1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 spin_lock(&dmabuf->name_lock); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 spin_unlock(&dmabuf->name_lock); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static void dma_buf_release(struct dentry *dentry) 58 { 59 struct dma_buf *dmabuf; 60 61 dmabuf = dentry->d_fsdata; 62 if (unlikely(!dmabuf)) 63 return; 64 65 BUG_ON(dmabuf->vmapping_counter); 66 67 /* 68 * Any fences that a dma-buf poll can wait on should be signaled 69 * before releasing dma-buf. This is the responsibility of each 70 * driver that uses the reservation objects. 71 * 72 * If you hit this BUG() it means someone dropped their ref to the 73 * dma-buf while still having pending operation to the buffer. 74 */ 75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 76 77 dmabuf->ops->release(dmabuf); 78 79 mutex_lock(&db_list.lock); 80 list_del(&dmabuf->list_node); 81 mutex_unlock(&db_list.lock); 82 83 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 84 dma_resv_fini(dmabuf->resv); 85 86 module_put(dmabuf->owner); 87 kfree(dmabuf->name); 88 kfree(dmabuf); 89 } 90 91 static const struct dentry_operations dma_buf_dentry_ops = { 92 .d_dname = dmabuffs_dname, 93 .d_release = dma_buf_release, 94 }; 95 96 static struct vfsmount *dma_buf_mnt; 97 98 static int dma_buf_fs_init_context(struct fs_context *fc) 99 { 100 struct pseudo_fs_context *ctx; 101 102 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 103 if (!ctx) 104 return -ENOMEM; 105 ctx->dops = &dma_buf_dentry_ops; 106 return 0; 107 } 108 109 static struct file_system_type dma_buf_fs_type = { 110 .name = "dmabuf", 111 .init_fs_context = dma_buf_fs_init_context, 112 .kill_sb = kill_anon_super, 113 }; 114 115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 116 { 117 struct dma_buf *dmabuf; 118 119 if (!is_dma_buf_file(file)) 120 return -EINVAL; 121 122 dmabuf = file->private_data; 123 124 /* check if buffer supports mmap */ 125 if (!dmabuf->ops->mmap) 126 return -EINVAL; 127 128 /* check for overflowing the buffer's size */ 129 if (vma->vm_pgoff + vma_pages(vma) > 130 dmabuf->size >> PAGE_SHIFT) 131 return -EINVAL; 132 133 return dmabuf->ops->mmap(dmabuf, vma); 134 } 135 136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 137 { 138 struct dma_buf *dmabuf; 139 loff_t base; 140 141 if (!is_dma_buf_file(file)) 142 return -EBADF; 143 144 dmabuf = file->private_data; 145 146 /* only support discovering the end of the buffer, 147 but also allow SEEK_SET to maintain the idiomatic 148 SEEK_END(0), SEEK_CUR(0) pattern */ 149 if (whence == SEEK_END) 150 base = dmabuf->size; 151 else if (whence == SEEK_SET) 152 base = 0; 153 else 154 return -EINVAL; 155 156 if (offset != 0) 157 return -EINVAL; 158 159 return base + offset; 160 } 161 162 /** 163 * DOC: implicit fence polling 164 * 165 * To support cross-device and cross-driver synchronization of buffer access 166 * implicit fences (represented internally in the kernel with &struct dma_fence) 167 * can be attached to a &dma_buf. The glue for that and a few related things are 168 * provided in the &dma_resv structure. 169 * 170 * Userspace can query the state of these implicitly tracked fences using poll() 171 * and related system calls: 172 * 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 174 * most recent write or exclusive fence. 175 * 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 177 * all attached fences, shared and exclusive ones. 178 * 179 * Note that this only signals the completion of the respective fences, i.e. the 180 * DMA transfers are complete. Cache flushing and any other necessary 181 * preparations before CPU access can begin still need to happen. 182 */ 183 184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 185 { 186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 187 unsigned long flags; 188 189 spin_lock_irqsave(&dcb->poll->lock, flags); 190 wake_up_locked_poll(dcb->poll, dcb->active); 191 dcb->active = 0; 192 spin_unlock_irqrestore(&dcb->poll->lock, flags); 193 } 194 195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 196 { 197 struct dma_buf *dmabuf; 198 struct dma_resv *resv; 199 struct dma_resv_list *fobj; 200 struct dma_fence *fence_excl; 201 __poll_t events; 202 unsigned shared_count, seq; 203 204 dmabuf = file->private_data; 205 if (!dmabuf || !dmabuf->resv) 206 return EPOLLERR; 207 208 resv = dmabuf->resv; 209 210 poll_wait(file, &dmabuf->poll, poll); 211 212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 213 if (!events) 214 return 0; 215 216 retry: 217 seq = read_seqcount_begin(&resv->seq); 218 rcu_read_lock(); 219 220 fobj = rcu_dereference(resv->fence); 221 if (fobj) 222 shared_count = fobj->shared_count; 223 else 224 shared_count = 0; 225 fence_excl = rcu_dereference(resv->fence_excl); 226 if (read_seqcount_retry(&resv->seq, seq)) { 227 rcu_read_unlock(); 228 goto retry; 229 } 230 231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 233 __poll_t pevents = EPOLLIN; 234 235 if (shared_count == 0) 236 pevents |= EPOLLOUT; 237 238 spin_lock_irq(&dmabuf->poll.lock); 239 if (dcb->active) { 240 dcb->active |= pevents; 241 events &= ~pevents; 242 } else 243 dcb->active = pevents; 244 spin_unlock_irq(&dmabuf->poll.lock); 245 246 if (events & pevents) { 247 if (!dma_fence_get_rcu(fence_excl)) { 248 /* force a recheck */ 249 events &= ~pevents; 250 dma_buf_poll_cb(NULL, &dcb->cb); 251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 252 dma_buf_poll_cb)) { 253 events &= ~pevents; 254 dma_fence_put(fence_excl); 255 } else { 256 /* 257 * No callback queued, wake up any additional 258 * waiters. 