xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 7f8256ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/sync_file.h>
25 #include <linux/poll.h>
26 #include <linux/dma-resv.h>
27 #include <linux/mm.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 
31 #include <uapi/linux/dma-buf.h>
32 #include <uapi/linux/magic.h>
33 
34 #include "dma-buf-sysfs-stats.h"
35 
36 static inline int is_dma_buf_file(struct file *);
37 
38 struct dma_buf_list {
39 	struct list_head head;
40 	struct mutex lock;
41 };
42 
43 static struct dma_buf_list db_list;
44 
45 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
46 {
47 	struct dma_buf *dmabuf;
48 	char name[DMA_BUF_NAME_LEN];
49 	size_t ret = 0;
50 
51 	dmabuf = dentry->d_fsdata;
52 	spin_lock(&dmabuf->name_lock);
53 	if (dmabuf->name)
54 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
55 	spin_unlock(&dmabuf->name_lock);
56 
57 	return dynamic_dname(buffer, buflen, "/%s:%s",
58 			     dentry->d_name.name, ret > 0 ? name : "");
59 }
60 
61 static void dma_buf_release(struct dentry *dentry)
62 {
63 	struct dma_buf *dmabuf;
64 
65 	dmabuf = dentry->d_fsdata;
66 	if (unlikely(!dmabuf))
67 		return;
68 
69 	BUG_ON(dmabuf->vmapping_counter);
70 
71 	/*
72 	 * If you hit this BUG() it could mean:
73 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
74 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
75 	 */
76 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
77 
78 	dma_buf_stats_teardown(dmabuf);
79 	dmabuf->ops->release(dmabuf);
80 
81 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 		dma_resv_fini(dmabuf->resv);
83 
84 	WARN_ON(!list_empty(&dmabuf->attachments));
85 	module_put(dmabuf->owner);
86 	kfree(dmabuf->name);
87 	kfree(dmabuf);
88 }
89 
90 static int dma_buf_file_release(struct inode *inode, struct file *file)
91 {
92 	struct dma_buf *dmabuf;
93 
94 	if (!is_dma_buf_file(file))
95 		return -EINVAL;
96 
97 	dmabuf = file->private_data;
98 	if (dmabuf) {
99 		mutex_lock(&db_list.lock);
100 		list_del(&dmabuf->list_node);
101 		mutex_unlock(&db_list.lock);
102 	}
103 
104 	return 0;
105 }
106 
107 static const struct dentry_operations dma_buf_dentry_ops = {
108 	.d_dname = dmabuffs_dname,
109 	.d_release = dma_buf_release,
110 };
111 
112 static struct vfsmount *dma_buf_mnt;
113 
114 static int dma_buf_fs_init_context(struct fs_context *fc)
115 {
116 	struct pseudo_fs_context *ctx;
117 
118 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
119 	if (!ctx)
120 		return -ENOMEM;
121 	ctx->dops = &dma_buf_dentry_ops;
122 	return 0;
123 }
124 
125 static struct file_system_type dma_buf_fs_type = {
126 	.name = "dmabuf",
127 	.init_fs_context = dma_buf_fs_init_context,
128 	.kill_sb = kill_anon_super,
129 };
130 
131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct dma_buf *dmabuf;
134 	int ret;
135 
136 	if (!is_dma_buf_file(file))
137 		return -EINVAL;
138 
139 	dmabuf = file->private_data;
140 
141 	/* check if buffer supports mmap */
142 	if (!dmabuf->ops->mmap)
143 		return -EINVAL;
144 
145 	/* check for overflowing the buffer's size */
146 	if (vma->vm_pgoff + vma_pages(vma) >
147 	    dmabuf->size >> PAGE_SHIFT)
148 		return -EINVAL;
149 
150 	dma_resv_lock(dmabuf->resv, NULL);
151 	ret = dmabuf->ops->mmap(dmabuf, vma);
152 	dma_resv_unlock(dmabuf->resv);
153 
154 	return ret;
155 }
156 
157 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
158 {
159 	struct dma_buf *dmabuf;
160 	loff_t base;
161 
162 	if (!is_dma_buf_file(file))
163 		return -EBADF;
164 
165 	dmabuf = file->private_data;
166 
167 	/* only support discovering the end of the buffer,
168 	   but also allow SEEK_SET to maintain the idiomatic
169 	   SEEK_END(0), SEEK_CUR(0) pattern */
170 	if (whence == SEEK_END)
171 		base = dmabuf->size;
172 	else if (whence == SEEK_SET)
173 		base = 0;
174 	else
175 		return -EINVAL;
176 
177 	if (offset != 0)
178 		return -EINVAL;
179 
180 	return base + offset;
181 }
182 
183 /**
184  * DOC: implicit fence polling
185  *
186  * To support cross-device and cross-driver synchronization of buffer access
187  * implicit fences (represented internally in the kernel with &struct dma_fence)
188  * can be attached to a &dma_buf. The glue for that and a few related things are
189  * provided in the &dma_resv structure.
190  *
191  * Userspace can query the state of these implicitly tracked fences using poll()
192  * and related system calls:
193  *
194  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
195  *   most recent write or exclusive fence.
196  *
197  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
198  *   all attached fences, shared and exclusive ones.
199  *
200  * Note that this only signals the completion of the respective fences, i.e. the
201  * DMA transfers are complete. Cache flushing and any other necessary
202  * preparations before CPU access can begin still need to happen.
203  *
204  * As an alternative to poll(), the set of fences on DMA buffer can be
205  * exported as a &sync_file using &dma_buf_sync_file_export.
