1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 dma_resv_lock(dmabuf->resv, NULL); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 dma_resv_unlock(dmabuf->resv); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static const struct dentry_operations dma_buf_dentry_ops = { 58 .d_dname = dmabuffs_dname, 59 }; 60 61 static struct vfsmount *dma_buf_mnt; 62 63 static int dma_buf_fs_init_context(struct fs_context *fc) 64 { 65 struct pseudo_fs_context *ctx; 66 67 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 68 if (!ctx) 69 return -ENOMEM; 70 ctx->dops = &dma_buf_dentry_ops; 71 return 0; 72 } 73 74 static struct file_system_type dma_buf_fs_type = { 75 .name = "dmabuf", 76 .init_fs_context = dma_buf_fs_init_context, 77 .kill_sb = kill_anon_super, 78 }; 79 80 static int dma_buf_release(struct inode *inode, struct file *file) 81 { 82 struct dma_buf *dmabuf; 83 84 if (!is_dma_buf_file(file)) 85 return -EINVAL; 86 87 dmabuf = file->private_data; 88 89 BUG_ON(dmabuf->vmapping_counter); 90 91 /* 92 * Any fences that a dma-buf poll can wait on should be signaled 93 * before releasing dma-buf. This is the responsibility of each 94 * driver that uses the reservation objects. 95 * 96 * If you hit this BUG() it means someone dropped their ref to the 97 * dma-buf while still having pending operation to the buffer. 98 */ 99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 100 101 dmabuf->ops->release(dmabuf); 102 103 mutex_lock(&db_list.lock); 104 list_del(&dmabuf->list_node); 105 mutex_unlock(&db_list.lock); 106 107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 108 dma_resv_fini(dmabuf->resv); 109 110 module_put(dmabuf->owner); 111 kfree(dmabuf->name); 112 kfree(dmabuf); 113 return 0; 114 } 115 116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 117 { 118 struct dma_buf *dmabuf; 119 120 if (!is_dma_buf_file(file)) 121 return -EINVAL; 122 123 dmabuf = file->private_data; 124 125 /* check if buffer supports mmap */ 126 if (!dmabuf->ops->mmap) 127 return -EINVAL; 128 129 /* check for overflowing the buffer's size */ 130 if (vma->vm_pgoff + vma_pages(vma) > 131 dmabuf->size >> PAGE_SHIFT) 132 return -EINVAL; 133 134 return dmabuf->ops->mmap(dmabuf, vma); 135 } 136 137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 138 { 139 struct dma_buf *dmabuf; 140 loff_t base; 141 142 if (!is_dma_buf_file(file)) 143 return -EBADF; 144 145 dmabuf = file->private_data; 146 147 /* only support discovering the end of the buffer, 148 but also allow SEEK_SET to maintain the idiomatic 149 SEEK_END(0), SEEK_CUR(0) pattern */ 150 if (whence == SEEK_END) 151 base = dmabuf->size; 152 else if (whence == SEEK_SET) 153 base = 0; 154 else 155 return -EINVAL; 156 157 if (offset != 0) 158 return -EINVAL; 159 160 return base + offset; 161 } 162 163 /** 164 * DOC: fence polling 165 * 166 * To support cross-device and cross-driver synchronization of buffer access 167 * implicit fences (represented internally in the kernel with &struct fence) can 168 * be attached to a &dma_buf. The glue for that and a few related things are 169 * provided in the &dma_resv structure. 170 * 171 * Userspace can query the state of these implicitly tracked fences using poll() 172 * and related system calls: 173 * 174 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 175 * most recent write or exclusive fence. 176 * 177 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 178 * all attached fences, shared and exclusive ones. 179 * 180 * Note that this only signals the completion of the respective fences, i.e. the 181 * DMA transfers are complete. Cache flushing and any other necessary 182 * preparations before CPU access can begin still need to happen. 