1123 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1124 
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1128 
1129 
1130 /**
1131  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1132  * @dmabuf:	[in]	buffer that should back the vma
1133  * @vma:	[in]	vma for the mmap
1134  * @pgoff:	[in]	offset in pages where this mmap should start within the
1135  *			dma-buf buffer.
1136  *
1137  * This function adjusts the passed in vma so that it points at the file of the
1138  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1139  * checking on the size of the vma. Then it calls the exporters mmap function to
1140  * set up the mapping.
1141  *
1142  * Can return negative error values, returns 0 on success.
1143  */
1144 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1145 		 unsigned long pgoff)
1146 {
1147 	struct file *oldfile;
1148 	int ret;
1149 
1150 	if (WARN_ON(!dmabuf || !vma))
1151 		return -EINVAL;
1152 
1153 	/* check if buffer supports mmap */
1154 	if (!dmabuf->ops->mmap)
1155 		return -EINVAL;
1156 
1157 	/* check for offset overflow */
1158 	if (pgoff + vma_pages(vma) < pgoff)
1159 		return -EOVERFLOW;
1160 
1161 	/* check for overflowing the buffer's size */
1162 	if (pgoff + vma_pages(vma) >
1163 	    dmabuf->size >> PAGE_SHIFT)
1164 		return -EINVAL;
1165 
1166 	/* readjust the vma */
1167 	get_file(dmabuf->file);
1168 	oldfile = vma->vm_file;
1169 	vma->vm_file = dmabuf->file;
1170 	vma->vm_pgoff = pgoff;
1171 
1172 	ret = dmabuf->ops->mmap(dmabuf, vma);
1173 	if (ret) {
1174 		/* restore old parameters on failure */
1175 		vma->vm_file = oldfile;
1176 		fput(dmabuf->file);
1177 	} else {
1178 		if (oldfile)
1179 			fput(oldfile);
1180 	}
1181 	return ret;
1182 
1183 }
1184 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1185 
1186 /**
1187  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1188  * address space. Same restrictions as for vmap and friends apply.
1189  * @dmabuf:	[in]	buffer to vmap
1190  *
1191  * This call may fail due to lack of virtual mapping address space.
1192  * These calls are optional in drivers. The intended use for them
1193  * is for mapping objects linear in kernel space for high use objects.
1194  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1195  *
1196  * Returns NULL on error.
1197  */
1198 void *dma_buf_vmap(struct dma_buf *dmabuf)
1199 {
1200 	void *ptr;
1201 
1202 	if (WARN_ON(!dmabuf))
1203 		return NULL;
1204 
1205 	if (!dmabuf->ops->vmap)
1206 		return NULL;
1207 
1208 	mutex_lock(&dmabuf->lock);
1209 	if (dmabuf->vmapping_counter) {
1210 		dmabuf->vmapping_counter++;
1211 		BUG_ON(!dmabuf->vmap_ptr);
1212 		ptr = dmabuf->vmap_ptr;
1213 		goto out_unlock;
1214 	}
1215 
1216 	BUG_ON(dmabuf->vmap_ptr);
1217 
1218 	ptr = dmabuf->ops->vmap(dmabuf);
1219 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1220 		ptr = NULL;
1221 	if (!ptr)
1222 		goto out_unlock;
1223 
1224 	dmabuf->vmap_ptr = ptr;
1225 	dmabuf->vmapping_counter = 1;
1226 
1227 out_unlock:
1228 	mutex_unlock(&dmabuf->lock);
1229 	return ptr;
1230 }
1231 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1232 
1233 /**
1234  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1235  * @dmabuf:	[in]	buffer to vunmap
1236  * @vaddr:	[in]	vmap to vunmap
1237  */
1238 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1239 {
1240 	if (WARN_ON(!dmabuf))
1241 		return;
1242 
1243 	BUG_ON(!dmabuf->vmap_ptr);
1244 	BUG_ON(dmabuf->vmapping_counter == 0);
1245 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1246 
1247 	mutex_lock(&dmabuf->lock);
1248 	if (--dmabuf->vmapping_counter == 0) {
1249 		if (dmabuf->ops->vunmap)
1250 			dmabuf->ops->vunmap(dmabuf, vaddr);
1251 		dmabuf->vmap_ptr = NULL;
1252 	}
1253 	mutex_unlock(&dmabuf->lock);
1254 }
1255 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1256 
1257 #ifdef CONFIG_DEBUG_FS
1258 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1259 {
1260 	int ret;
1261 	struct dma_buf *buf_obj;
1262 	struct dma_buf_attachment *attach_obj;
1263 	struct dma_resv *robj;