259 */ 260 dma_fence_put(fence_excl); 261 dma_buf_poll_cb(NULL, &dcb->cb); 262 } 263 } 264 } 265 266 if ((events & EPOLLOUT) && shared_count > 0) { 267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 268 int i; 269 270 /* Only queue a new callback if no event has fired yet */ 271 spin_lock_irq(&dmabuf->poll.lock); 272 if (dcb->active) 273 events &= ~EPOLLOUT; 274 else 275 dcb->active = EPOLLOUT; 276 spin_unlock_irq(&dmabuf->poll.lock); 277 278 if (!(events & EPOLLOUT)) 279 goto out; 280 281 for (i = 0; i < shared_count; ++i) { 282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 283 284 if (!dma_fence_get_rcu(fence)) { 285 /* 286 * fence refcount dropped to zero, this means 287 * that fobj has been freed 288 * 289 * call dma_buf_poll_cb and force a recheck! 290 */ 291 events &= ~EPOLLOUT; 292 dma_buf_poll_cb(NULL, &dcb->cb); 293 break; 294 } 295 if (!dma_fence_add_callback(fence, &dcb->cb, 296 dma_buf_poll_cb)) { 297 dma_fence_put(fence); 298 events &= ~EPOLLOUT; 299 break; 300 } 301 dma_fence_put(fence); 302 } 303 304 /* No callback queued, wake up any additional waiters. */ 305 if (i == shared_count) 306 dma_buf_poll_cb(NULL, &dcb->cb); 307 } 308 309 out: 310 rcu_read_unlock(); 311 return events; 312 } 313 314 /** 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 316 * The name of the dma-buf buffer can only be set when the dma-buf is not 317 * attached to any devices. It could theoritically support changing the 318 * name of the dma-buf if the same piece of memory is used for multiple 319 * purpose between different devices. 320 * 321 * @dmabuf: [in] dmabuf buffer that will be renamed. 322 * @buf: [in] A piece of userspace memory that contains the name of 323 * the dma-buf. 324 * 325 * Returns 0 on success. If the dma-buf buffer is already attached to 326 * devices, return -EBUSY. 327 * 328 */ 329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 330 { 331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 332 long ret = 0; 333 334 if (IS_ERR(name)) 335 return PTR_ERR(name); 336 337 dma_resv_lock(dmabuf->resv, NULL); 338 if (!list_empty(&dmabuf->attachments)) { 339 ret = -EBUSY; 340 kfree(name); 341 goto out_unlock; 342 } 343 spin_lock(&dmabuf->name_lock); 344 kfree(dmabuf->name); 345 dmabuf->name = name; 346 spin_unlock(&dmabuf->name_lock); 347 348 out_unlock: 349 dma_resv_unlock(dmabuf->resv); 350 return ret; 351 } 352 353 static long dma_buf_ioctl(struct file *file, 354 unsigned int cmd, unsigned long arg) 355 { 356 struct dma_buf *dmabuf; 357 struct dma_buf_sync sync; 358 enum dma_data_direction direction; 359 int ret; 360 361 dmabuf = file->private_data; 362 363 switch (cmd) { 364 case DMA_BUF_IOCTL_SYNC: 365 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 366 return -EFAULT; 367 368 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 369 return -EINVAL; 370 371 switch (sync.flags & DMA_BUF_SYNC_RW) { 372 case DMA_BUF_SYNC_READ: 373 direction = DMA_FROM_DEVICE; 374 break; 375 case DMA_BUF_SYNC_WRITE: 376 direction = DMA_TO_DEVICE; 377 break; 378 case DMA_BUF_SYNC_RW: 379 direction = DMA_BIDIRECTIONAL; 380 break; 381 default: 382 return -EINVAL; 383 } 384 385 if (sync.flags & DMA_BUF_SYNC_END) 386 ret = dma_buf_end_cpu_access(dmabuf, direction); 387 else 388 ret = dma_buf_begin_cpu_access(dmabuf, direction); 389 390 return ret; 391 392 case DMA_BUF_SET_NAME_A: 393 case DMA_BUF_SET_NAME_B: 394 return dma_buf_set_name(dmabuf, (const char __user *)arg); 395 396 default: 397 return -ENOTTY; 398 } 399 } 400 401 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 402 { 403 struct dma_buf *dmabuf = file->private_data; 404 405 seq_printf(m, "size:\t%zu\n", dmabuf->size); 406 /* Don't count the temporary reference taken inside procfs seq_show */ 407 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 408 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 409 spin_lock(&dmabuf->name_lock); 410 if (dmabuf->name) 411 seq_printf(m, "name:\t%s\n", dmabuf->name); 412 spin_unlock(&dmabuf->name_lock); 413 } 414 415 static const struct file_operations dma_buf_fops = { 416 .mmap = dma_buf_mmap_internal, 417 .llseek = dma_buf_llseek, 418 .poll = dma_buf_poll, 419 .unlocked_ioctl = dma_buf_ioctl, 420 .compat_ioctl = compat_ptr_ioctl, 421 .show_fdinfo = dma_buf_show_fdinfo, 422 }; 423 424 /* 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf 426 */ 427 static inline int is_dma_buf_file(struct file *file) 428 { 429 return file->f_op == &dma_buf_fops; 430 } 431 432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 433 { 434 struct file *file; 435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 436 437 if (IS_ERR(inode)) 438 return ERR_CAST(inode); 439 440 inode->i_size = dmabuf->size; 441 inode_set_bytes(inode, dmabuf->size); 442 443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 444 flags, &dma_buf_fops); 445 if (IS_ERR(file)) 446 goto err_alloc_file; 447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 448 file->private_data = dmabuf; 449 file->f_path.dentry->d_fsdata = dmabuf; 450 451 return file; 452 453 err_alloc_file: 454 iput(inode); 455 return file; 456 } 457 458 /** 459 * DOC: dma buf device access 460 * 461 * For device DMA access to a shared DMA buffer the usual sequence of operations 462 * is fairly simple: 463 * 464 * 1. The exporter defines his exporter instance using 465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 467 * as a file descriptor by calling dma_buf_fd(). 