206  */
207 
208 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
209 {
210 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
211 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&dcb->poll->lock, flags);
215 	wake_up_locked_poll(dcb->poll, dcb->active);
216 	dcb->active = 0;
217 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
218 	dma_fence_put(fence);
219 	/* Paired with get_file in dma_buf_poll */
220 	fput(dmabuf->file);
221 }
222 
223 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
224 				struct dma_buf_poll_cb_t *dcb)
225 {
226 	struct dma_resv_iter cursor;
227 	struct dma_fence *fence;
228 	int r;
229 
230 	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
231 				fence) {
232 		dma_fence_get(fence);
233 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
234 		if (!r)
235 			return true;
236 		dma_fence_put(fence);
237 	}
238 
239 	return false;
240 }
241 
242 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
243 {
244 	struct dma_buf *dmabuf;
245 	struct dma_resv *resv;
246 	__poll_t events;
247 
248 	dmabuf = file->private_data;
249 	if (!dmabuf || !dmabuf->resv)
250 		return EPOLLERR;
251 
252 	resv = dmabuf->resv;
253 
254 	poll_wait(file, &dmabuf->poll, poll);
255 
256 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
257 	if (!events)
258 		return 0;
259 
260 	dma_resv_lock(resv, NULL);
261 
262 	if (events & EPOLLOUT) {
263 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
264 
265 		/* Check that callback isn't busy */
266 		spin_lock_irq(&dmabuf->poll.lock);
267 		if (dcb->active)
268 			events &= ~EPOLLOUT;
269 		else
270 			dcb->active = EPOLLOUT;
271 		spin_unlock_irq(&dmabuf->poll.lock);
272 
273 		if (events & EPOLLOUT) {
274 			/* Paired with fput in dma_buf_poll_cb */
275 			get_file(dmabuf->file);
276 
277 			if (!dma_buf_poll_add_cb(resv, true, dcb))
278 				/* No callback queued, wake up any other waiters */
279 				dma_buf_poll_cb(NULL, &dcb->cb);
280 			else
281 				events &= ~EPOLLOUT;
282 		}
283 	}
284 
285 	if (events & EPOLLIN) {
286 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
287 
288 		/* Check that callback isn't busy */
289 		spin_lock_irq(&dmabuf->poll.lock);
290 		if (dcb->active)
291 			events &= ~EPOLLIN;
292 		else
293 			dcb->active = EPOLLIN;
294 		spin_unlock_irq(&dmabuf->poll.lock);
295 
296 		if (events & EPOLLIN) {
297 			/* Paired with fput in dma_buf_poll_cb */
298 			get_file(dmabuf->file);
299 
300 			if (!dma_buf_poll_add_cb(resv, false, dcb))
301 				/* No callback queued, wake up any other waiters */
302 				dma_buf_poll_cb(NULL, &dcb->cb);
303 			else
304 				events &= ~EPOLLIN;
305 		}
306 	}
307 
308 	dma_resv_unlock(resv);
309 	return events;
310 }
311 
312 /**
313  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
314  * It could support changing the name of the dma-buf if the same
315  * piece of memory is used for multiple purpose between different devices.
316  *
317  * @dmabuf: [in]     dmabuf buffer that will be renamed.
318  * @buf:    [in]     A piece of userspace memory that contains the name of
319  *                   the dma-buf.
320  *
321  * Returns 0 on success. If the dma-buf buffer is already attached to
322  * devices, return -EBUSY.
323  *
324  */
325 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
326 {
327 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
328 
329 	if (IS_ERR(name))
330 		return PTR_ERR(name);
331 
332 	spin_lock(&dmabuf->name_lock);
333 	kfree(dmabuf->name);
334 	dmabuf->name = name;
335 	spin_unlock(&dmabuf->name_lock);
336 
337 	return 0;
338 }
339 
340 #if IS_ENABLED(CONFIG_SYNC_FILE)
341 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
342 				     void __user *user_data)
343 {
344 	struct dma_buf_export_sync_file arg;
345 	enum dma_resv_usage usage;
346 	struct dma_fence *fence = NULL;
347 	struct sync_file *sync_file;
348 	int fd, ret;
349 
350 	if (copy_from_user(&arg, user_data, sizeof(arg)))
351 		return -EFAULT;
352 
353 	if (arg.flags & ~DMA_BUF_SYNC_RW)
354 		return -EINVAL;
355 
356 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
357 		return -EINVAL;
358 
359 	fd = get_unused_fd_flags(O_CLOEXEC);
360 	if (fd < 0)
361 		return fd;
362 
363 	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
364 	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
365 	if (ret)
366 		goto err_put_fd;
367 
368 	if (!fence)
369 		fence = dma_fence_get_stub();
370 
371 	sync_file = sync_file_create(fence);
372 
373 	dma_fence_put(fence);
374 
375 	if (!sync_file) {
376 		ret = -ENOMEM;
377 		goto err_put_fd;
378 	}
379 
380 	arg.fd = fd;
381 	if (copy_to_user(user_data, &arg, sizeof(arg))) {
382 		ret = -EFAULT;
383 		goto err_put_file;
384 	}
385 
386 	fd_install(fd, sync_file->file);
387 
388 	return 0;
389 
390 err_put_file:
391 	fput(sync_file->file);
392 err_put_fd:
393 	put_unused_fd(fd);
394 	return ret;
395 }
396 
397 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
398 				     const void __user *user_data)
399 {
400 	struct dma_buf_import_sync_file arg;
401 	struct dma_fence *fence, *f;
402 	enum dma_resv_usage usage;
403 	struct dma_fence_unwrap iter;
404 	unsigned int num_fences;
405 	int ret = 0;
406 
407 	if (copy_from_user(&arg, user_data, sizeof(arg)))
408 		return -EFAULT;
409 
410 	if (arg.flags & ~DMA_BUF_SYNC_RW)
411 		return -EINVAL;
412 
413 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
414 		return -EINVAL;
415 
416 	fence = sync_file_get_fence(arg.fd);
417 	if (!fence)
418 		return -EINVAL;
419 
420 	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
421 						   DMA_RESV_USAGE_READ;
422 
423 	num_fences = 0;
424 	dma_fence_unwrap_for_each(f, &iter, fence)
425 		++num_fences;
426 
427 	if (num_fences > 0) {
428 		dma_resv_lock(dmabuf->resv, NULL);
429 
430 		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
431 		if (!ret) {
432 			dma_fence_unwrap_for_each(f, &iter, fence)
433 				dma_resv_add_fence(dmabuf->resv, f, usage);
434 		}
435 
436 		dma_resv_unlock(dmabuf->resv);
437 	}
438 
439 	dma_fence_put(fence);
440 
441 	return ret;
442 }
443 #endif
444 
445 static long dma_buf_ioctl(struct file *file,
446 			  unsigned int cmd, unsigned long arg)
447 {
448 	struct dma_buf *dmabuf;
449 	struct dma_buf_sync sync;
450 	enum dma_data_direction direction;
451 	int ret;
452 
453 	dmabuf = file->private_data;
454 
455 	switch (cmd) {
456 	case DMA_BUF_IOCTL_SYNC:
457 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
458 			return -EFAULT;
459 
460 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
461 			return -EINVAL;
462 
463 		switch (sync.flags & DMA_BUF_SYNC_RW) {
464 		case DMA_BUF_SYNC_READ:
465 			direction = DMA_FROM_DEVICE;
466 			break;
467 		case DMA_BUF_SYNC_WRITE:
468 			direction = DMA_TO_DEVICE;
469 			break;
470 		case DMA_BUF_SYNC_RW:
471 			direction = DMA_BIDIRECTIONAL;
472 			break;
473 		default:
474 			return -EINVAL;
475 		}
476 
477 		if (sync.flags & DMA_BUF_SYNC_END)
478 			ret = dma_buf_end_cpu_access(dmabuf, direction);
479 		else
480 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
481 
482 		return ret;
483 
484 	case DMA_BUF_SET_NAME_A:
485 	case DMA_BUF_SET_NAME_B:
486 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
487 
488 #if IS_ENABLED(CONFIG_SYNC_FILE)
489 	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
490 		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
491 	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
492 		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
493 #endif
494 
495 	default:
496 		return -ENOTTY;
497 	}
498 }
499 
500 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
501 {
502 	struct dma_buf *dmabuf = file->private_data;
503 
504 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
505 	/* Don't count the temporary reference taken inside procfs seq_show */
506 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
507 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
508 	spin_lock(&dmabuf->name_lock);
509 	if (dmabuf->name)
510 		seq_printf(m, "name:\t%s\n", dmabuf->name);
511 	spin_unlock(&dmabuf->name_lock);
512 }
513 
514 static const struct file_operations dma_buf_fops = {
515 	.release	= dma_buf_file_release,
516 	.mmap		= dma_buf_mmap_internal,
517 	.llseek		= dma_buf_llseek,
518 	.poll		= dma_buf_poll,
519 	.unlocked_ioctl	= dma_buf_ioctl,
520 	.compat_ioctl	= compat_ptr_ioctl,
521 	.show_fdinfo	= dma_buf_show_fdinfo,
522 };
523 
524 /*
525  * is_dma_buf_file - Check if struct file* is associated with dma_buf
526  */
527 static inline int is_dma_buf_file(struct file *file)
528 {
529 	return file->f_op == &dma_buf_fops;
530 }
531 
532 static struct file *dma_buf_getfile(size_t size, int flags)
533 {
534 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
535 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
536 	struct file *file;
537 
538 	if (IS_ERR(inode))
539 		return ERR_CAST(inode);
540 
541 	inode->i_size = size;
542 	inode_set_bytes(inode, size);
543 
544 	/*
545 	 * The ->i_ino acquired from get_next_ino() is not unique thus
546 	 * not suitable for using it as dentry name by dmabuf stats.
547 	 * Override ->i_ino with the unique and dmabuffs specific
548 	 * value.
549 	 */
550 	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
551 	flags &= O_ACCMODE | O_NONBLOCK;
552 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
553 				 flags, &dma_buf_fops);
554 	if (IS_ERR(file))
555 		goto err_alloc_file;
556 
557 	return file;
558 
559 err_alloc_file:
560 	iput(inode);
561 	return file;
562 }
563 
564 /**
565  * DOC: dma buf device access
566  *
567  * For device DMA access to a shared DMA buffer the usual sequence of operations
568  * is fairly simple:
569  *
570  * 1. The exporter defines his exporter instance using
571  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
572  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
573  *    as a file descriptor by calling dma_buf_fd().
574  *
575  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
576  *    to share with: First the file descriptor is converted to a &dma_buf using
577  *    dma_buf_get(). Then the buffer is attached to the device using
578  *    dma_buf_attach().
579  *
580  *    Up to this stage the exporter is still free to migrate or reallocate the
581  *    backing storage.
582  *
583  * 3. Once the buffer is attached to all devices userspace can initiate DMA
584  *    access to the shared buffer. In the kernel this is done by calling
585  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
586  *
587  * 4. Once a driver is done with a shared buffer it needs to call
588  *    dma_buf_detach() (after cleaning up any mappings) and then release the
589  *    reference acquired with dma_buf_get() by calling dma_buf_put().
590  *
591  * For the detailed semantics exporters are expected to implement see
592  * &dma_buf_ops.
593  */
594 
595 /**
596  * dma_buf_export - Creates a new dma_buf, and associates an anon file
597  * with this buffer, so it can be exported.
598  * Also connect the allocator specific data and ops to the buffer.
599  * Additionally, provide a name string for exporter; useful in debugging.
600  *
601  * @exp_info:	[in]	holds all the export related information provided
602  *			by the exporter. see &struct dma_buf_export_info
603  *			for further details.
604  *
605  * Returns, on success, a newly created struct dma_buf object, which wraps the
606  * supplied private data and operations for struct dma_buf_ops. On either
607  * missing ops, or error in allocating struct dma_buf, will return negative
608  * error.
609  *
610  * For most cases the easiest way to create @exp_info is through the
611  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
612  */
613 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
614 {
615 	struct dma_buf *dmabuf;
616 	struct dma_resv *resv = exp_info->resv;
617 	struct file *file;
618 	size_t alloc_size = sizeof(struct dma_buf);
619 	int ret;
620 
621 	if (WARN_ON(!exp_info->priv || !exp_info->ops
622 		    || !exp_info->ops->map_dma_buf
623 		    || !exp_info->ops->unmap_dma_buf
624 		    || !exp_info->ops->release))
625 		return ERR_PTR(-EINVAL);
626 
627 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
628 		    (exp_info->ops->pin || exp_info->ops->unpin)))
629 		return ERR_PTR(-EINVAL);
630 
631 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
632 		return ERR_PTR(-EINVAL);
633 
634 	if (!try_module_get(exp_info->owner))
635 		return ERR_PTR(-ENOENT);
636 
637 	file = dma_buf_getfile(exp_info->size, exp_info->flags);
638 	if (IS_ERR(file)) {
639 		ret = PTR_ERR(file);
640 		goto err_module;
641 	}
642 
643 	if (!exp_info->resv)
644 		alloc_size += sizeof(struct dma_resv);
645 	else
646 		/* prevent &dma_buf[1] == dma_buf->resv */
647 		alloc_size += 1;
648 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
649 	if (!dmabuf) {
650 		ret = -ENOMEM;
651 		goto err_file;
652 	}
653 
654 	dmabuf->priv = exp_info->priv;
655 	dmabuf->ops = exp_info->ops;
656 	dmabuf->size = exp_info->size;
657 	dmabuf->exp_name = exp_info->exp_name;
658 	dmabuf->owner = exp_info->owner;
659 	spin_lock_init(&dmabuf->name_lock);
660 	init_waitqueue_head(&dmabuf->poll);
661 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
662 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
663 	INIT_LIST_HEAD(&dmabuf->attachments);
664 
665 	if (!resv) {
666 		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
667 		dma_resv_init(dmabuf->resv);
668 	} else {
669 		dmabuf->resv = resv;
670 	}
671 
672 	ret = dma_buf_stats_setup(dmabuf, file);
673 	if (ret)
674 		goto err_dmabuf;
675 
676 	file->private_data = dmabuf;
677 	file->f_path.dentry->d_fsdata = dmabuf;
678 	dmabuf->file = file;
679 
680 	mutex_lock(&db_list.lock);
681 	list_add(&dmabuf->list_node, &db_list.head);
682 	mutex_unlock(&db_list.lock);
683 
684 	return dmabuf;
685 
686 err_dmabuf:
687 	if (!resv)
688 		dma_resv_fini(dmabuf->resv);
689 	kfree(dmabuf);
690 err_file:
691 	fput(file);
692 err_module:
693 	module_put(exp_info->owner);
694 	return ERR_PTR(ret);
695 }
696 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
697 
698 /**
699  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
700  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
701  * @flags:      [in]    flags to give to fd
702  *
703  * On success, returns an associated 'fd'. Else, returns error.