1264 	struct dma_resv_list *fobj;
1265 	struct dma_fence *fence;
1266 	unsigned seq;
1267 	int count = 0, attach_count, shared_count, i;
1268 	size_t size = 0;
1269 
1270 	ret = mutex_lock_interruptible(&db_list.lock);
1271 
1272 	if (ret)
1273 		return ret;
1274 
1275 	seq_puts(s, "\nDma-buf Objects:\n");
1276 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1277 		   "size", "flags", "mode", "count", "ino");
1278 
1279 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1280 
1281 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1282 		if (ret)
1283 			goto error_unlock;
1284 
1285 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1286 				buf_obj->size,
1287 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1288 				file_count(buf_obj->file),
1289 				buf_obj->exp_name,
1290 				file_inode(buf_obj->file)->i_ino,
1291 				buf_obj->name ?: "");
1292 
1293 		robj = buf_obj->resv;
1294 		while (true) {
1295 			seq = read_seqcount_begin(&robj->seq);
1296 			rcu_read_lock();
1297 			fobj = rcu_dereference(robj->fence);
1298 			shared_count = fobj ? fobj->shared_count : 0;
1299 			fence = rcu_dereference(robj->fence_excl);
1300 			if (!read_seqcount_retry(&robj->seq, seq))
1301 				break;
1302 			rcu_read_unlock();
1303 		}
1304 
1305 		if (fence)
1306 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1307 				   fence->ops->get_driver_name(fence),
1308 				   fence->ops->get_timeline_name(fence),
1309 				   dma_fence_is_signaled(fence) ? "" : "un");
1310 		for (i = 0; i < shared_count; i++) {
1311 			fence = rcu_dereference(fobj->shared[i]);
1312 			if (!dma_fence_get_rcu(fence))
1313 				continue;
1314 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1315 				   fence->ops->get_driver_name(fence),
1316 				   fence->ops->get_timeline_name(fence),
1317 				   dma_fence_is_signaled(fence) ? "" : "un");
1318 			dma_fence_put(fence);
1319 		}
1320 		rcu_read_unlock();
1321 
1322 		seq_puts(s, "\tAttached Devices:\n");
1323 		attach_count = 0;
1324 
1325 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1326 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1327 			attach_count++;
1328 		}
1329 		dma_resv_unlock(buf_obj->resv);
1330 
1331 		seq_printf(s, "Total %d devices attached\n\n",
1332 				attach_count);
1333 
1334 		count++;
1335 		size += buf_obj->size;
1336 	}
1337 
1338 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1339 
1340 	mutex_unlock(&db_list.lock);
1341 	return 0;
1342 
1343 error_unlock:
1344 	mutex_unlock(&db_list.lock);
1345 	return ret;
1346 }
1347 
1348 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1349 
1350 static struct dentry *dma_buf_debugfs_dir;
1351 
1352 static int dma_buf_init_debugfs(void)
1353 {
1354 	struct dentry *d;
1355 	int err = 0;
1356 
1357 	d = debugfs_create_dir("dma_buf", NULL);
1358 	if (IS_ERR(d))
1359 		return PTR_ERR(d);
1360 
1361 	dma_buf_debugfs_dir = d;
1362 
1363 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1364 				NULL, &dma_buf_debug_fops);
1365 	if (IS_ERR(d)) {
1366 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1367 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1368 		dma_buf_debugfs_dir = NULL;
1369 		err = PTR_ERR(d);
1370 	}
1371 
1372 	return err;
1373 }
1374 
1375 static void dma_buf_uninit_debugfs(void)
1376 {
1377 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1378 }
1379 #else
1380 static inline int dma_buf_init_debugfs(void)
1381 {
1382 	return 0;
1383 }
1384 static inline void dma_buf_uninit_debugfs(void)
1385 {
1386 }
1387 #endif
1388 
1389 static int __init dma_buf_init(void)
1390 {
1391 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1392 	if (IS_ERR(dma_buf_mnt))
1393 		return PTR_ERR(dma_buf_mnt);
1394 
1395 	mutex_init(&db_list.lock);
1396 	INIT_LIST_HEAD(&db_list.head);
1397 	dma_buf_init_debugfs();
1398 	return 0;
1399 }
1400 subsys_initcall(dma_buf_init);
1401 
1402 static void __exit dma_buf_deinit(void)
1403 {
1404 	dma_buf_uninit_debugfs();
1405 	kern_unmount(dma_buf_mnt);
1406 }
1407 __exitcall(dma_buf_deinit);
1408