468 * 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 470 * to share with: First the filedescriptor is converted to a &dma_buf using 471 * dma_buf_get(). Then the buffer is attached to the device using 472 * dma_buf_attach(). 473 * 474 * Up to this stage the exporter is still free to migrate or reallocate the 475 * backing storage. 476 * 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA 478 * access to the shared buffer. In the kernel this is done by calling 479 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 480 * 481 * 4. Once a driver is done with a shared buffer it needs to call 482 * dma_buf_detach() (after cleaning up any mappings) and then release the 483 * reference acquired with dma_buf_get() by calling dma_buf_put(). 484 * 485 * For the detailed semantics exporters are expected to implement see 486 * &dma_buf_ops. 487 */ 488 489 /** 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file 491 * with this buffer, so it can be exported. 492 * Also connect the allocator specific data and ops to the buffer. 493 * Additionally, provide a name string for exporter; useful in debugging. 494 * 495 * @exp_info: [in] holds all the export related information provided 496 * by the exporter. see &struct dma_buf_export_info 497 * for further details. 498 * 499 * Returns, on success, a newly created struct dma_buf object, which wraps the 500 * supplied private data and operations for struct dma_buf_ops. On either 501 * missing ops, or error in allocating struct dma_buf, will return negative 502 * error. 503 * 504 * For most cases the easiest way to create @exp_info is through the 505 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 506 */ 507 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 508 { 509 struct dma_buf *dmabuf; 510 struct dma_resv *resv = exp_info->resv; 511 struct file *file; 512 size_t alloc_size = sizeof(struct dma_buf); 513 int ret; 514 515 if (!exp_info->resv) 516 alloc_size += sizeof(struct dma_resv); 517 else 518 /* prevent &dma_buf[1] == dma_buf->resv */ 519 alloc_size += 1; 520 521 if (WARN_ON(!exp_info->priv 522 || !exp_info->ops 523 || !exp_info->ops->map_dma_buf 524 || !exp_info->ops->unmap_dma_buf 525 || !exp_info->ops->release)) { 526 return ERR_PTR(-EINVAL); 527 } 528 529 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 530 (exp_info->ops->pin || exp_info->ops->unpin))) 531 return ERR_PTR(-EINVAL); 532 533 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 534 return ERR_PTR(-EINVAL); 535 536 if (!try_module_get(exp_info->owner)) 537 return ERR_PTR(-ENOENT); 538 539 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 540 if (!dmabuf) { 541 ret = -ENOMEM; 542 goto err_module; 543 } 544 545 dmabuf->priv = exp_info->priv; 546 dmabuf->ops = exp_info->ops; 547 dmabuf->size = exp_info->size; 548 dmabuf->exp_name = exp_info->exp_name; 549 dmabuf->owner = exp_info->owner; 550 spin_lock_init(&dmabuf->name_lock); 551 init_waitqueue_head(&dmabuf->poll); 552 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 553 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 554 555 if (!resv) { 556 resv = (struct dma_resv *)&dmabuf[1]; 557 dma_resv_init(resv); 558 } 559 dmabuf->resv = resv; 560 561 file = dma_buf_getfile(dmabuf, exp_info->flags); 562 if (IS_ERR(file)) { 563 ret = PTR_ERR(file); 564 goto err_dmabuf; 565 } 566 567 file->f_mode |= FMODE_LSEEK; 568 dmabuf->file = file; 569 570 mutex_init(&dmabuf->lock); 571 INIT_LIST_HEAD(&dmabuf->attachments); 572 573 mutex_lock(&db_list.lock); 574 list_add(&dmabuf->list_node, &db_list.head); 575 mutex_unlock(&db_list.lock); 576 577 return dmabuf; 578 579 err_dmabuf: 580 kfree(dmabuf); 581 err_module: 582 module_put(exp_info->owner); 583 return ERR_PTR(ret); 584 } 585 EXPORT_SYMBOL_GPL(dma_buf_export); 586 587 /** 588 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 589 * @dmabuf: [in] pointer to dma_buf for which fd is required. 590 * @flags: [in] flags to give to fd 591 * 592 * On success, returns an associated 'fd'. Else, returns error. 593 */ 594 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 595 { 596 int fd; 597 598 if (!dmabuf || !dmabuf->file) 599 return -EINVAL; 600 601 fd = get_unused_fd_flags(flags); 602 if (fd < 0) 603 return fd; 604 605 fd_install(fd, dmabuf->file); 606 607 return fd; 608 } 609 EXPORT_SYMBOL_GPL(dma_buf_fd); 610 611 /** 612 * dma_buf_get - returns the struct dma_buf related to an fd 613 * @fd: [in] fd associated with the struct dma_buf to be returned 614 * 615 * On success, returns the struct dma_buf associated with an fd; uses 616 * file's refcounting done by fget to increase refcount. returns ERR_PTR 617 * otherwise. 618 */ 619 struct dma_buf *dma_buf_get(int fd) 620 { 621 struct file *file; 622 623 file = fget(fd); 624 625 if (!file) 626 return ERR_PTR(-EBADF); 627 628 if (!is_dma_buf_file(file)) { 629 fput(file); 630 return ERR_PTR(-EINVAL); 631 } 632 633 return file->private_data; 634 } 635 EXPORT_SYMBOL_GPL(dma_buf_get); 636 637 /** 638 * dma_buf_put - decreases refcount of the buffer 639 * @dmabuf: [in] buffer to reduce refcount of 640 * 641 * Uses file's refcounting done implicitly by fput(). 