183 */ 184 185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 186 { 187 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 188 unsigned long flags; 189 190 spin_lock_irqsave(&dcb->poll->lock, flags); 191 wake_up_locked_poll(dcb->poll, dcb->active); 192 dcb->active = 0; 193 spin_unlock_irqrestore(&dcb->poll->lock, flags); 194 } 195 196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 197 { 198 struct dma_buf *dmabuf; 199 struct dma_resv *resv; 200 struct dma_resv_list *fobj; 201 struct dma_fence *fence_excl; 202 __poll_t events; 203 unsigned shared_count, seq; 204 205 dmabuf = file->private_data; 206 if (!dmabuf || !dmabuf->resv) 207 return EPOLLERR; 208 209 resv = dmabuf->resv; 210 211 poll_wait(file, &dmabuf->poll, poll); 212 213 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 214 if (!events) 215 return 0; 216 217 retry: 218 seq = read_seqcount_begin(&resv->seq); 219 rcu_read_lock(); 220 221 fobj = rcu_dereference(resv->fence); 222 if (fobj) 223 shared_count = fobj->shared_count; 224 else 225 shared_count = 0; 226 fence_excl = rcu_dereference(resv->fence_excl); 227 if (read_seqcount_retry(&resv->seq, seq)) { 228 rcu_read_unlock(); 229 goto retry; 230 } 231 232 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 233 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 234 __poll_t pevents = EPOLLIN; 235 236 if (shared_count == 0) 237 pevents |= EPOLLOUT; 238 239 spin_lock_irq(&dmabuf->poll.lock); 240 if (dcb->active) { 241 dcb->active |= pevents; 242 events &= ~pevents; 243 } else 244 dcb->active = pevents; 245 spin_unlock_irq(&dmabuf->poll.lock); 246 247 if (events & pevents) { 248 if (!dma_fence_get_rcu(fence_excl)) { 249 /* force a recheck */ 250 events &= ~pevents; 251 dma_buf_poll_cb(NULL, &dcb->cb); 252 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 253 dma_buf_poll_cb)) { 254 events &= ~pevents; 255 dma_fence_put(fence_excl); 256 } else { 257 /* 258 * No callback queued, wake up any additional 259 * waiters. 260 */ 261 dma_fence_put(fence_excl); 262 dma_buf_poll_cb(NULL, &dcb->cb); 263 } 264 } 265 } 266 267 if ((events & EPOLLOUT) && shared_count > 0) { 268 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 269 int i; 270 271 /* Only queue a new callback if no event has fired yet */ 272 spin_lock_irq(&dmabuf->poll.lock); 273 if (dcb->active) 274 events &= ~EPOLLOUT; 275 else 276 dcb->active = EPOLLOUT; 277 spin_unlock_irq(&dmabuf->poll.lock); 278 279 if (!(events & EPOLLOUT)) 280 goto out; 281 282 for (i = 0; i < shared_count; ++i) { 283 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 284 285 if (!dma_fence_get_rcu(fence)) { 286 /* 287 * fence refcount dropped to zero, this means 288 * that fobj has been freed 289 * 290 * call dma_buf_poll_cb and force a recheck! 291 */ 292 events &= ~EPOLLOUT; 293 dma_buf_poll_cb(NULL, &dcb->cb); 294 break; 295 } 296 if (!dma_fence_add_callback(fence, &dcb->cb, 297 dma_buf_poll_cb)) { 298 dma_fence_put(fence); 299 events &= ~EPOLLOUT; 300 break; 301 } 302 dma_fence_put(fence); 303 } 304 305 /* No callback queued, wake up any additional waiters. */ 306 if (i == shared_count) 307 dma_buf_poll_cb(NULL, &dcb->cb); 308 } 309 310 out: 311 rcu_read_unlock(); 312 return events; 313 } 314 315 /** 316 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 317 * The name of the dma-buf buffer can only be set when the dma-buf is not 318 * attached to any devices. It could theoritically support changing the 319 * name of the dma-buf if the same piece of memory is used for multiple 320 * purpose between different devices. 321 * 322 * @dmabuf [in] dmabuf buffer that will be renamed. 323 * @buf: [in] A piece of userspace memory that contains the name of 324 * the dma-buf. 325 * 326 * Returns 0 on success. If the dma-buf buffer is already attached to 327 * devices, return -EBUSY. 