704  */
705 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
706 {
707 	int fd;
708 
709 	if (!dmabuf || !dmabuf->file)
710 		return -EINVAL;
711 
712 	fd = get_unused_fd_flags(flags);
713 	if (fd < 0)
714 		return fd;
715 
716 	fd_install(fd, dmabuf->file);
717 
718 	return fd;
719 }
720 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
721 
722 /**
723  * dma_buf_get - returns the struct dma_buf related to an fd
724  * @fd:	[in]	fd associated with the struct dma_buf to be returned
725  *
726  * On success, returns the struct dma_buf associated with an fd; uses
727  * file's refcounting done by fget to increase refcount. returns ERR_PTR
728  * otherwise.
729  */
730 struct dma_buf *dma_buf_get(int fd)
731 {
732 	struct file *file;
733 
734 	file = fget(fd);
735 
736 	if (!file)
737 		return ERR_PTR(-EBADF);
738 
739 	if (!is_dma_buf_file(file)) {
740 		fput(file);
741 		return ERR_PTR(-EINVAL);
742 	}
743 
744 	return file->private_data;
745 }
746 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
747 
748 /**
749  * dma_buf_put - decreases refcount of the buffer
750  * @dmabuf:	[in]	buffer to reduce refcount of
751  *
752  * Uses file's refcounting done implicitly by fput().
753  *
754  * If, as a result of this call, the refcount becomes 0, the 'release' file
755  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
756  * in turn, and frees the memory allocated for dmabuf when exported.
757  */
758 void dma_buf_put(struct dma_buf *dmabuf)
759 {
760 	if (WARN_ON(!dmabuf || !dmabuf->file))
761 		return;
762 
763 	fput(dmabuf->file);
764 }
765 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
766 
767 static void mangle_sg_table(struct sg_table *sg_table)
768 {
769 #ifdef CONFIG_DMABUF_DEBUG
770 	int i;
771 	struct scatterlist *sg;
772 
773 	/* To catch abuse of the underlying struct page by importers mix
774 	 * up the bits, but take care to preserve the low SG_ bits to
775 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
776 	 * before passing the sgt back to the exporter. */
777 	for_each_sgtable_sg(sg_table, sg, i)
778 		sg->page_link ^= ~0xffUL;
779 #endif
780 
781 }
782 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
783 				       enum dma_data_direction direction)
784 {
785 	struct sg_table *sg_table;
786 	signed long ret;
787 
788 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
789 	if (IS_ERR_OR_NULL(sg_table))
790 		return sg_table;
791 
792 	if (!dma_buf_attachment_is_dynamic(attach)) {
793 		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
794 					    DMA_RESV_USAGE_KERNEL, true,
795 					    MAX_SCHEDULE_TIMEOUT);
796 		if (ret < 0) {
797 			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
798 							   direction);
799 			return ERR_PTR(ret);
800 		}
801 	}
802 
803 	mangle_sg_table(sg_table);
804 	return sg_table;
805 }
806 
807 /**
808  * DOC: locking convention
809  *
810  * In order to avoid deadlock situations between dma-buf exports and importers,
811  * all dma-buf API users must follow the common dma-buf locking convention.
812  *
813  * Convention for importers
814  *
815  * 1. Importers must hold the dma-buf reservation lock when calling these
816  *    functions:
817  *
818  *     - dma_buf_pin()
819  *     - dma_buf_unpin()
820  *     - dma_buf_map_attachment()
821  *     - dma_buf_unmap_attachment()
822  *     - dma_buf_vmap()
823  *     - dma_buf_vunmap()
824  *
825  * 2. Importers must not hold the dma-buf reservation lock when calling these
826  *    functions:
827  *
828  *     - dma_buf_attach()
829  *     - dma_buf_dynamic_attach()
830  *     - dma_buf_detach()
831  *     - dma_buf_export()
832  *     - dma_buf_fd()
833  *     - dma_buf_get()
834  *     - dma_buf_put()
835  *     - dma_buf_mmap()
836  *     - dma_buf_begin_cpu_access()
837  *     - dma_buf_end_cpu_access()
838  *     - dma_buf_map_attachment_unlocked()
839  *     - dma_buf_unmap_attachment_unlocked()
840  *     - dma_buf_vmap_unlocked()
841  *     - dma_buf_vunmap_unlocked()
842  *
843  * Convention for exporters
844  *
845  * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
846  *    reservation and exporter can take the lock:
847  *
848  *     - &dma_buf_ops.attach()
849  *     - &dma_buf_ops.detach()
850  *     - &dma_buf_ops.release()
851  *     - &dma_buf_ops.begin_cpu_access()
852  *     - &dma_buf_ops.end_cpu_access()
853  *
854  * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
855  *    reservation and exporter can't take the lock:
856  *
857  *     - &dma_buf_ops.pin()
858  *     - &dma_buf_ops.unpin()
859  *     - &dma_buf_ops.map_dma_buf()
860  *     - &dma_buf_ops.unmap_dma_buf()
861  *     - &dma_buf_ops.mmap()
862  *     - &dma_buf_ops.vmap()
863  *     - &dma_buf_ops.vunmap()
864  *
865  * 3. Exporters must hold the dma-buf reservation lock when calling these
866  *    functions:
867  *
868  *     - dma_buf_move_notify()
869  */
870 
871 /**
872  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
873  * @dmabuf:		[in]	buffer to attach device to.
874  * @dev:		[in]	device to be attached.
875  * @importer_ops:	[in]	importer operations for the attachment
876  * @importer_priv:	[in]	importer private pointer for the attachment
877  *
878  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
879  * must be cleaned up by calling dma_buf_detach().
880  *
881  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
882  * functionality.