642 * 643 * If, as a result of this call, the refcount becomes 0, the 'release' file 644 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 645 * in turn, and frees the memory allocated for dmabuf when exported. 646 */ 647 void dma_buf_put(struct dma_buf *dmabuf) 648 { 649 if (WARN_ON(!dmabuf || !dmabuf->file)) 650 return; 651 652 fput(dmabuf->file); 653 } 654 EXPORT_SYMBOL_GPL(dma_buf_put); 655 656 static void mangle_sg_table(struct sg_table *sg_table) 657 { 658 #ifdef CONFIG_DMABUF_DEBUG 659 int i; 660 struct scatterlist *sg; 661 662 /* To catch abuse of the underlying struct page by importers mix 663 * up the bits, but take care to preserve the low SG_ bits to 664 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 665 * before passing the sgt back to the exporter. */ 666 for_each_sgtable_sg(sg_table, sg, i) 667 sg->page_link ^= ~0xffUL; 668 #endif 669 670 } 671 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 672 enum dma_data_direction direction) 673 { 674 struct sg_table *sg_table; 675 676 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 677 678 if (!IS_ERR_OR_NULL(sg_table)) 679 mangle_sg_table(sg_table); 680 681 return sg_table; 682 } 683 684 /** 685 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 686 * @dmabuf: [in] buffer to attach device to. 687 * @dev: [in] device to be attached. 688 * @importer_ops: [in] importer operations for the attachment 689 * @importer_priv: [in] importer private pointer for the attachment 690 * 691 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 692 * must be cleaned up by calling dma_buf_detach(). 693 * 694 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 695 * functionality. 696 * 697 * Returns: 698 * 699 * A pointer to newly created &dma_buf_attachment on success, or a negative 700 * error code wrapped into a pointer on failure. 701 * 702 * Note that this can fail if the backing storage of @dmabuf is in a place not 703 * accessible to @dev, and cannot be moved to a more suitable place. This is 704 * indicated with the error code -EBUSY. 705 */ 706 struct dma_buf_attachment * 707 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 708 const struct dma_buf_attach_ops *importer_ops, 709 void *importer_priv) 710 { 711 struct dma_buf_attachment *attach; 712 int ret; 713 714 if (WARN_ON(!dmabuf || !dev)) 715 return ERR_PTR(-EINVAL); 716 717 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 718 return ERR_PTR(-EINVAL); 719 720 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 721 if (!attach) 722 return ERR_PTR(-ENOMEM); 723 724 attach->dev = dev; 725 attach->dmabuf = dmabuf; 726 if (importer_ops) 727 attach->peer2peer = importer_ops->allow_peer2peer; 728 attach->importer_ops = importer_ops; 729 attach->importer_priv = importer_priv; 730 731 if (dmabuf->ops->attach) { 732 ret = dmabuf->ops->attach(dmabuf, attach); 733 if (ret) 734 goto err_attach; 735 } 736 dma_resv_lock(dmabuf->resv, NULL); 737 list_add(&attach->node, &dmabuf->attachments); 738 dma_resv_unlock(dmabuf->resv); 739 740 /* When either the importer or the exporter can't handle dynamic 741 * mappings we cache the mapping here to avoid issues with the 742 * reservation object lock. 743 */ 744 if (dma_buf_attachment_is_dynamic(attach) != 745 dma_buf_is_dynamic(dmabuf)) { 746 struct sg_table *sgt; 747 748 if (dma_buf_is_dynamic(attach->dmabuf)) { 749 dma_resv_lock(attach->dmabuf->resv, NULL); 750 ret = dma_buf_pin(attach); 751 if (ret) 752 goto err_unlock; 753 } 754 755 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 756 if (!sgt) 757 sgt = ERR_PTR(-ENOMEM); 758 if (IS_ERR(sgt)) { 759 ret = PTR_ERR(sgt); 760 goto err_unpin; 761 } 762 if (dma_buf_is_dynamic(attach->dmabuf)) 763 dma_resv_unlock(attach->dmabuf->resv); 764 attach->sgt = sgt; 765 attach->dir = DMA_BIDIRECTIONAL; 766 } 767 768 return attach; 769 770 err_attach: 771 kfree(attach); 772 return ERR_PTR(ret); 773 774 err_unpin: 775 if (dma_buf_is_dynamic(attach->dmabuf)) 776 dma_buf_unpin(attach); 777 778 err_unlock: 779 if (dma_buf_is_dynamic(attach->dmabuf)) 780 dma_resv_unlock(attach->dmabuf->resv); 781 782 dma_buf_detach(dmabuf, attach); 783 return ERR_PTR(ret); 784 } 785 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 786 787 /** 788 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 789 * @dmabuf: [in] buffer to attach device to. 790 * @dev: [in] device to be attached. 791 * 792 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 793 * mapping. 794 */ 795 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 796 struct device *dev) 797 { 798 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 799 } 800 EXPORT_SYMBOL_GPL(dma_buf_attach); 801 802 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 803 struct sg_table *sg_table, 804 enum dma_data_direction direction) 805 { 806 /* uses XOR, hence this unmangles */ 807 mangle_sg_table(sg_table); 808 809 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 810 } 811 812 /** 813 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 814 * @dmabuf: [in] buffer to detach from. 815 * @attach: [in] attachment to be detached; is free'd after this call. 816 * 817 * Clean up a device attachment obtained by calling dma_buf_attach(). 