328 * 329 */ 330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 331 { 332 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 333 long ret = 0; 334 335 if (IS_ERR(name)) 336 return PTR_ERR(name); 337 338 dma_resv_lock(dmabuf->resv, NULL); 339 if (!list_empty(&dmabuf->attachments)) { 340 ret = -EBUSY; 341 kfree(name); 342 goto out_unlock; 343 } 344 kfree(dmabuf->name); 345 dmabuf->name = name; 346 347 out_unlock: 348 dma_resv_unlock(dmabuf->resv); 349 return ret; 350 } 351 352 static long dma_buf_ioctl(struct file *file, 353 unsigned int cmd, unsigned long arg) 354 { 355 struct dma_buf *dmabuf; 356 struct dma_buf_sync sync; 357 enum dma_data_direction direction; 358 int ret; 359 360 dmabuf = file->private_data; 361 362 switch (cmd) { 363 case DMA_BUF_IOCTL_SYNC: 364 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 365 return -EFAULT; 366 367 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 368 return -EINVAL; 369 370 switch (sync.flags & DMA_BUF_SYNC_RW) { 371 case DMA_BUF_SYNC_READ: 372 direction = DMA_FROM_DEVICE; 373 break; 374 case DMA_BUF_SYNC_WRITE: 375 direction = DMA_TO_DEVICE; 376 break; 377 case DMA_BUF_SYNC_RW: 378 direction = DMA_BIDIRECTIONAL; 379 break; 380 default: 381 return -EINVAL; 382 } 383 384 if (sync.flags & DMA_BUF_SYNC_END) 385 ret = dma_buf_end_cpu_access(dmabuf, direction); 386 else 387 ret = dma_buf_begin_cpu_access(dmabuf, direction); 388 389 return ret; 390 391 case DMA_BUF_SET_NAME_A: 392 case DMA_BUF_SET_NAME_B: 393 return dma_buf_set_name(dmabuf, (const char __user *)arg); 394 395 default: 396 return -ENOTTY; 397 } 398 } 399 400 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 401 { 402 struct dma_buf *dmabuf = file->private_data; 403 404 seq_printf(m, "size:\t%zu\n", dmabuf->size); 405 /* Don't count the temporary reference taken inside procfs seq_show */ 406 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 407 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 408 dma_resv_lock(dmabuf->resv, NULL); 409 if (dmabuf->name) 410 seq_printf(m, "name:\t%s\n", dmabuf->name); 411 dma_resv_unlock(dmabuf->resv); 412 } 413 414 static const struct file_operations dma_buf_fops = { 415 .release = dma_buf_release, 416 .mmap = dma_buf_mmap_internal, 417 .llseek = dma_buf_llseek, 418 .poll = dma_buf_poll, 419 .unlocked_ioctl = dma_buf_ioctl, 420 .compat_ioctl = compat_ptr_ioctl, 421 .show_fdinfo = dma_buf_show_fdinfo, 422 }; 423 424 /* 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf 426 */ 427 static inline int is_dma_buf_file(struct file *file) 428 { 429 return file->f_op == &dma_buf_fops; 430 } 431 432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 433 { 434 struct file *file; 435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 436 437 if (IS_ERR(inode)) 438 return ERR_CAST(inode); 439 440 inode->i_size = dmabuf->size; 441 inode_set_bytes(inode, dmabuf->size); 442 443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 444 flags, &dma_buf_fops); 445 if (IS_ERR(file)) 446 goto err_alloc_file; 447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 448 file->private_data = dmabuf; 449 file->f_path.dentry->d_fsdata = dmabuf; 450 451 return file; 452 453 err_alloc_file: 454 iput(inode); 455 return file; 456 } 457 458 /** 459 * DOC: dma buf device access 460 * 461 * For device DMA access to a shared DMA buffer the usual sequence of operations 462 * is fairly simple: 463 * 464 * 1. The exporter defines his exporter instance using 465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 467 * as a file descriptor by calling dma_buf_fd(). 468 * 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 470 * to share with: First the filedescriptor is converted to a &dma_buf using 471 * dma_buf_get(). Then the buffer is attached to the device using 472 * dma_buf_attach(). 473 * 474 * Up to this stage the exporter is still free to migrate or reallocate the 475 * backing storage. 476 * 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA 478 * access to the shared buffer. In the kernel this is done by calling 479 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 480 * 481 * 4. Once a driver is done with a shared buffer it needs to call 482 * dma_buf_detach() (after cleaning up any mappings) and then release the 483 * reference acquired with dma_buf_get by calling dma_buf_put(). 484 * 485 * For the detailed semantics exporters are expected to implement see 486 * &dma_buf_ops. 487 */ 488 489 /** 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file 491 * with this buffer, so it can be exported. 