xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 82b5d164)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	mutex_lock(&dmabuf->lock);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	mutex_unlock(&dmabuf->lock);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 	.d_dname = dmabuffs_dname,
59 };
60 
61 static struct vfsmount *dma_buf_mnt;
62 
63 static int dma_buf_fs_init_context(struct fs_context *fc)
64 {
65 	struct pseudo_fs_context *ctx;
66 
67 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 	if (!ctx)
69 		return -ENOMEM;
70 	ctx->dops = &dma_buf_dentry_ops;
71 	return 0;
72 }
73 
74 static struct file_system_type dma_buf_fs_type = {
75 	.name = "dmabuf",
76 	.init_fs_context = dma_buf_fs_init_context,
77 	.kill_sb = kill_anon_super,
78 };
79 
80 static int dma_buf_release(struct inode *inode, struct file *file)
81 {
82 	struct dma_buf *dmabuf;
83 
84 	if (!is_dma_buf_file(file))
85 		return -EINVAL;
86 
87 	dmabuf = file->private_data;
88 
89 	BUG_ON(dmabuf->vmapping_counter);
90 
91 	/*
92 	 * Any fences that a dma-buf poll can wait on should be signaled
93 	 * before releasing dma-buf. This is the responsibility of each
94 	 * driver that uses the reservation objects.
95 	 *
96 	 * If you hit this BUG() it means someone dropped their ref to the
97 	 * dma-buf while still having pending operation to the buffer.
98 	 */
99 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100 
101 	dmabuf->ops->release(dmabuf);
102 
103 	mutex_lock(&db_list.lock);
104 	list_del(&dmabuf->list_node);
105 	mutex_unlock(&db_list.lock);
106 
107 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 		dma_resv_fini(dmabuf->resv);
109 
110 	module_put(dmabuf->owner);
111 	kfree(dmabuf);
112 	return 0;
113 }
114 
115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
116 {
117 	struct dma_buf *dmabuf;
118 
119 	if (!is_dma_buf_file(file))
120 		return -EINVAL;
121 
122 	dmabuf = file->private_data;
123 
124 	/* check if buffer supports mmap */
125 	if (!dmabuf->ops->mmap)
126 		return -EINVAL;
127 
128 	/* check for overflowing the buffer's size */
129 	if (vma->vm_pgoff + vma_pages(vma) >
130 	    dmabuf->size >> PAGE_SHIFT)
131 		return -EINVAL;
132 
133 	return dmabuf->ops->mmap(dmabuf, vma);
134 }
135 
136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
137 {
138 	struct dma_buf *dmabuf;
139 	loff_t base;
140 
141 	if (!is_dma_buf_file(file))
142 		return -EBADF;
143 
144 	dmabuf = file->private_data;
145 
146 	/* only support discovering the end of the buffer,
147 	   but also allow SEEK_SET to maintain the idiomatic
148 	   SEEK_END(0), SEEK_CUR(0) pattern */
149 	if (whence == SEEK_END)
150 		base = dmabuf->size;
151 	else if (whence == SEEK_SET)
152 		base = 0;
153 	else
154 		return -EINVAL;
155 
156 	if (offset != 0)
157 		return -EINVAL;
158 
159 	return base + offset;
160 }
161 
162 /**
163  * DOC: fence polling
164  *
165  * To support cross-device and cross-driver synchronization of buffer access
166  * implicit fences (represented internally in the kernel with &struct fence) can
167  * be attached to a &dma_buf. The glue for that and a few related things are
168  * provided in the &dma_resv structure.
169  *
170  * Userspace can query the state of these implicitly tracked fences using poll()
171  * and related system calls:
172  *
173  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
174  *   most recent write or exclusive fence.
175  *
176  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
177  *   all attached fences, shared and exclusive ones.
178  *
179  * Note that this only signals the completion of the respective fences, i.e. the
180  * DMA transfers are complete. Cache flushing and any other necessary
181  * preparations before CPU access can begin still need to happen.