818 * 819 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 820 */ 821 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 822 { 823 if (WARN_ON(!dmabuf || !attach)) 824 return; 825 826 if (attach->sgt) { 827 if (dma_buf_is_dynamic(attach->dmabuf)) 828 dma_resv_lock(attach->dmabuf->resv, NULL); 829 830 __unmap_dma_buf(attach, attach->sgt, attach->dir); 831 832 if (dma_buf_is_dynamic(attach->dmabuf)) { 833 dma_buf_unpin(attach); 834 dma_resv_unlock(attach->dmabuf->resv); 835 } 836 } 837 838 dma_resv_lock(dmabuf->resv, NULL); 839 list_del(&attach->node); 840 dma_resv_unlock(dmabuf->resv); 841 if (dmabuf->ops->detach) 842 dmabuf->ops->detach(dmabuf, attach); 843 844 kfree(attach); 845 } 846 EXPORT_SYMBOL_GPL(dma_buf_detach); 847 848 /** 849 * dma_buf_pin - Lock down the DMA-buf 850 * @attach: [in] attachment which should be pinned 851 * 852 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 853 * call this, and only for limited use cases like scanout and not for temporary 854 * pin operations. It is not permitted to allow userspace to pin arbitrary 855 * amounts of buffers through this interface. 856 * 857 * Buffers must be unpinned by calling dma_buf_unpin(). 858 * 859 * Returns: 860 * 0 on success, negative error code on failure. 861 */ 862 int dma_buf_pin(struct dma_buf_attachment *attach) 863 { 864 struct dma_buf *dmabuf = attach->dmabuf; 865 int ret = 0; 866 867 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 868 869 dma_resv_assert_held(dmabuf->resv); 870 871 if (dmabuf->ops->pin) 872 ret = dmabuf->ops->pin(attach); 873 874 return ret; 875 } 876 EXPORT_SYMBOL_GPL(dma_buf_pin); 877 878 /** 879 * dma_buf_unpin - Unpin a DMA-buf 880 * @attach: [in] attachment which should be unpinned 881 * 882 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 883 * any mapping of @attach again and inform the importer through 884 * &dma_buf_attach_ops.move_notify. 885 */ 886 void dma_buf_unpin(struct dma_buf_attachment *attach) 887 { 888 struct dma_buf *dmabuf = attach->dmabuf; 889 890 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 891 892 dma_resv_assert_held(dmabuf->resv); 893 894 if (dmabuf->ops->unpin) 895 dmabuf->ops->unpin(attach); 896 } 897 EXPORT_SYMBOL_GPL(dma_buf_unpin); 898 899 /** 900 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 901 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 902 * dma_buf_ops. 903 * @attach: [in] attachment whose scatterlist is to be returned 904 * @direction: [in] direction of DMA transfer 905 * 906 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 907 * on error. May return -EINTR if it is interrupted by a signal. 908 * 909 * On success, the DMA addresses and lengths in the returned scatterlist are 910 * PAGE_SIZE aligned. 911 * 912 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 913 * the underlying backing storage is pinned for as long as a mapping exists, 914 * therefore users/importers should not hold onto a mapping for undue amounts of 915 * time. 916 */ 917 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 918 enum dma_data_direction direction) 919 { 920 struct sg_table *sg_table; 921 int r; 922 923 might_sleep(); 924 925 if (WARN_ON(!attach || !attach->dmabuf)) 926 return ERR_PTR(-EINVAL); 927 928 if (dma_buf_attachment_is_dynamic(attach)) 929 dma_resv_assert_held(attach->dmabuf->resv); 930 931 if (attach->sgt) { 932 /* 933 * Two mappings with different directions for the same 934 * attachment are not allowed. 935 */ 936 if (attach->dir != direction && 937 attach->dir != DMA_BIDIRECTIONAL) 938 return ERR_PTR(-EBUSY); 939 940 return attach->sgt; 941 } 942 943 if (dma_buf_is_dynamic(attach->dmabuf)) { 944 dma_resv_assert_held(attach->dmabuf->resv); 945 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 946 r = dma_buf_pin(attach); 947 if (r) 948 return ERR_PTR(r); 949 } 950 } 951 952 sg_table = __map_dma_buf(attach, direction); 953 if (!sg_table) 954 sg_table = ERR_PTR(-ENOMEM); 955 956 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 957 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 958 dma_buf_unpin(attach); 959 960 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 961 attach->sgt = sg_table; 962 attach->dir = direction; 963 } 964 965 #ifdef CONFIG_DMA_API_DEBUG 966 if (!IS_ERR(sg_table)) { 967 struct scatterlist *sg; 968 u64 addr; 969 int len; 970 int i; 971 972 for_each_sgtable_dma_sg(sg_table, sg, i) { 973 addr = sg_dma_address(sg); 974 len = sg_dma_len(sg); 975 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 976 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 977 __func__, addr, len); 978 } 979 } 980 } 981 #endif /* CONFIG_DMA_API_DEBUG */ 982 983 return sg_table; 984 } 985 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 986 987 /** 988 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 989 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 990 * dma_buf_ops. 991 * @attach: [in] attachment to unmap buffer from 992 * @sg_table: [in] scatterlist info of the buffer to unmap 993 * @direction: [in] direction of DMA transfer 994 * 995 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 996 */ 997 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 998 struct sg_table *sg_table, 999 enum dma_data_direction direction) 1000 { 1001 might_sleep(); 1002 1003 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1004 return; 1005 1006 if (dma_buf_attachment_is_dynamic(attach)) 1007 dma_resv_assert_held(attach->dmabuf->resv); 1008 1009 if (attach->sgt == sg_table) 1010 return; 1011 1012 if (dma_buf_is_dynamic(attach->dmabuf)) 1013 dma_resv_assert_held(attach->dmabuf->resv); 1014 1015 __unmap_dma_buf(attach, sg_table, direction); 1016 1017 if (dma_buf_is_dynamic(attach->dmabuf) && 1018 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1019 dma_buf_unpin(attach); 1020 } 1021 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 1022 1023 /** 1024 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1025 * 1026 * @dmabuf: [in] buffer which is moving 1027 * 1028 * Informs all attachmenst that they need to destroy and recreated all their 1029 * mappings. 