492 * Also connect the allocator specific data and ops to the buffer. 493 * Additionally, provide a name string for exporter; useful in debugging. 494 * 495 * @exp_info: [in] holds all the export related information provided 496 * by the exporter. see &struct dma_buf_export_info 497 * for further details. 498 * 499 * Returns, on success, a newly created dma_buf object, which wraps the 500 * supplied private data and operations for dma_buf_ops. On either missing 501 * ops, or error in allocating struct dma_buf, will return negative error. 502 * 503 * For most cases the easiest way to create @exp_info is through the 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 505 */ 506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 507 { 508 struct dma_buf *dmabuf; 509 struct dma_resv *resv = exp_info->resv; 510 struct file *file; 511 size_t alloc_size = sizeof(struct dma_buf); 512 int ret; 513 514 if (!exp_info->resv) 515 alloc_size += sizeof(struct dma_resv); 516 else 517 /* prevent &dma_buf[1] == dma_buf->resv */ 518 alloc_size += 1; 519 520 if (WARN_ON(!exp_info->priv 521 || !exp_info->ops 522 || !exp_info->ops->map_dma_buf 523 || !exp_info->ops->unmap_dma_buf 524 || !exp_info->ops->release)) { 525 return ERR_PTR(-EINVAL); 526 } 527 528 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 529 (exp_info->ops->pin || exp_info->ops->unpin))) 530 return ERR_PTR(-EINVAL); 531 532 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 533 return ERR_PTR(-EINVAL); 534 535 if (!try_module_get(exp_info->owner)) 536 return ERR_PTR(-ENOENT); 537 538 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 539 if (!dmabuf) { 540 ret = -ENOMEM; 541 goto err_module; 542 } 543 544 dmabuf->priv = exp_info->priv; 545 dmabuf->ops = exp_info->ops; 546 dmabuf->size = exp_info->size; 547 dmabuf->exp_name = exp_info->exp_name; 548 dmabuf->owner = exp_info->owner; 549 init_waitqueue_head(&dmabuf->poll); 550 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 551 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 552 553 if (!resv) { 554 resv = (struct dma_resv *)&dmabuf[1]; 555 dma_resv_init(resv); 556 } 557 dmabuf->resv = resv; 558 559 file = dma_buf_getfile(dmabuf, exp_info->flags); 560 if (IS_ERR(file)) { 561 ret = PTR_ERR(file); 562 goto err_dmabuf; 563 } 564 565 file->f_mode |= FMODE_LSEEK; 566 dmabuf->file = file; 567 568 mutex_init(&dmabuf->lock); 569 INIT_LIST_HEAD(&dmabuf->attachments); 570 571 mutex_lock(&db_list.lock); 572 list_add(&dmabuf->list_node, &db_list.head); 573 mutex_unlock(&db_list.lock); 574 575 return dmabuf; 576 577 err_dmabuf: 578 kfree(dmabuf); 579 err_module: 580 module_put(exp_info->owner); 581 return ERR_PTR(ret); 582 } 583 EXPORT_SYMBOL_GPL(dma_buf_export); 584 585 /** 586 * dma_buf_fd - returns a file descriptor for the given dma_buf 587 * @dmabuf: [in] pointer to dma_buf for which fd is required. 588 * @flags: [in] flags to give to fd 589 * 590 * On success, returns an associated 'fd'. Else, returns error. 591 */ 592 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 593 { 594 int fd; 595 596 if (!dmabuf || !dmabuf->file) 597 return -EINVAL; 598 599 fd = get_unused_fd_flags(flags); 600 if (fd < 0) 601 return fd; 602 603 fd_install(fd, dmabuf->file); 604 605 return fd; 606 } 607 EXPORT_SYMBOL_GPL(dma_buf_fd); 608 609 /** 610 * dma_buf_get - returns the dma_buf structure related to an fd 611 * @fd: [in] fd associated with the dma_buf to be returned 612 * 613 * On success, returns the dma_buf structure associated with an fd; uses 614 * file's refcounting done by fget to increase refcount. returns ERR_PTR 615 * otherwise. 616 */ 617 struct dma_buf *dma_buf_get(int fd) 618 { 619 struct file *file; 620 621 file = fget(fd); 622 623 if (!file) 624 return ERR_PTR(-EBADF); 625 626 if (!is_dma_buf_file(file)) { 627 fput(file); 628 return ERR_PTR(-EINVAL); 629 } 630 631 return file->private_data; 632 } 633 EXPORT_SYMBOL_GPL(dma_buf_get); 634 635 /** 636 * dma_buf_put - decreases refcount of the buffer 637 * @dmabuf: [in] buffer to reduce refcount of 638 * 639 * Uses file's refcounting done implicitly by fput(). 