182  */
183 
184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
185 {
186 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dcb->poll->lock, flags);
190 	wake_up_locked_poll(dcb->poll, dcb->active);
191 	dcb->active = 0;
192 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
193 }
194 
195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
196 {
197 	struct dma_buf *dmabuf;
198 	struct dma_resv *resv;
199 	struct dma_resv_list *fobj;
200 	struct dma_fence *fence_excl;
201 	__poll_t events;
202 	unsigned shared_count, seq;
203 
204 	dmabuf = file->private_data;
205 	if (!dmabuf || !dmabuf->resv)
206 		return EPOLLERR;
207 
208 	resv = dmabuf->resv;
209 
210 	poll_wait(file, &dmabuf->poll, poll);
211 
212 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
213 	if (!events)
214 		return 0;
215 
216 retry:
217 	seq = read_seqcount_begin(&resv->seq);
218 	rcu_read_lock();
219 
220 	fobj = rcu_dereference(resv->fence);
221 	if (fobj)
222 		shared_count = fobj->shared_count;
223 	else
224 		shared_count = 0;
225 	fence_excl = rcu_dereference(resv->fence_excl);
226 	if (read_seqcount_retry(&resv->seq, seq)) {
227 		rcu_read_unlock();
228 		goto retry;
229 	}
230 
231 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
232 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
233 		__poll_t pevents = EPOLLIN;
234 
235 		if (shared_count == 0)
236 			pevents |= EPOLLOUT;
237 
238 		spin_lock_irq(&dmabuf->poll.lock);
239 		if (dcb->active) {
240 			dcb->active |= pevents;
241 			events &= ~pevents;
242 		} else
243 			dcb->active = pevents;
244 		spin_unlock_irq(&dmabuf->poll.lock);
245 
246 		if (events & pevents) {
247 			if (!dma_fence_get_rcu(fence_excl)) {
248 				/* force a recheck */
249 				events &= ~pevents;
250 				dma_buf_poll_cb(NULL, &dcb->cb);
251 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
252 							   dma_buf_poll_cb)) {
253 				events &= ~pevents;
254 				dma_fence_put(fence_excl);
255 			} else {
256 				/*
257 				 * No callback queued, wake up any additional
258 				 * waiters.
259 				 */
260 				dma_fence_put(fence_excl);
261 				dma_buf_poll_cb(NULL, &dcb->cb);
262 			}
263 		}
264 	}
265 
266 	if ((events & EPOLLOUT) && shared_count > 0) {
267 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
268 		int i;
269 
270 		/* Only queue a new callback if no event has fired yet */
271 		spin_lock_irq(&dmabuf->poll.lock);
272 		if (dcb->active)
273 			events &= ~EPOLLOUT;
274 		else
275 			dcb->active = EPOLLOUT;
276 		spin_unlock_irq(&dmabuf->poll.lock);
277 
278 		if (!(events & EPOLLOUT))
279 			goto out;
280 
281 		for (i = 0; i < shared_count; ++i) {
282 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
283 
284 			if (!dma_fence_get_rcu(fence)) {
285 				/*
286 				 * fence refcount dropped to zero, this means
287 				 * that fobj has been freed
288 				 *
289 				 * call dma_buf_poll_cb and force a recheck!
290 				 */
291 				events &= ~EPOLLOUT;
292 				dma_buf_poll_cb(NULL, &dcb->cb);
293 				break;
294 			}
295 			if (!dma_fence_add_callback(fence, &dcb->cb,
296 						    dma_buf_poll_cb)) {
297 				dma_fence_put(fence);
298 				events &= ~EPOLLOUT;
299 				break;
300 			}
301 			dma_fence_put(fence);
302 		}
303 
304 		/* No callback queued, wake up any additional waiters. */
305 		if (i == shared_count)
306 			dma_buf_poll_cb(NULL, &dcb->cb);
307 	}
308 
309 out:
310 	rcu_read_unlock();
311 	return events;
312 }
313 
314 /**
315  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316  * The name of the dma-buf buffer can only be set when the dma-buf is not
317  * attached to any devices. It could theoritically support changing the
318  * name of the dma-buf if the same piece of memory is used for multiple
319  * purpose between different devices.
320  *
321  * @dmabuf [in]     dmabuf buffer that will be renamed.
322  * @buf:   [in]     A piece of userspace memory that contains the name of
323  *                  the dma-buf.
324  *
325  * Returns 0 on success. If the dma-buf buffer is already attached to
326  * devices, return -EBUSY.