1030 */ 1031 void dma_buf_move_notify(struct dma_buf *dmabuf) 1032 { 1033 struct dma_buf_attachment *attach; 1034 1035 dma_resv_assert_held(dmabuf->resv); 1036 1037 list_for_each_entry(attach, &dmabuf->attachments, node) 1038 if (attach->importer_ops) 1039 attach->importer_ops->move_notify(attach); 1040 } 1041 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 1042 1043 /** 1044 * DOC: cpu access 1045 * 1046 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1047 * 1048 * - Fallback operations in the kernel, for example when a device is connected 1049 * over USB and the kernel needs to shuffle the data around first before 1050 * sending it away. Cache coherency is handled by braketing any transactions 1051 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1052 * access. 1053 * 1054 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1055 * vmap interface is introduced. Note that on very old 32-bit architectures 1056 * vmalloc space might be limited and result in vmap calls failing. 1057 * 1058 * Interfaces:: 1059 * 1060 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 1061 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 1062 * 1063 * The vmap call can fail if there is no vmap support in the exporter, or if 1064 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1065 * count for all vmap access and calls down into the exporter's vmap function 1066 * only when no vmapping exists, and only unmaps it once. Protection against 1067 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1068 * 1069 * - For full compatibility on the importer side with existing userspace 1070 * interfaces, which might already support mmap'ing buffers. This is needed in 1071 * many processing pipelines (e.g. feeding a software rendered image into a 1072 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1073 * framework already supported this and for DMA buffer file descriptors to 1074 * replace ION buffers mmap support was needed. 1075 * 1076 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1077 * fd. But like for CPU access there's a need to braket the actual access, 1078 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1079 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1080 * be restarted. 1081 * 1082 * Some systems might need some sort of cache coherency management e.g. when 1083 * CPU and GPU domains are being accessed through dma-buf at the same time. 1084 * To circumvent this problem there are begin/end coherency markers, that 1085 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1086 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1087 * sequence would be used like following: 1088 * 1089 * - mmap dma-buf fd 1090 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1091 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1092 * want (with the new data being consumed by say the GPU or the scanout 1093 * device) 1094 * - munmap once you don't need the buffer any more 1095 * 1096 * For correctness and optimal performance, it is always required to use 1097 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1098 * mapped address. Userspace cannot rely on coherent access, even when there 1099 * are systems where it just works without calling these ioctls. 1100 * 1101 * - And as a CPU fallback in userspace processing pipelines. 1102 * 1103 * Similar to the motivation for kernel cpu access it is again important that 1104 * the userspace code of a given importing subsystem can use the same 1105 * interfaces with a imported dma-buf buffer object as with a native buffer 1106 * object. This is especially important for drm where the userspace part of 1107 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1108 * use a different way to mmap a buffer rather invasive. 1109 * 1110 * The assumption in the current dma-buf interfaces is that redirecting the 1111 * initial mmap is all that's needed. A survey of some of the existing 1112 * subsystems shows that no driver seems to do any nefarious thing like 1113 * syncing up with outstanding asynchronous processing on the device or 1114 * allocating special resources at fault time. So hopefully this is good 1115 * enough, since adding interfaces to intercept pagefaults and allow pte 1116 * shootdowns would increase the complexity quite a bit. 1117 * 1118 * Interface:: 1119 * 1120 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1121 * unsigned long); 1122 * 1123 * If the importing subsystem simply provides a special-purpose mmap call to 1124 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1125 * equally achieve that for a dma-buf object. 