640 * 641 * If, as a result of this call, the refcount becomes 0, the 'release' file 642 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 643 * in turn, and frees the memory allocated for dmabuf when exported. 644 */ 645 void dma_buf_put(struct dma_buf *dmabuf) 646 { 647 if (WARN_ON(!dmabuf || !dmabuf->file)) 648 return; 649 650 fput(dmabuf->file); 651 } 652 EXPORT_SYMBOL_GPL(dma_buf_put); 653 654 /** 655 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 656 * calls attach() of dma_buf_ops to allow device-specific attach functionality 657 * @dmabuf: [in] buffer to attach device to. 658 * @dev: [in] device to be attached. 659 * @importer_ops: [in] importer operations for the attachment 660 * @importer_priv: [in] importer private pointer for the attachment 661 * 662 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 663 * must be cleaned up by calling dma_buf_detach(). 664 * 665 * Returns: 666 * 667 * A pointer to newly created &dma_buf_attachment on success, or a negative 668 * error code wrapped into a pointer on failure. 669 * 670 * Note that this can fail if the backing storage of @dmabuf is in a place not 671 * accessible to @dev, and cannot be moved to a more suitable place. This is 672 * indicated with the error code -EBUSY. 673 */ 674 struct dma_buf_attachment * 675 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 676 const struct dma_buf_attach_ops *importer_ops, 677 void *importer_priv) 678 { 679 struct dma_buf_attachment *attach; 680 int ret; 681 682 if (WARN_ON(!dmabuf || !dev)) 683 return ERR_PTR(-EINVAL); 684 685 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 686 return ERR_PTR(-EINVAL); 687 688 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 689 if (!attach) 690 return ERR_PTR(-ENOMEM); 691 692 attach->dev = dev; 693 attach->dmabuf = dmabuf; 694 attach->importer_ops = importer_ops; 695 attach->importer_priv = importer_priv; 696 697 if (dmabuf->ops->attach) { 698 ret = dmabuf->ops->attach(dmabuf, attach); 699 if (ret) 700 goto err_attach; 701 } 702 dma_resv_lock(dmabuf->resv, NULL); 703 list_add(&attach->node, &dmabuf->attachments); 704 dma_resv_unlock(dmabuf->resv); 705 706 /* When either the importer or the exporter can't handle dynamic 707 * mappings we cache the mapping here to avoid issues with the 708 * reservation object lock. 709 */ 710 if (dma_buf_attachment_is_dynamic(attach) != 711 dma_buf_is_dynamic(dmabuf)) { 712 struct sg_table *sgt; 713 714 if (dma_buf_is_dynamic(attach->dmabuf)) { 715 dma_resv_lock(attach->dmabuf->resv, NULL); 716 ret = dma_buf_pin(attach); 717 if (ret) 718 goto err_unlock; 719 } 720 721 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 722 if (!sgt) 723 sgt = ERR_PTR(-ENOMEM); 724 if (IS_ERR(sgt)) { 725 ret = PTR_ERR(sgt); 726 goto err_unpin; 727 } 728 if (dma_buf_is_dynamic(attach->dmabuf)) 729 dma_resv_unlock(attach->dmabuf->resv); 730 attach->sgt = sgt; 731 attach->dir = DMA_BIDIRECTIONAL; 732 } 733 734 return attach; 735 736 err_attach: 737 kfree(attach); 738 return ERR_PTR(ret); 739 740 err_unpin: 741 if (dma_buf_is_dynamic(attach->dmabuf)) 742 dma_buf_unpin(attach); 743 744 err_unlock: 745 if (dma_buf_is_dynamic(attach->dmabuf)) 746 dma_resv_unlock(attach->dmabuf->resv); 747 748 dma_buf_detach(dmabuf, attach); 749 return ERR_PTR(ret); 750 } 751 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 752 753 /** 754 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 755 * @dmabuf: [in] buffer to attach device to. 756 * @dev: [in] device to be attached. 757 * 758 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 759 * mapping. 760 */ 761 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 762 struct device *dev) 763 { 764 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 765 } 766 EXPORT_SYMBOL_GPL(dma_buf_attach); 767 768 /** 769 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 770 * optionally calls detach() of dma_buf_ops for device-specific detach 771 * @dmabuf: [in] buffer to detach from. 772 * @attach: [in] attachment to be detached; is free'd after this call. 773 * 774 * Clean up a device attachment obtained by calling dma_buf_attach(). 