327  *
328  */
329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
330 {
331 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
332 	long ret = 0;
333 
334 	if (IS_ERR(name))
335 		return PTR_ERR(name);
336 
337 	mutex_lock(&dmabuf->lock);
338 	if (!list_empty(&dmabuf->attachments)) {
339 		ret = -EBUSY;
340 		kfree(name);
341 		goto out_unlock;
342 	}
343 	kfree(dmabuf->name);
344 	dmabuf->name = name;
345 
346 out_unlock:
347 	mutex_unlock(&dmabuf->lock);
348 	return ret;
349 }
350 
351 static long dma_buf_ioctl(struct file *file,
352 			  unsigned int cmd, unsigned long arg)
353 {
354 	struct dma_buf *dmabuf;
355 	struct dma_buf_sync sync;
356 	enum dma_data_direction direction;
357 	int ret;
358 
359 	dmabuf = file->private_data;
360 
361 	switch (cmd) {
362 	case DMA_BUF_IOCTL_SYNC:
363 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
364 			return -EFAULT;
365 
366 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
367 			return -EINVAL;
368 
369 		switch (sync.flags & DMA_BUF_SYNC_RW) {
370 		case DMA_BUF_SYNC_READ:
371 			direction = DMA_FROM_DEVICE;
372 			break;
373 		case DMA_BUF_SYNC_WRITE:
374 			direction = DMA_TO_DEVICE;
375 			break;
376 		case DMA_BUF_SYNC_RW:
377 			direction = DMA_BIDIRECTIONAL;
378 			break;
379 		default:
380 			return -EINVAL;
381 		}
382 
383 		if (sync.flags & DMA_BUF_SYNC_END)
384 			ret = dma_buf_end_cpu_access(dmabuf, direction);
385 		else
386 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
387 
388 		return ret;
389 
390 	case DMA_BUF_SET_NAME:
391 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
392 
393 	default:
394 		return -ENOTTY;
395 	}
396 }
397 
398 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
399 {
400 	struct dma_buf *dmabuf = file->private_data;
401 
402 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
403 	/* Don't count the temporary reference taken inside procfs seq_show */
404 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
405 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
406 	mutex_lock(&dmabuf->lock);
407 	if (dmabuf->name)
408 		seq_printf(m, "name:\t%s\n", dmabuf->name);
409 	mutex_unlock(&dmabuf->lock);
410 }
411 
412 static const struct file_operations dma_buf_fops = {
413 	.release	= dma_buf_release,
414 	.mmap		= dma_buf_mmap_internal,
415 	.llseek		= dma_buf_llseek,
416 	.poll		= dma_buf_poll,
417 	.unlocked_ioctl	= dma_buf_ioctl,
418 #ifdef CONFIG_COMPAT
419 	.compat_ioctl	= dma_buf_ioctl,
420 #endif
421 	.show_fdinfo	= dma_buf_show_fdinfo,
422 };
423 
424 /*
425  * is_dma_buf_file - Check if struct file* is associated with dma_buf
426  */
427 static inline int is_dma_buf_file(struct file *file)
428 {
429 	return file->f_op == &dma_buf_fops;
430 }
431 
432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
433 {
434 	struct file *file;
435 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
436 
437 	if (IS_ERR(inode))
438 		return ERR_CAST(inode);
439 
440 	inode->i_size = dmabuf->size;
441 	inode_set_bytes(inode, dmabuf->size);
442 
443 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
444 				 flags, &dma_buf_fops);
445 	if (IS_ERR(file))
446 		goto err_alloc_file;
447 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
448 	file->private_data = dmabuf;
449 	file->f_path.dentry->d_fsdata = dmabuf;
450 
451 	return file;
452 
453 err_alloc_file:
454 	iput(inode);
455 	return file;
456 }
457 
458 /**
459  * DOC: dma buf device access
460  *
461  * For device DMA access to a shared DMA buffer the usual sequence of operations
462  * is fairly simple:
463  *
464  * 1. The exporter defines his exporter instance using
465  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467  *    as a file descriptor by calling dma_buf_fd().
468  *
469  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470  *    to share with: First the filedescriptor is converted to a &dma_buf using
471  *    dma_buf_get(). Then the buffer is attached to the device using
472  *    dma_buf_attach().
473  *
474  *    Up to this stage the exporter is still free to migrate or reallocate the
475  *    backing storage.
476  *
477  * 3. Once the buffer is attached to all devices userspace can initiate DMA
478  *    access to the shared buffer. In the kernel this is done by calling
479  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
480  *
481  * 4. Once a driver is done with a shared buffer it needs to call
482  *    dma_buf_detach() (after cleaning up any mappings) and then release the
483  *    reference acquired with dma_buf_get by calling dma_buf_put().
484  *
485  * For the detailed semantics exporters are expected to implement see
486  * &dma_buf_ops.
487  */
488 
489 /**
490  * dma_buf_export - Creates a new dma_buf, and associates an anon file
491  * with this buffer, so it can be exported.
492  * Also connect the allocator specific data and ops to the buffer.
493  * Additionally, provide a name string for exporter; useful in debugging.
494  *
495  * @exp_info:	[in]	holds all the export related information provided
496  *			by the exporter. see &struct dma_buf_export_info
497  *			for further details.
498  *
499  * Returns, on success, a newly created dma_buf object, which wraps the
500  * supplied private data and operations for dma_buf_ops. On either missing
501  * ops, or error in allocating struct dma_buf, will return negative error.