883  *
884  * Returns:
885  *
886  * A pointer to newly created &dma_buf_attachment on success, or a negative
887  * error code wrapped into a pointer on failure.
888  *
889  * Note that this can fail if the backing storage of @dmabuf is in a place not
890  * accessible to @dev, and cannot be moved to a more suitable place. This is
891  * indicated with the error code -EBUSY.
892  */
893 struct dma_buf_attachment *
894 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
895 		       const struct dma_buf_attach_ops *importer_ops,
896 		       void *importer_priv)
897 {
898 	struct dma_buf_attachment *attach;
899 	int ret;
900 
901 	if (WARN_ON(!dmabuf || !dev))
902 		return ERR_PTR(-EINVAL);
903 
904 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
905 		return ERR_PTR(-EINVAL);
906 
907 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
908 	if (!attach)
909 		return ERR_PTR(-ENOMEM);
910 
911 	attach->dev = dev;
912 	attach->dmabuf = dmabuf;
913 	if (importer_ops)
914 		attach->peer2peer = importer_ops->allow_peer2peer;
915 	attach->importer_ops = importer_ops;
916 	attach->importer_priv = importer_priv;
917 
918 	if (dmabuf->ops->attach) {
919 		ret = dmabuf->ops->attach(dmabuf, attach);
920 		if (ret)
921 			goto err_attach;
922 	}
923 	dma_resv_lock(dmabuf->resv, NULL);
924 	list_add(&attach->node, &dmabuf->attachments);
925 	dma_resv_unlock(dmabuf->resv);
926 
927 	/* When either the importer or the exporter can't handle dynamic
928 	 * mappings we cache the mapping here to avoid issues with the
929 	 * reservation object lock.
930 	 */
931 	if (dma_buf_attachment_is_dynamic(attach) !=
932 	    dma_buf_is_dynamic(dmabuf)) {
933 		struct sg_table *sgt;
934 
935 		dma_resv_lock(attach->dmabuf->resv, NULL);
936 		if (dma_buf_is_dynamic(attach->dmabuf)) {
937 			ret = dmabuf->ops->pin(attach);
938 			if (ret)
939 				goto err_unlock;
940 		}
941 
942 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
943 		if (!sgt)
944 			sgt = ERR_PTR(-ENOMEM);
945 		if (IS_ERR(sgt)) {
946 			ret = PTR_ERR(sgt);
947 			goto err_unpin;
948 		}
949 		dma_resv_unlock(attach->dmabuf->resv);
950 		attach->sgt = sgt;
951 		attach->dir = DMA_BIDIRECTIONAL;
952 	}
953 
954 	return attach;
955 
956 err_attach:
957 	kfree(attach);
958 	return ERR_PTR(ret);
959 
960 err_unpin:
961 	if (dma_buf_is_dynamic(attach->dmabuf))
962 		dmabuf->ops->unpin(attach);
963 
964 err_unlock:
965 	dma_resv_unlock(attach->dmabuf->resv);
966 
967 	dma_buf_detach(dmabuf, attach);
968 	return ERR_PTR(ret);
969 }
970 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
971 
972 /**
973  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
974  * @dmabuf:	[in]	buffer to attach device to.
975  * @dev:	[in]	device to be attached.
976  *
977  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
978  * mapping.
979  */
980 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
981 					  struct device *dev)
982 {
983 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
984 }
985 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
986 
987 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
988 			    struct sg_table *sg_table,
989 			    enum dma_data_direction direction)
990 {
991 	/* uses XOR, hence this unmangles */
992 	mangle_sg_table(sg_table);
993 
994 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
995 }
996 
997 /**
998  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
999  * @dmabuf:	[in]	buffer to detach from.
1000  * @attach:	[in]	attachment to be detached; is free'd after this call.
1001  *
1002  * Clean up a device attachment obtained by calling dma_buf_attach().
1003  *
1004  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1005  */
1006 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1007 {
1008 	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1009 		return;
1010 
1011 	dma_resv_lock(dmabuf->resv, NULL);
1012 
1013 	if (attach->sgt) {
1014 
1015 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
1016 
1017 		if (dma_buf_is_dynamic(attach->dmabuf))
1018 			dmabuf->ops->unpin(attach);
1019 	}
1020 	list_del(&attach->node);
1021 
1022 	dma_resv_unlock(dmabuf->resv);
1023 
1024 	if (dmabuf->ops->detach)
1025 		dmabuf->ops->detach(dmabuf, attach);
1026 
1027 	kfree(attach);
1028 }
1029 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1030 
1031 /**
1032  * dma_buf_pin - Lock down the DMA-buf
1033  * @attach:	[in]	attachment which should be pinned
1034  *
1035  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1036  * call this, and only for limited use cases like scanout and not for temporary
1037  * pin operations. It is not permitted to allow userspace to pin arbitrary
1038  * amounts of buffers through this interface.
1039  *
1040  * Buffers must be unpinned by calling dma_buf_unpin().
1041  *
1042  * Returns:
1043  * 0 on success, negative error code on failure.
1044  */
1045 int dma_buf_pin(struct dma_buf_attachment *attach)
1046 {
1047 	struct dma_buf *dmabuf = attach->dmabuf;
1048 	int ret = 0;
1049 
1050 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1051 
1052 	dma_resv_assert_held(dmabuf->resv);
1053 
1054 	if (dmabuf->ops->pin)
1055 		ret = dmabuf->ops->pin(attach);
1056 
1057 	return ret;
1058 }
1059 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1060 
1061 /**
1062  * dma_buf_unpin - Unpin a DMA-buf
1063  * @attach:	[in]	attachment which should be unpinned
1064  *
1065  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1066  * any mapping of @attach again and inform the importer through
1067  * &dma_buf_attach_ops.move_notify.
1068  */
1069 void dma_buf_unpin(struct dma_buf_attachment *attach)
1070 {
1071 	struct dma_buf *dmabuf = attach->dmabuf;
1072 
1073 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1074 
1075 	dma_resv_assert_held(dmabuf->resv);
1076 
1077 	if (dmabuf->ops->unpin)
1078 		dmabuf->ops->unpin(attach);
1079 }
1080 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1081 
1082 /**
1083  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1084  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1085  * dma_buf_ops.
1086  * @attach:	[in]	attachment whose scatterlist is to be returned
1087  * @direction:	[in]	direction of DMA transfer
1088  *
1089  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1090  * on error. May return -EINTR if it is interrupted by a signal.
1091  *
1092  * On success, the DMA addresses and lengths in the returned scatterlist are
1093  * PAGE_SIZE aligned.