1126 */ 1127 1128 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1129 enum dma_data_direction direction) 1130 { 1131 bool write = (direction == DMA_BIDIRECTIONAL || 1132 direction == DMA_TO_DEVICE); 1133 struct dma_resv *resv = dmabuf->resv; 1134 long ret; 1135 1136 /* Wait on any implicit rendering fences */ 1137 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1138 MAX_SCHEDULE_TIMEOUT); 1139 if (ret < 0) 1140 return ret; 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1147 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1148 * preparations. Coherency is only guaranteed in the specified range for the 1149 * specified access direction. 1150 * @dmabuf: [in] buffer to prepare cpu access for. 1151 * @direction: [in] length of range for cpu access. 1152 * 1153 * After the cpu access is complete the caller should call 1154 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1155 * it guaranteed to be coherent with other DMA access. 1156 * 1157 * This function will also wait for any DMA transactions tracked through 1158 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1159 * synchronization this function will only ensure cache coherency, callers must 1160 * ensure synchronization with such DMA transactions on their own. 1161 * 1162 * Can return negative error values, returns 0 on success. 1163 */ 1164 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1165 enum dma_data_direction direction) 1166 { 1167 int ret = 0; 1168 1169 if (WARN_ON(!dmabuf)) 1170 return -EINVAL; 1171 1172 might_lock(&dmabuf->resv->lock.base); 1173 1174 if (dmabuf->ops->begin_cpu_access) 1175 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1176 1177 /* Ensure that all fences are waited upon - but we first allow 1178 * the native handler the chance to do so more efficiently if it 1179 * chooses. A double invocation here will be reasonably cheap no-op. 1180 */ 1181 if (ret == 0) 1182 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1183 1184 return ret; 1185 } 1186 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1187 1188 /** 1189 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1190 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1191 * actions. Coherency is only guaranteed in the specified range for the 1192 * specified access direction. 1193 * @dmabuf: [in] buffer to complete cpu access for. 1194 * @direction: [in] length of range for cpu access. 1195 * 1196 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1197 * 1198 * Can return negative error values, returns 0 on success. 1199 */ 1200 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1201 enum dma_data_direction direction) 1202 { 1203 int ret = 0; 1204 1205 WARN_ON(!dmabuf); 1206 1207 might_lock(&dmabuf->resv->lock.base); 1208 1209 if (dmabuf->ops->end_cpu_access) 1210 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1211 1212 return ret; 1213 } 1214 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1215 1216 1217 /** 1218 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1219 * @dmabuf: [in] buffer that should back the vma 1220 * @vma: [in] vma for the mmap 1221 * @pgoff: [in] offset in pages where this mmap should start within the 1222 * dma-buf buffer. 1223 * 1224 * This function adjusts the passed in vma so that it points at the file of the 1225 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1226 * checking on the size of the vma. Then it calls the exporters mmap function to 1227 * set up the mapping. 1228 * 1229 * Can return negative error values, returns 0 on success. 1230 */ 1231 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1232 unsigned long pgoff) 1233 { 1234 if (WARN_ON(!dmabuf || !vma)) 1235 return -EINVAL; 1236 1237 /* check if buffer supports mmap */ 1238 if (!dmabuf->ops->mmap) 1239 return -EINVAL; 1240 1241 /* check for offset overflow */ 1242 if (pgoff + vma_pages(vma) < pgoff) 1243 return -EOVERFLOW; 1244 1245 /* check for overflowing the buffer's size */ 1246 if (pgoff + vma_pages(vma) > 1247 dmabuf->size >> PAGE_SHIFT) 1248 return -EINVAL; 1249 1250 /* readjust the vma */ 1251 vma_set_file(vma, dmabuf->file); 1252 vma->vm_pgoff = pgoff; 1253 1254 return dmabuf->ops->mmap(dmabuf, vma); 1255 } 1256 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1257 1258 /** 1259 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1260 * address space. Same restrictions as for vmap and friends apply. 1261 * @dmabuf: [in] buffer to vmap 1262 * @map: [out] returns the vmap pointer 1263 * 1264 * This call may fail due to lack of virtual mapping address space. 1265 * These calls are optional in drivers. The intended use for them 1266 * is for mapping objects linear in kernel space for high use objects. 1267 * 1268 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1269 * dma_buf_end_cpu_access() around any cpu access performed through this 1270 * mapping. 1271 * 1272 * Returns 0 on success, or a negative errno code otherwise. 