502  *
503  * For most cases the easiest way to create @exp_info is through the
504  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
505  */
506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
507 {
508 	struct dma_buf *dmabuf;
509 	struct dma_resv *resv = exp_info->resv;
510 	struct file *file;
511 	size_t alloc_size = sizeof(struct dma_buf);
512 	int ret;
513 
514 	if (!exp_info->resv)
515 		alloc_size += sizeof(struct dma_resv);
516 	else
517 		/* prevent &dma_buf[1] == dma_buf->resv */
518 		alloc_size += 1;
519 
520 	if (WARN_ON(!exp_info->priv
521 			  || !exp_info->ops
522 			  || !exp_info->ops->map_dma_buf
523 			  || !exp_info->ops->unmap_dma_buf
524 			  || !exp_info->ops->release)) {
525 		return ERR_PTR(-EINVAL);
526 	}
527 
528 	if (!try_module_get(exp_info->owner))
529 		return ERR_PTR(-ENOENT);
530 
531 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
532 	if (!dmabuf) {
533 		ret = -ENOMEM;
534 		goto err_module;
535 	}
536 
537 	dmabuf->priv = exp_info->priv;
538 	dmabuf->ops = exp_info->ops;
539 	dmabuf->size = exp_info->size;
540 	dmabuf->exp_name = exp_info->exp_name;
541 	dmabuf->owner = exp_info->owner;
542 	init_waitqueue_head(&dmabuf->poll);
543 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
544 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
545 
546 	if (!resv) {
547 		resv = (struct dma_resv *)&dmabuf[1];
548 		dma_resv_init(resv);
549 	}
550 	dmabuf->resv = resv;
551 
552 	file = dma_buf_getfile(dmabuf, exp_info->flags);
553 	if (IS_ERR(file)) {
554 		ret = PTR_ERR(file);
555 		goto err_dmabuf;
556 	}
557 
558 	file->f_mode |= FMODE_LSEEK;
559 	dmabuf->file = file;
560 
561 	mutex_init(&dmabuf->lock);
562 	INIT_LIST_HEAD(&dmabuf->attachments);
563 
564 	mutex_lock(&db_list.lock);
565 	list_add(&dmabuf->list_node, &db_list.head);
566 	mutex_unlock(&db_list.lock);
567 
568 	return dmabuf;
569 
570 err_dmabuf:
571 	kfree(dmabuf);
572 err_module:
573 	module_put(exp_info->owner);
574 	return ERR_PTR(ret);
575 }
576 EXPORT_SYMBOL_GPL(dma_buf_export);
577 
578 /**
579  * dma_buf_fd - returns a file descriptor for the given dma_buf
580  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
581  * @flags:      [in]    flags to give to fd
582  *
583  * On success, returns an associated 'fd'. Else, returns error.
584  */
585 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
586 {
587 	int fd;
588 
589 	if (!dmabuf || !dmabuf->file)
590 		return -EINVAL;
591 
592 	fd = get_unused_fd_flags(flags);
593 	if (fd < 0)
594 		return fd;
595 
596 	fd_install(fd, dmabuf->file);
597 
598 	return fd;
599 }
600 EXPORT_SYMBOL_GPL(dma_buf_fd);
601 
602 /**
603  * dma_buf_get - returns the dma_buf structure related to an fd
604  * @fd:	[in]	fd associated with the dma_buf to be returned
605  *
606  * On success, returns the dma_buf structure associated with an fd; uses
607  * file's refcounting done by fget to increase refcount. returns ERR_PTR
608  * otherwise.
609  */
610 struct dma_buf *dma_buf_get(int fd)
611 {
612 	struct file *file;
613 
614 	file = fget(fd);
615 
616 	if (!file)
617 		return ERR_PTR(-EBADF);
618 
619 	if (!is_dma_buf_file(file)) {
620 		fput(file);
621 		return ERR_PTR(-EINVAL);
622 	}
623 
624 	return file->private_data;
625 }
626 EXPORT_SYMBOL_GPL(dma_buf_get);
627 
628 /**
629  * dma_buf_put - decreases refcount of the buffer
630  * @dmabuf:	[in]	buffer to reduce refcount of
631  *
632  * Uses file's refcounting done implicitly by fput().
633  *
634  * If, as a result of this call, the refcount becomes 0, the 'release' file
635  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
636  * in turn, and frees the memory allocated for dmabuf when exported.
637  */
638 void dma_buf_put(struct dma_buf *dmabuf)
639 {
640 	if (WARN_ON(!dmabuf || !dmabuf->file))
641 		return;
642 
643 	fput(dmabuf->file);
644 }
645 EXPORT_SYMBOL_GPL(dma_buf_put);
646 
647 /**
648  * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
649  * calls attach() of dma_buf_ops to allow device-specific attach functionality
650  * @dmabuf:	[in]	buffer to attach device to.
651  * @dev:	[in]	device to be attached.
652  *
653  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
654  * must be cleaned up by calling dma_buf_detach().
655  *
656  * Returns:
657  *
658  * A pointer to newly created &dma_buf_attachment on success, or a negative
659  * error code wrapped into a pointer on failure.
660  *
661  * Note that this can fail if the backing storage of @dmabuf is in a place not
662  * accessible to @dev, and cannot be moved to a more suitable place. This is
663  * indicated with the error code -EBUSY.