1094  *
1095  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1096  * the underlying backing storage is pinned for as long as a mapping exists,
1097  * therefore users/importers should not hold onto a mapping for undue amounts of
1098  * time.
1099  *
1100  * Important: Dynamic importers must wait for the exclusive fence of the struct
1101  * dma_resv attached to the DMA-BUF first.
1102  */
1103 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1104 					enum dma_data_direction direction)
1105 {
1106 	struct sg_table *sg_table;
1107 	int r;
1108 
1109 	might_sleep();
1110 
1111 	if (WARN_ON(!attach || !attach->dmabuf))
1112 		return ERR_PTR(-EINVAL);
1113 
1114 	dma_resv_assert_held(attach->dmabuf->resv);
1115 
1116 	if (attach->sgt) {
1117 		/*
1118 		 * Two mappings with different directions for the same
1119 		 * attachment are not allowed.
1120 		 */
1121 		if (attach->dir != direction &&
1122 		    attach->dir != DMA_BIDIRECTIONAL)
1123 			return ERR_PTR(-EBUSY);
1124 
1125 		return attach->sgt;
1126 	}
1127 
1128 	if (dma_buf_is_dynamic(attach->dmabuf)) {
1129 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1130 			r = attach->dmabuf->ops->pin(attach);
1131 			if (r)
1132 				return ERR_PTR(r);
1133 		}
1134 	}
1135 
1136 	sg_table = __map_dma_buf(attach, direction);
1137 	if (!sg_table)
1138 		sg_table = ERR_PTR(-ENOMEM);
1139 
1140 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1141 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1142 		attach->dmabuf->ops->unpin(attach);
1143 
1144 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1145 		attach->sgt = sg_table;
1146 		attach->dir = direction;
1147 	}
1148 
1149 #ifdef CONFIG_DMA_API_DEBUG
1150 	if (!IS_ERR(sg_table)) {
1151 		struct scatterlist *sg;
1152 		u64 addr;
1153 		int len;
1154 		int i;
1155 
1156 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1157 			addr = sg_dma_address(sg);
1158 			len = sg_dma_len(sg);
1159 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1160 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1161 					 __func__, addr, len);
1162 			}
1163 		}
1164 	}
1165 #endif /* CONFIG_DMA_API_DEBUG */
1166 	return sg_table;
1167 }
1168 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1169 
1170 /**
1171  * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1172  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1173  * dma_buf_ops.
1174  * @attach:	[in]	attachment whose scatterlist is to be returned
1175  * @direction:	[in]	direction of DMA transfer
1176  *
1177  * Unlocked variant of dma_buf_map_attachment().
1178  */
1179 struct sg_table *
1180 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1181 				enum dma_data_direction direction)
1182 {
1183 	struct sg_table *sg_table;
1184 
1185 	might_sleep();
1186 
1187 	if (WARN_ON(!attach || !attach->dmabuf))
1188 		return ERR_PTR(-EINVAL);
1189 
1190 	dma_resv_lock(attach->dmabuf->resv, NULL);
1191 	sg_table = dma_buf_map_attachment(attach, direction);
1192 	dma_resv_unlock(attach->dmabuf->resv);
1193 
1194 	return sg_table;
1195 }
1196 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1197 
1198 /**
1199  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1200  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1201  * dma_buf_ops.
1202  * @attach:	[in]	attachment to unmap buffer from
1203  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1204  * @direction:  [in]    direction of DMA transfer
1205  *
1206  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1207  */
1208 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1209 				struct sg_table *sg_table,
1210 				enum dma_data_direction direction)
1211 {
1212 	might_sleep();
1213 
1214 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1215 		return;
1216 
1217 	dma_resv_assert_held(attach->dmabuf->resv);
1218 
1219 	if (attach->sgt == sg_table)
1220 		return;
1221 
1222 	__unmap_dma_buf(attach, sg_table, direction);
1223 
1224 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1225 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1226 		dma_buf_unpin(attach);
1227 }
1228 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1229 
1230 /**
1231  * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1232  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1233  * dma_buf_ops.
1234  * @attach:	[in]	attachment to unmap buffer from
1235  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1236  * @direction:	[in]	direction of DMA transfer
1237  *
1238  * Unlocked variant of dma_buf_unmap_attachment().
1239  */
1240 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1241 				       struct sg_table *sg_table,
1242 				       enum dma_data_direction direction)
1243 {
1244 	might_sleep();
1245 
1246 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1247 		return;
1248 
1249 	dma_resv_lock(attach->dmabuf->resv, NULL);
1250 	dma_buf_unmap_attachment(attach, sg_table, direction);
1251 	dma_resv_unlock(attach->dmabuf->resv);
1252 }
1253 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1254 
1255 /**
1256  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1257  *
1258  * @dmabuf:	[in]	buffer which is moving
1259  *
1260  * Informs all attachments that they need to destroy and recreate all their
1261  * mappings.
1262  */
1263 void dma_buf_move_notify(struct dma_buf *dmabuf)
1264 {
1265 	struct dma_buf_attachment *attach;
1266 
1267 	dma_resv_assert_held(dmabuf->resv);
1268 
1269 	list_for_each_entry(attach, &dmabuf->attachments, node)
1270 		if (attach->importer_ops)
1271 			attach->importer_ops->move_notify(attach);
1272 }
1273 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1274 
1275 /**
1276  * DOC: cpu access
1277  *
1278  * There are multiple reasons for supporting CPU access to a dma buffer object:
1279  *
1280  * - Fallback operations in the kernel, for example when a device is connected
1281  *   over USB and the kernel needs to shuffle the data around first before
1282  *   sending it away. Cache coherency is handled by bracketing any transactions
1283  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1284  *   access.
1285  *
1286  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1287  *   vmap interface is introduced. Note that on very old 32-bit architectures
1288  *   vmalloc space might be limited and result in vmap calls failing.
1289  *
1290  *   Interfaces::
1291  *
1292  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1293  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1294  *
1295  *   The vmap call can fail if there is no vmap support in the exporter, or if
1296  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1297  *   count for all vmap access and calls down into the exporter's vmap function
1298  *   only when no vmapping exists, and only unmaps it once. Protection against
1299  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1300  *
1301  * - For full compatibility on the importer side with existing userspace
1302  *   interfaces, which might already support mmap'ing buffers. This is needed in
1303  *   many processing pipelines (e.g. feeding a software rendered image into a
1304  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1305  *   framework already supported this and for DMA buffer file descriptors to
1306  *   replace ION buffers mmap support was needed.
1307  *
1308  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1309  *   fd. But like for CPU access there's a need to bracket the actual access,
1310  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1311  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1312  *   be restarted.