775 */ 776 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 777 { 778 if (WARN_ON(!dmabuf || !attach)) 779 return; 780 781 if (attach->sgt) { 782 if (dma_buf_is_dynamic(attach->dmabuf)) 783 dma_resv_lock(attach->dmabuf->resv, NULL); 784 785 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 786 787 if (dma_buf_is_dynamic(attach->dmabuf)) { 788 dma_buf_unpin(attach); 789 dma_resv_unlock(attach->dmabuf->resv); 790 } 791 } 792 793 dma_resv_lock(dmabuf->resv, NULL); 794 list_del(&attach->node); 795 dma_resv_unlock(dmabuf->resv); 796 if (dmabuf->ops->detach) 797 dmabuf->ops->detach(dmabuf, attach); 798 799 kfree(attach); 800 } 801 EXPORT_SYMBOL_GPL(dma_buf_detach); 802 803 /** 804 * dma_buf_pin - Lock down the DMA-buf 805 * 806 * @attach: [in] attachment which should be pinned 807 * 808 * Returns: 809 * 0 on success, negative error code on failure. 810 */ 811 int dma_buf_pin(struct dma_buf_attachment *attach) 812 { 813 struct dma_buf *dmabuf = attach->dmabuf; 814 int ret = 0; 815 816 dma_resv_assert_held(dmabuf->resv); 817 818 if (dmabuf->ops->pin) 819 ret = dmabuf->ops->pin(attach); 820 821 return ret; 822 } 823 EXPORT_SYMBOL_GPL(dma_buf_pin); 824 825 /** 826 * dma_buf_unpin - Remove lock from DMA-buf 827 * 828 * @attach: [in] attachment which should be unpinned 829 */ 830 void dma_buf_unpin(struct dma_buf_attachment *attach) 831 { 832 struct dma_buf *dmabuf = attach->dmabuf; 833 834 dma_resv_assert_held(dmabuf->resv); 835 836 if (dmabuf->ops->unpin) 837 dmabuf->ops->unpin(attach); 838 } 839 EXPORT_SYMBOL_GPL(dma_buf_unpin); 840 841 /** 842 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 843 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 844 * dma_buf_ops. 845 * @attach: [in] attachment whose scatterlist is to be returned 846 * @direction: [in] direction of DMA transfer 847 * 848 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 849 * on error. May return -EINTR if it is interrupted by a signal. 850 * 851 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 852 * the underlying backing storage is pinned for as long as a mapping exists, 853 * therefore users/importers should not hold onto a mapping for undue amounts of 854 * time. 855 */ 856 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 857 enum dma_data_direction direction) 858 { 859 struct sg_table *sg_table; 860 int r; 861 862 might_sleep(); 863 864 if (WARN_ON(!attach || !attach->dmabuf)) 865 return ERR_PTR(-EINVAL); 866 867 if (dma_buf_attachment_is_dynamic(attach)) 868 dma_resv_assert_held(attach->dmabuf->resv); 869 870 if (attach->sgt) { 871 /* 872 * Two mappings with different directions for the same 873 * attachment are not allowed. 874 */ 875 if (attach->dir != direction && 876 attach->dir != DMA_BIDIRECTIONAL) 877 return ERR_PTR(-EBUSY); 878 879 return attach->sgt; 880 } 881 882 if (dma_buf_is_dynamic(attach->dmabuf)) { 883 dma_resv_assert_held(attach->dmabuf->resv); 884 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 885 r = dma_buf_pin(attach); 886 if (r) 887 return ERR_PTR(r); 888 } 889 } 890 891 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 892 if (!sg_table) 893 sg_table = ERR_PTR(-ENOMEM); 894 895 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 896 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 897 dma_buf_unpin(attach); 898 899 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 900 attach->sgt = sg_table; 901 attach->dir = direction; 902 } 903 904 return sg_table; 905 } 906 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 907 908 /** 909 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 910 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 911 * dma_buf_ops. 912 * @attach: [in] attachment to unmap buffer from 913 * @sg_table: [in] scatterlist