664  */
665 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
666 					  struct device *dev)
667 {
668 	struct dma_buf_attachment *attach;
669 	int ret;
670 
671 	if (WARN_ON(!dmabuf || !dev))
672 		return ERR_PTR(-EINVAL);
673 
674 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
675 	if (!attach)
676 		return ERR_PTR(-ENOMEM);
677 
678 	attach->dev = dev;
679 	attach->dmabuf = dmabuf;
680 
681 	mutex_lock(&dmabuf->lock);
682 
683 	if (dmabuf->ops->attach) {
684 		ret = dmabuf->ops->attach(dmabuf, attach);
685 		if (ret)
686 			goto err_attach;
687 	}
688 	list_add(&attach->node, &dmabuf->attachments);
689 
690 	mutex_unlock(&dmabuf->lock);
691 
692 	return attach;
693 
694 err_attach:
695 	kfree(attach);
696 	mutex_unlock(&dmabuf->lock);
697 	return ERR_PTR(ret);
698 }
699 EXPORT_SYMBOL_GPL(dma_buf_attach);
700 
701 /**
702  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
703  * optionally calls detach() of dma_buf_ops for device-specific detach
704  * @dmabuf:	[in]	buffer to detach from.
705  * @attach:	[in]	attachment to be detached; is free'd after this call.
706  *
707  * Clean up a device attachment obtained by calling dma_buf_attach().
708  */
709 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
710 {
711 	if (WARN_ON(!dmabuf || !attach))
712 		return;
713 
714 	if (attach->sgt)
715 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
716 
717 	mutex_lock(&dmabuf->lock);
718 	list_del(&attach->node);
719 	if (dmabuf->ops->detach)
720 		dmabuf->ops->detach(dmabuf, attach);
721 
722 	mutex_unlock(&dmabuf->lock);
723 	kfree(attach);
724 }
725 EXPORT_SYMBOL_GPL(dma_buf_detach);
726 
727 /**
728  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
729  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
730  * dma_buf_ops.
731  * @attach:	[in]	attachment whose scatterlist is to be returned
732  * @direction:	[in]	direction of DMA transfer
733  *
734  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
735  * on error. May return -EINTR if it is interrupted by a signal.
736  *
737  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
738  * the underlying backing storage is pinned for as long as a mapping exists,
739  * therefore users/importers should not hold onto a mapping for undue amounts of
740  * time.
741  */
742 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
743 					enum dma_data_direction direction)
744 {
745 	struct sg_table *sg_table;
746 
747 	might_sleep();
748 
749 	if (WARN_ON(!attach || !attach->dmabuf))
750 		return ERR_PTR(-EINVAL);
751 
752 	if (attach->sgt) {
753 		/*
754 		 * Two mappings with different directions for the same
755 		 * attachment are not allowed.
756 		 */
757 		if (attach->dir != direction &&
758 		    attach->dir != DMA_BIDIRECTIONAL)
759 			return ERR_PTR(-EBUSY);
760 
761 		return attach->sgt;
762 	}
763 
764 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
765 	if (!sg_table)
766 		sg_table = ERR_PTR(-ENOMEM);
767 
768 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
769 		attach->sgt = sg_table;
770 		attach->dir = direction;
771 	}
772 
773 	return sg_table;
774 }
775 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
776 
777 /**
778  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
779  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
780  * dma_buf_ops.
781  * @attach:	[in]	attachment to unmap buffer from
782  * @sg_table:	[in]	scatterlist info of the buffer to unmap
783  * @direction:  [in]    direction of DMA transfer
784  *
785  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
786  */
787 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
788 				struct sg_table *sg_table,
789 				enum dma_data_direction direction)
790 {
791 	might_sleep();
792 
793 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
794 		return;
795 
796 	if (attach->sgt == sg_table)
797 		return;
798 
799 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
800 }
801 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
802 
803 /**
804  * DOC: cpu access
805  *
806  * There are mutliple reasons for supporting CPU access to a dma buffer object:
807  *
808  * - Fallback operations in the kernel, for example when a device is connected
809  *   over USB and the kernel needs to shuffle the data around first before
810  *   sending it away. Cache coherency is handled by braketing any transactions
811  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
812  *   access.
813  *
814  *   To support dma_buf objects residing in highmem cpu access is page-based
815  *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
816  *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
817  *   returns a pointer in kernel virtual address space. Afterwards the chunk
818  *   needs to be unmapped again. There is no limit on how often a given chunk
819  *   can be mapped and unmapped, i.e. the importer does not need to call
820  *   begin_cpu_access again before mapping the same chunk again.
821  *
822  *   Interfaces::
823  *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
824  *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
825  *
826  *   Implementing the functions is optional for exporters and for importers all
827  *   the restrictions of using kmap apply.
828  *
829  *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
830  *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
831  *   the partial chunks at the beginning and end but may return stale or bogus
832  *   data outside of the range (in these partial chunks).
833  *
834  *   For some cases the overhead of kmap can be too high, a vmap interface
835  *   is introduced. This interface should be used very carefully, as vmalloc
836  *   space is a limited resources on many architectures.
837  *
838  *   Interfaces::
839  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
840  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
841  *
842  *   The vmap call can fail if there is no vmap support in the exporter, or if
843  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
844  *   that the dma-buf layer keeps a reference count for all vmap access and
845  *   calls down into the exporter's vmap function only when no vmapping exists,
846  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
847  *   provided by taking the dma_buf->lock mutex.