1273 */ 1274 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1275 { 1276 struct dma_buf_map ptr; 1277 int ret = 0; 1278 1279 dma_buf_map_clear(map); 1280 1281 if (WARN_ON(!dmabuf)) 1282 return -EINVAL; 1283 1284 if (!dmabuf->ops->vmap) 1285 return -EINVAL; 1286 1287 mutex_lock(&dmabuf->lock); 1288 if (dmabuf->vmapping_counter) { 1289 dmabuf->vmapping_counter++; 1290 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1291 *map = dmabuf->vmap_ptr; 1292 goto out_unlock; 1293 } 1294 1295 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr)); 1296 1297 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1298 if (WARN_ON_ONCE(ret)) 1299 goto out_unlock; 1300 1301 dmabuf->vmap_ptr = ptr; 1302 dmabuf->vmapping_counter = 1; 1303 1304 *map = dmabuf->vmap_ptr; 1305 1306 out_unlock: 1307 mutex_unlock(&dmabuf->lock); 1308 return ret; 1309 } 1310 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1311 1312 /** 1313 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1314 * @dmabuf: [in] buffer to vunmap 1315 * @map: [in] vmap pointer to vunmap 1316 */ 1317 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1318 { 1319 if (WARN_ON(!dmabuf)) 1320 return; 1321 1322 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1323 BUG_ON(dmabuf->vmapping_counter == 0); 1324 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map)); 1325 1326 mutex_lock(&dmabuf->lock); 1327 if (--dmabuf->vmapping_counter == 0) { 1328 if (dmabuf->ops->vunmap) 1329 dmabuf->ops->vunmap(dmabuf, map); 1330 dma_buf_map_clear(&dmabuf->vmap_ptr); 1331 } 1332 mutex_unlock(&dmabuf->lock); 1333 } 1334 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1335 1336 #ifdef CONFIG_DEBUG_FS 1337 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1338 { 1339 int ret; 1340 struct dma_buf *buf_obj; 1341 struct dma_buf_attachment *attach_obj; 1342 struct dma_resv *robj; 1343 struct dma_resv_list *fobj; 1344 struct dma_fence *fence; 1345 unsigned seq; 1346 int count = 0, attach_count, shared_count, i; 1347 size_t size = 0; 1348 1349 ret = mutex_lock_interruptible(&db_list.lock); 1350 1351 if (ret) 1352 return ret; 1353 1354 seq_puts(s, "\nDma-buf Objects:\n"); 1355 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1356 "size", "flags", "mode", "count", "ino"); 1357 1358 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1359 1360 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1361 if (ret) 1362 goto error_unlock; 1363 1364 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1365 buf_obj->size, 1366 buf_obj->file->f_flags, buf_obj->file->f_mode, 1367 file_count(buf_obj->file), 1368 buf_obj->exp_name, 1369 file_inode(buf_obj->file)->i_ino, 1370 buf_obj->name ?: ""); 1371 1372 robj = buf_obj->resv; 1373 while (true) { 1374 seq = read_seqcount_begin(&robj->seq); 1375 rcu_read_lock(); 1376 fobj = rcu_dereference(robj->fence); 1377 shared_count = fobj ? fobj->shared_count : 0; 1378 fence = rcu_dereference(robj->fence_excl); 1379 if (!read_seqcount_retry(&robj->seq, seq)) 1380 break; 1381 rcu_read_unlock(); 1382 } 1383 1384 if (fence) 1385 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1386 fence->ops->get_driver_name(fence), 1387 fence->ops->get_timeline_name(fence), 1388 dma_fence_is_signaled(fence) ? "" : "un"); 1389 for (i = 0; i < shared_count; i++) { 1390 fence = rcu_dereference(fobj->shared[i]); 1391 if (!dma_fence_get_rcu(fence)) 1392 continue; 1393 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1394 fence->ops->get_driver_name(fence), 1395 fence->ops->get_timeline_name(fence), 1396 dma_fence_is_signaled(fence) ? "" : "un"); 1397 dma_fence_put(fence); 1398 } 1399 rcu_read_unlock(); 1400 1401 seq_puts(s, "\tAttached Devices:\n"); 1402 attach_count = 0; 1403 1404 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1405 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1406 attach_count++; 1407 } 1408 dma_resv_unlock(buf_obj->resv); 1409 1410 seq_printf(s, "Total %d devices attached\n\n", 1411 attach_count); 1412 1413 count++; 1414 size += buf_obj->size; 1415 } 1416 1417 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1418 1419 mutex_unlock(&db_list.lock); 1420 return 0; 1421 1422 error_unlock: 1423 mutex_unlock(&db_list.lock); 1424 return ret; 1425 } 1426 1427 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1428 1429 static struct dentry *dma_buf_debugfs_dir; 1430 1431 static int dma_buf_init_debugfs(void) 1432 { 1433 struct dentry *d; 1434 int err = 0; 1435 1436 d = debugfs_create_dir("dma_buf", NULL); 1437 if (IS_ERR(d)) 1438 return PTR_ERR(d); 1439 1440 dma_buf_debugfs_dir = d; 1441 1442 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1443 NULL, &dma_buf_debug_fops); 1444 if (IS_ERR(d)) { 1445 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1446 debugfs_remove_recursive(dma_buf_debugfs_dir); 1447 dma_buf_debugfs_dir = NULL; 1448 err = PTR_ERR(d); 1449 } 1450 1451 return err; 1452 } 1453 1454 static void dma_buf_uninit_debugfs(void) 1455 { 1456 debugfs_remove_recursive(dma_buf_debugfs_dir); 1457 } 1458 #else 1459 static inline int dma_buf_init_debugfs(void) 1460 { 1461 return 0; 1462 } 1463 static inline void dma_buf_uninit_debugfs(void) 1464 { 1465 } 1466 #endif 1467 1468 static int __init dma_buf_init(void) 1469 { 1470 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1471 if (IS_ERR(dma_buf_mnt)) 1472 return PTR_ERR(dma_buf_mnt); 1473 1474 mutex_init(&db_list.lock); 1475 INIT_LIST_HEAD(&db_list.head); 1476 dma_buf_init_debugfs(); 1477 return 0; 1478 } 1479 subsys_initcall(dma_buf_init); 1480 1481 static void __exit dma_buf_deinit(void) 1482 { 1483 dma_buf_uninit_debugfs(); 1484 kern_unmount(dma_buf_mnt); 1485 } 1486 __exitcall(dma_buf_deinit); 1487