1313  *
1314  *   Some systems might need some sort of cache coherency management e.g. when
1315  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1316  *   To circumvent this problem there are begin/end coherency markers, that
1317  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1318  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1319  *   sequence would be used like following:
1320  *
1321  *     - mmap dma-buf fd
1322  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1323  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1324  *       want (with the new data being consumed by say the GPU or the scanout
1325  *       device)
1326  *     - munmap once you don't need the buffer any more
1327  *
1328  *    For correctness and optimal performance, it is always required to use
1329  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1330  *    mapped address. Userspace cannot rely on coherent access, even when there
1331  *    are systems where it just works without calling these ioctls.
1332  *
1333  * - And as a CPU fallback in userspace processing pipelines.
1334  *
1335  *   Similar to the motivation for kernel cpu access it is again important that
1336  *   the userspace code of a given importing subsystem can use the same
1337  *   interfaces with a imported dma-buf buffer object as with a native buffer
1338  *   object. This is especially important for drm where the userspace part of
1339  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1340  *   use a different way to mmap a buffer rather invasive.
1341  *
1342  *   The assumption in the current dma-buf interfaces is that redirecting the
1343  *   initial mmap is all that's needed. A survey of some of the existing
1344  *   subsystems shows that no driver seems to do any nefarious thing like
1345  *   syncing up with outstanding asynchronous processing on the device or
1346  *   allocating special resources at fault time. So hopefully this is good
1347  *   enough, since adding interfaces to intercept pagefaults and allow pte
1348  *   shootdowns would increase the complexity quite a bit.
1349  *
1350  *   Interface::
1351  *
1352  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1353  *		       unsigned long);
1354  *
1355  *   If the importing subsystem simply provides a special-purpose mmap call to
1356  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1357  *   equally achieve that for a dma-buf object.
1358  */
1359 
1360 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1361 				      enum dma_data_direction direction)
1362 {
1363 	bool write = (direction == DMA_BIDIRECTIONAL ||
1364 		      direction == DMA_TO_DEVICE);
1365 	struct dma_resv *resv = dmabuf->resv;
1366 	long ret;
1367 
1368 	/* Wait on any implicit rendering fences */
1369 	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1370 				    true, MAX_SCHEDULE_TIMEOUT);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1379  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1380  * preparations. Coherency is only guaranteed in the specified range for the
1381  * specified access direction.
1382  * @dmabuf:	[in]	buffer to prepare cpu access for.
1383  * @direction:	[in]	direction of access.
1384  *
1385  * After the cpu access is complete the caller should call
1386  * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1387  * it guaranteed to be coherent with other DMA access.
1388  *
1389  * This function will also wait for any DMA transactions tracked through
1390  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1391  * synchronization this function will only ensure cache coherency, callers must
1392  * ensure synchronization with such DMA transactions on their own.
1393  *
1394  * Can return negative error values, returns 0 on success.
1395  */
1396 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1397 			     enum dma_data_direction direction)
1398 {
1399 	int ret = 0;
1400 
1401 	if (WARN_ON(!dmabuf))
1402 		return -EINVAL;
1403 
1404 	might_lock(&dmabuf->resv->lock.base);
1405 
1406 	if (dmabuf->ops->begin_cpu_access)
1407 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1408 
1409 	/* Ensure that all fences are waited upon - but we first allow
1410 	 * the native handler the chance to do so more efficiently if it
1411 	 * chooses. A double invocation here will be reasonably cheap no-op.
1412 	 */
1413 	if (ret == 0)
1414 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1415 
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1419 
1420 /**
1421  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1422  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1423  * actions. Coherency is only guaranteed in the specified range for the
1424  * specified access direction.
1425  * @dmabuf:	[in]	buffer to complete cpu access for.
1426  * @direction:	[in]	direction of access.
1427  *
1428  * This terminates CPU access started with dma_buf_begin_cpu_access().
1429  *
1430  * Can return negative error values, returns 0 on success.
1431  */
1432 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1433 			   enum dma_data_direction direction)
1434 {
1435 	int ret = 0;
1436 
1437 	WARN_ON(!dmabuf);
1438 
1439 	might_lock(&dmabuf->resv->lock.base);
1440 
1441 	if (dmabuf->ops->end_cpu_access)
1442 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1443 
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1447 
1448 
1449 /**
1450  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1451  * @dmabuf:	[in]	buffer that should back the vma
1452  * @vma:	[in]	vma for the mmap
1453  * @pgoff:	[in]	offset in pages where this mmap should start within the
1454  *			dma-buf buffer.
1455  *
1456  * This function adjusts the passed in vma so that it points at the file of the
1457  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1458  * checking on the size of the vma. Then it calls the exporters mmap function to
1459  * set up the mapping.
1460  *
1461  * Can return negative error values, returns 0 on success.
1462  */
1463 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1464 		 unsigned long pgoff)
1465 {
1466 	int ret;
1467 
1468 	if (WARN_ON(!dmabuf || !vma))
1469 		return -EINVAL;
1470 
1471 	/* check if buffer supports mmap */
1472 	if (!dmabuf->ops->mmap)
1473 		return -EINVAL;
1474 
1475 	/* check for offset overflow */
1476 	if (pgoff + vma_pages(vma) < pgoff)
1477 		return -EOVERFLOW;
1478 
1479 	/* check for overflowing the buffer's size */
1480 	if (pgoff + vma_pages(vma) >
1481 	    dmabuf->size >> PAGE_SHIFT)
1482 		return -EINVAL;
1483 
1484 	/* readjust the vma */
1485 	vma_set_file(vma, dmabuf->file);
1486 	vma->vm_pgoff = pgoff;
1487 
1488 	dma_resv_lock(dmabuf->resv, NULL);
1489 	ret = dmabuf->ops->mmap(dmabuf, vma);
1490 	dma_resv_unlock(dmabuf->resv);
1491 
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1495 
1496 /**
1497  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1498  * address space. Same restrictions as for vmap and friends apply.
1499  * @dmabuf:	[in]	buffer to vmap
1500  * @map:	[out]	returns the vmap pointer
1501  *
1502  * This call may fail due to lack of virtual mapping address space.
1503  * These calls are optional in drivers. The intended use for them
1504  * is for mapping objects linear in kernel space for high use objects.
1505  *
1506  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1507  * dma_buf_end_cpu_access() around any cpu access performed through this
1508  * mapping.
1509  *
1510  * Returns 0 on success, or a negative errno code otherwise.