848  *
849  * - For full compatibility on the importer side with existing userspace
850  *   interfaces, which might already support mmap'ing buffers. This is needed in
851  *   many processing pipelines (e.g. feeding a software rendered image into a
852  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
853  *   framework already supported this and for DMA buffer file descriptors to
854  *   replace ION buffers mmap support was needed.
855  *
856  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
857  *   fd. But like for CPU access there's a need to braket the actual access,
858  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
859  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
860  *   be restarted.
861  *
862  *   Some systems might need some sort of cache coherency management e.g. when
863  *   CPU and GPU domains are being accessed through dma-buf at the same time.
864  *   To circumvent this problem there are begin/end coherency markers, that
865  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
866  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
867  *   sequence would be used like following:
868  *
869  *     - mmap dma-buf fd
870  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
871  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
872  *       want (with the new data being consumed by say the GPU or the scanout
873  *       device)
874  *     - munmap once you don't need the buffer any more
875  *
876  *    For correctness and optimal performance, it is always required to use
877  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
878  *    mapped address. Userspace cannot rely on coherent access, even when there
879  *    are systems where it just works without calling these ioctls.
880  *
881  * - And as a CPU fallback in userspace processing pipelines.
882  *
883  *   Similar to the motivation for kernel cpu access it is again important that
884  *   the userspace code of a given importing subsystem can use the same
885  *   interfaces with a imported dma-buf buffer object as with a native buffer
886  *   object. This is especially important for drm where the userspace part of
887  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
888  *   use a different way to mmap a buffer rather invasive.
889  *
890  *   The assumption in the current dma-buf interfaces is that redirecting the
891  *   initial mmap is all that's needed. A survey of some of the existing
892  *   subsystems shows that no driver seems to do any nefarious thing like
893  *   syncing up with outstanding asynchronous processing on the device or
894  *   allocating special resources at fault time. So hopefully this is good
895  *   enough, since adding interfaces to intercept pagefaults and allow pte
896  *   shootdowns would increase the complexity quite a bit.
897  *
898  *   Interface::
899  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
900  *		       unsigned long);
901  *
902  *   If the importing subsystem simply provides a special-purpose mmap call to
903  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
904  *   equally achieve that for a dma-buf object.
905  */
906 
907 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
908 				      enum dma_data_direction direction)
909 {
910 	bool write = (direction == DMA_BIDIRECTIONAL ||
911 		      direction == DMA_TO_DEVICE);
912 	struct dma_resv *resv = dmabuf->resv;
913 	long ret;
914 
915 	/* Wait on any implicit rendering fences */
916 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
917 						  MAX_SCHEDULE_TIMEOUT);
918 	if (ret < 0)
919 		return ret;
920 
921 	return 0;
922 }
923 
924 /**
925  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
926  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
927  * preparations. Coherency is only guaranteed in the specified range for the
928  * specified access direction.
929  * @dmabuf:	[in]	buffer to prepare cpu access for.
930  * @direction:	[in]	length of range for cpu access.
931  *
932  * After the cpu access is complete the caller should call
933  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
934  * it guaranteed to be coherent with other DMA access.
935  *
936  * Can return negative error values, returns 0 on success.
937  */
938 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
939 			     enum dma_data_direction direction)
940 {
941 	int ret = 0;
942 
943 	if (WARN_ON(!dmabuf))
944 		return -EINVAL;
945 
946 	if (dmabuf->ops->begin_cpu_access)
947 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
948 
949 	/* Ensure that all fences are waited upon - but we first allow
950 	 * the native handler the chance to do so more efficiently if it
951 	 * chooses. A double invocation here will be reasonably cheap no-op.
952 	 */
953 	if (ret == 0)
954 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
955 
956 	return ret;
957 }
958 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
959 
960 /**
961  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
962  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
963  * actions. Coherency is only guaranteed in the specified range for the
964  * specified access direction.
965  * @dmabuf:	[in]	buffer to complete cpu access for.
966  * @direction:	[in]	length of range for cpu access.
967  *
968  * This terminates CPU access started with dma_buf_begin_cpu_access().
969  *
970  * Can return negative error values, returns 0 on success.
971  */
972 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
973 			   enum dma_data_direction direction)
974 {
975 	int ret = 0;
976 
977 	WARN_ON(!dmabuf);
978 
979 	if (dmabuf->ops->end_cpu_access)
980 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
981 
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
985 
986 /**
987  * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
988  * same restrictions as for kmap and friends apply.
989  * @dmabuf:	[in]	buffer to map page from.
990  * @page_num:	[in]	page in PAGE_SIZE units to map.
991  *
992  * This call must always succeed, any necessary preparations that might fail
993  * need to be done in begin_cpu_access.
994  */
995 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
996 {
997 	WARN_ON(!dmabuf);
998 
999 	if (!dmabuf->ops->map)
1000 		return NULL;
1001 	return dmabuf->ops->map(dmabuf, page_num);
1002 }
1003 EXPORT_SYMBOL_GPL(dma_buf_kmap);
1004 
1005 /**
1006  * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1007  * @dmabuf:	[in]	buffer to unmap page from.
1008  * @page_num:	[in]	page in PAGE_SIZE units to unmap.
1009  * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
1010  *
1011  * This call must always succeed.
1012  */
1013 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1014 		    void *vaddr)
1015 {
1016 	WARN_ON(!dmabuf);
1017 
1018 	if (dmabuf->ops->unmap)
1019 		dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1020 }
1021 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1022 
1023 
1024 /**
1025  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1026  * @dmabuf:	[in]	buffer that should back the vma
1027  * @vma:	[in]	vma for the mmap
1028  * @pgoff:	[in]	offset in pages where this mmap should start within the
1029  *			dma-buf buffer.
1030  *
1031  * This function adjusts the passed in vma so that it points at the file of the
1032  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1033  * checking on the size of the vma. Then it calls the exporters mmap function to
1034  * set up the mapping.
1035  *
1036  * Can return negative error values, returns 0 on success.
1037  */
1038 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1039 		 unsigned long pgoff)
1040 {
1041 	struct file *oldfile;
1042 	int ret;
1043 
1044 	if (WARN_ON(!dmabuf || !vma))
1045 		return -EINVAL;
1046 
1047 	/* check if buffer supports mmap */
1048 	if (!dmabuf->ops->mmap)
1049 		return -EINVAL;
1050 
1051 	/* check for offset overflow */
1052 	if (pgoff + vma_pages(vma) < pgoff)
1053 		return -EOVERFLOW;
1054 
1055 	/* check for overflowing the buffer's size */
1056 	if (pgoff + vma_pages(vma) >
1057 	    dmabuf->size >> PAGE_SHIFT)
1058 		return -EINVAL;
1059 
1060 	/* readjust the vma */
1061 	get_file(dmabuf->file);
1062 	oldfile = vma->vm_file;
1063 	vma->vm_file = dmabuf->file;
1064 	vma->vm_pgoff = pgoff;
1065 
1066 	ret = dmabuf->ops->mmap(dmabuf, vma);
1067 	if (ret) {
1068 		/* restore old parameters on failure */
1069 		vma->vm_file = oldfile;
1070 		fput(dmabuf->file);
1071 	} else {
1072 		if (oldfile)
1073 			fput(oldfile);
1074 	}
1075 	return ret;
1076 
1077 }
1078 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1079 
1080 /**
1081  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1082  * address space. Same restrictions as for vmap and friends apply.
1083  * @dmabuf:	[in]	buffer to vmap
1084  *
1085  * This call may fail due to lack of virtual mapping address space.
1086  * These calls are optional in drivers. The intended use for them
1087  * is for mapping objects linear in kernel space for high use objects.
1088  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1089  *
1090  * Returns NULL on error.
1091  */
1092 void *dma_buf_vmap(struct dma_buf *dmabuf)
1093 {
1094 	void *ptr;
1095 
1096 	if (WARN_ON(!dmabuf))
1097 		return NULL;
1098 
1099 	if (!dmabuf->ops->vmap)
1100 		return NULL;
1101 
1102 	mutex_lock(&dmabuf->lock);
1103 	if (dmabuf->vmapping_counter) {
1104 		dmabuf->vmapping_counter++;
1105 		BUG_ON(!dmabuf->vmap_ptr);
1106 		ptr = dmabuf->vmap_ptr;
1107 		goto out_unlock;
1108 	}
1109 
1110 	BUG_ON(dmabuf->vmap_ptr);
1111 
1112 	ptr = dmabuf->ops->vmap(dmabuf);
1113 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1114 		ptr = NULL;
1115 	if (!ptr)
1116 		goto out_unlock;
1117 
1118 	dmabuf->vmap_ptr = ptr;
1119 	dmabuf->vmapping_counter = 1;
1120 
1121 out_unlock:
1122 	mutex_unlock(&dmabuf->lock);
1123 	return ptr;
1124 }
1125 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1126 
1127 /**
1128  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1129  * @dmabuf:	[in]	buffer to vunmap
1130  * @vaddr:	[in]	vmap to vunmap
1131  */
1132 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1133 {
1134 	if (WARN_ON(!dmabuf))
1135 		return;
1136 
1137 	BUG_ON(!dmabuf->vmap_ptr);
1138 	BUG_ON(dmabuf->vmapping_counter == 0);
1139 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1140 
1141 	mutex_lock(&dmabuf->lock);
1142 	if (--dmabuf->vmapping_counter == 0) {
1143 		if (dmabuf->ops->vunmap)
1144 			dmabuf->ops->vunmap(dmabuf, vaddr);