1511  */
1512 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1513 {
1514 	struct iosys_map ptr;
1515 	int ret;
1516 
1517 	iosys_map_clear(map);
1518 
1519 	if (WARN_ON(!dmabuf))
1520 		return -EINVAL;
1521 
1522 	dma_resv_assert_held(dmabuf->resv);
1523 
1524 	if (!dmabuf->ops->vmap)
1525 		return -EINVAL;
1526 
1527 	if (dmabuf->vmapping_counter) {
1528 		dmabuf->vmapping_counter++;
1529 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1530 		*map = dmabuf->vmap_ptr;
1531 		return 0;
1532 	}
1533 
1534 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1535 
1536 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1537 	if (WARN_ON_ONCE(ret))
1538 		return ret;
1539 
1540 	dmabuf->vmap_ptr = ptr;
1541 	dmabuf->vmapping_counter = 1;
1542 
1543 	*map = dmabuf->vmap_ptr;
1544 
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1548 
1549 /**
1550  * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1551  * address space. Same restrictions as for vmap and friends apply.
1552  * @dmabuf:	[in]	buffer to vmap
1553  * @map:	[out]	returns the vmap pointer
1554  *
1555  * Unlocked version of dma_buf_vmap()
1556  *
1557  * Returns 0 on success, or a negative errno code otherwise.
1558  */
1559 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1560 {
1561 	int ret;
1562 
1563 	iosys_map_clear(map);
1564 
1565 	if (WARN_ON(!dmabuf))
1566 		return -EINVAL;
1567 
1568 	dma_resv_lock(dmabuf->resv, NULL);
1569 	ret = dma_buf_vmap(dmabuf, map);
1570 	dma_resv_unlock(dmabuf->resv);
1571 
1572 	return ret;
1573 }
1574 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1575 
1576 /**
1577  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1578  * @dmabuf:	[in]	buffer to vunmap
1579  * @map:	[in]	vmap pointer to vunmap
1580  */
1581 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1582 {
1583 	if (WARN_ON(!dmabuf))
1584 		return;
1585 
1586 	dma_resv_assert_held(dmabuf->resv);
1587 
1588 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1589 	BUG_ON(dmabuf->vmapping_counter == 0);
1590 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1591 
1592 	if (--dmabuf->vmapping_counter == 0) {
1593 		if (dmabuf->ops->vunmap)
1594 			dmabuf->ops->vunmap(dmabuf, map);
1595 		iosys_map_clear(&dmabuf->vmap_ptr);
1596 	}
1597 }
1598 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1599 
1600 /**
1601  * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1602  * @dmabuf:	[in]	buffer to vunmap
1603  * @map:	[in]	vmap pointer to vunmap
1604  */
1605 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1606 {
1607 	if (WARN_ON(!dmabuf))
1608 		return;
1609 
1610 	dma_resv_lock(dmabuf->resv, NULL);
1611 	dma_buf_vunmap(dmabuf, map);
1612 	dma_resv_unlock(dmabuf->resv);
1613 }
1614 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1615 
1616 #ifdef CONFIG_DEBUG_FS
1617 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1618 {
1619 	struct dma_buf *buf_obj;
1620 	struct dma_buf_attachment *attach_obj;
1621 	int count = 0, attach_count;
1622 	size_t size = 0;
1623 	int ret;
1624 
1625 	ret = mutex_lock_interruptible(&db_list.lock);
1626 
1627 	if (ret)
1628 		return ret;
1629 
1630 	seq_puts(s, "\nDma-buf Objects:\n");
1631 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1632 		   "size", "flags", "mode", "count", "ino");
1633 
1634 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1635 
1636 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1637 		if (ret)
1638 			goto error_unlock;
1639 
1640 
1641 		spin_lock(&buf_obj->name_lock);
1642 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1643 				buf_obj->size,
1644 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1645 				file_count(buf_obj->file),
1646 				buf_obj->exp_name,
1647 				file_inode(buf_obj->file)->i_ino,
1648 				buf_obj->name ?: "<none>");
1649 		spin_unlock(&buf_obj->name_lock);
1650 
1651 		dma_resv_describe(buf_obj->resv, s);
1652 
1653 		seq_puts(s, "\tAttached Devices:\n");
1654 		attach_count = 0;
1655 
1656 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1657 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1658 			attach_count++;
1659 		}
1660 		dma_resv_unlock(buf_obj->resv);
1661 
1662 		seq_printf(s, "Total %d devices attached\n\n",
1663 				attach_count);
1664 
1665 		count++;
1666 		size += buf_obj->size;
1667 	}
1668 
1669 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1670 
1671 	mutex_unlock(&db_list.lock);
1672 	return 0;
1673 
1674 error_unlock:
1675 	mutex_unlock(&db_list.lock);
1676 	return ret;
1677 }
1678 
1679 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1680 
1681 static struct dentry *dma_buf_debugfs_dir;
1682 
1683 static int dma_buf_init_debugfs(void)
1684 {
1685 	struct dentry *d;
1686 	int err = 0;
1687 
1688 	d = debugfs_create_dir("dma_buf", NULL);
1689 	if (IS_ERR(d))
1690 		return PTR_ERR(d);
1691 
1692 	dma_buf_debugfs_dir = d;
1693 
1694 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1695 				NULL, &dma_buf_debug_fops);
1696 	if (IS_ERR(d)) {
1697 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1698 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1699 		dma_buf_debugfs_dir = NULL;
1700 		err = PTR_ERR(d);
1701 	}
1702 
1703 	return err;
1704 }
1705 
1706 static void dma_buf_uninit_debugfs(void)
1707 {
1708 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1709 }
1710 #else
1711 static inline int dma_buf_init_debugfs(void)
1712 {
1713 	return 0;
1714 }
1715 static inline void dma_buf_uninit_debugfs(void)
1716 {
1717 }
1718 #endif
1719 
1720 static int __init dma_buf_init(void)
1721 {
1722 	int ret;
1723 
1724 	ret = dma_buf_init_sysfs_statistics();
1725 	if (ret)
1726 		return ret;
1727 
1728 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1729 	if (IS_ERR(dma_buf_mnt))
1730 		return PTR_ERR(dma_buf_mnt);
1731 
1732 	mutex_init(&db_list.lock);
1733 	INIT_LIST_HEAD(&db_list.head);
1734 	dma_buf_init_debugfs();
1735 	return 0;
1736 }
1737 subsys_initcall(dma_buf_init);
1738 
1739 static void __exit dma_buf_deinit(void)
1740 {
1741 	dma_buf_uninit_debugfs();
1742 	kern_unmount(dma_buf_mnt);
1743 	dma_buf_uninit_sysfs_statistics();
1744 }
1745 __exitcall(dma_buf_deinit);
1746