1145 		dmabuf->vmap_ptr = NULL;
1146 	}
1147 	mutex_unlock(&dmabuf->lock);
1148 }
1149 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1150 
1151 #ifdef CONFIG_DEBUG_FS
1152 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1153 {
1154 	int ret;
1155 	struct dma_buf *buf_obj;
1156 	struct dma_buf_attachment *attach_obj;
1157 	struct dma_resv *robj;
1158 	struct dma_resv_list *fobj;
1159 	struct dma_fence *fence;
1160 	unsigned seq;
1161 	int count = 0, attach_count, shared_count, i;
1162 	size_t size = 0;
1163 
1164 	ret = mutex_lock_interruptible(&db_list.lock);
1165 
1166 	if (ret)
1167 		return ret;
1168 
1169 	seq_puts(s, "\nDma-buf Objects:\n");
1170 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1171 		   "size", "flags", "mode", "count", "ino");
1172 
1173 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1174 		ret = mutex_lock_interruptible(&buf_obj->lock);
1175 
1176 		if (ret) {
1177 			seq_puts(s,
1178 				 "\tERROR locking buffer object: skipping\n");
1179 			continue;
1180 		}
1181 
1182 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1183 				buf_obj->size,
1184 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1185 				file_count(buf_obj->file),
1186 				buf_obj->exp_name,
1187 				file_inode(buf_obj->file)->i_ino,
1188 				buf_obj->name ?: "");
1189 
1190 		robj = buf_obj->resv;
1191 		while (true) {
1192 			seq = read_seqcount_begin(&robj->seq);
1193 			rcu_read_lock();
1194 			fobj = rcu_dereference(robj->fence);
1195 			shared_count = fobj ? fobj->shared_count : 0;
1196 			fence = rcu_dereference(robj->fence_excl);
1197 			if (!read_seqcount_retry(&robj->seq, seq))
1198 				break;
1199 			rcu_read_unlock();
1200 		}
1201 
1202 		if (fence)
1203 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1204 				   fence->ops->get_driver_name(fence),
1205 				   fence->ops->get_timeline_name(fence),
1206 				   dma_fence_is_signaled(fence) ? "" : "un");
1207 		for (i = 0; i < shared_count; i++) {
1208 			fence = rcu_dereference(fobj->shared[i]);
1209 			if (!dma_fence_get_rcu(fence))
1210 				continue;
1211 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1212 				   fence->ops->get_driver_name(fence),
1213 				   fence->ops->get_timeline_name(fence),
1214 				   dma_fence_is_signaled(fence) ? "" : "un");
1215 			dma_fence_put(fence);
1216 		}
1217 		rcu_read_unlock();
1218 
1219 		seq_puts(s, "\tAttached Devices:\n");
1220 		attach_count = 0;
1221 
1222 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1223 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1224 			attach_count++;
1225 		}
1226 
1227 		seq_printf(s, "Total %d devices attached\n\n",
1228 				attach_count);
1229 
1230 		count++;
1231 		size += buf_obj->size;
1232 		mutex_unlock(&buf_obj->lock);
1233 	}
1234 
1235 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1236 
1237 	mutex_unlock(&db_list.lock);
1238 	return 0;
1239 }
1240 
1241 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1242 
1243 static struct dentry *dma_buf_debugfs_dir;
1244 
1245 static int dma_buf_init_debugfs(void)
1246 {
1247 	struct dentry *d;
1248 	int err = 0;
1249 
1250 	d = debugfs_create_dir("dma_buf", NULL);
1251 	if (IS_ERR(d))
1252 		return PTR_ERR(d);
1253 
1254 	dma_buf_debugfs_dir = d;
1255 
1256 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1257 				NULL, &dma_buf_debug_fops);
1258 	if (IS_ERR(d)) {
1259 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1260 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1261 		dma_buf_debugfs_dir = NULL;
1262 		err = PTR_ERR(d);
1263 	}
1264 
1265 	return err;
1266 }
1267 
1268 static void dma_buf_uninit_debugfs(void)
1269 {
1270 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1271 }
1272 #else
1273 static inline int dma_buf_init_debugfs(void)
1274 {
1275 	return 0;
1276 }
1277 static inline void dma_buf_uninit_debugfs(void)
1278 {
1279 }
1280 #endif
1281 
1282 static int __init dma_buf_init(void)
1283 {
1284 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1285 	if (IS_ERR(dma_buf_mnt))
1286 		return PTR_ERR(dma_buf_mnt);
1287 
1288 	mutex_init(&db_list.lock);
1289 	INIT_LIST_HEAD(&db_list.head);
1290 	dma_buf_init_debugfs();
1291 	return 0;
1292 }
1293 subsys_initcall(dma_buf_init);
1294 
1295 static void __exit dma_buf_deinit(void)
1296 {
1297 	dma_buf_uninit_debugfs();
1298 	kern_unmount(dma_buf_mnt);
1299 }
1300 __exitcall(dma_buf_deinit);
1301