info of the buffer to unmap 914 * @direction: [in] direction of DMA transfer 915 * 916 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 917 */ 918 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 919 struct sg_table *sg_table, 920 enum dma_data_direction direction) 921 { 922 might_sleep(); 923 924 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 925 return; 926 927 if (dma_buf_attachment_is_dynamic(attach)) 928 dma_resv_assert_held(attach->dmabuf->resv); 929 930 if (attach->sgt == sg_table) 931 return; 932 933 if (dma_buf_is_dynamic(attach->dmabuf)) 934 dma_resv_assert_held(attach->dmabuf->resv); 935 936 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 937 938 if (dma_buf_is_dynamic(attach->dmabuf) && 939 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 940 dma_buf_unpin(attach); 941 } 942 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 943 944 /** 945 * dma_buf_move_notify - notify attachments that DMA-buf is moving 946 * 947 * @dmabuf: [in] buffer which is moving 948 * 949 * Informs all attachmenst that they need to destroy and recreated all their 950 * mappings. 951 */ 952 void dma_buf_move_notify(struct dma_buf *dmabuf) 953 { 954 struct dma_buf_attachment *attach; 955 956 dma_resv_assert_held(dmabuf->resv); 957 958 list_for_each_entry(attach, &dmabuf->attachments, node) 959 if (attach->importer_ops) 960 attach->importer_ops->move_notify(attach); 961 } 962 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 963 964 /** 965 * DOC: cpu access 966 * 967 * There are mutliple reasons for supporting CPU access to a dma buffer object: 968 * 969 * - Fallback operations in the kernel, for example when a device is connected 970 * over USB and the kernel needs to shuffle the data around first before 971 * sending it away. Cache coherency is handled by braketing any transactions 972 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 973 * access. 974 * 975 * Since for most kernel internal dma-buf accesses need the entire buffer, a 976 * vmap interface is introduced. Note that on very old 32-bit architectures 977 * vmalloc space might be limited and result in vmap calls failing. 978 * 979 * Interfaces:: 980 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 981 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 982 * 983 * The vmap call can fail if there is no vmap support in the exporter, or if 984 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 985 * that the dma-buf layer keeps a reference count for all vmap access and 986 * calls down into the exporter's vmap function only when no vmapping exists, 987 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 988 * provided by taking the dma_buf->lock mutex. 989 * 990 * - For full compatibility on the importer side with existing userspace 991 * interfaces, which might already support mmap'ing buffers. This is needed in 992 * many processing pipelines (e.g. feeding a software rendered image into a 993 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 994 * framework already supported this and for DMA buffer file descriptors to 995 * replace ION buffers mmap support was needed. 996 * 997 * There is no special interfaces, userspace simply calls mmap on the dma-buf 998 * fd. But like for CPU access there's a need to braket the actual access, 999 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1000 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1001 * be restarted. 1002 * 1003 * Some systems might need some sort of cache coherency management e.g. when 1004 * CPU and GPU domains are being accessed through dma-buf at the same time. 1005 * To circumvent this problem there are begin/end coherency markers, that 1006 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1007 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1008 * sequence would be used like following: 1009 * 1010 * - mmap dma-buf fd 1011 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1012 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1013 * want (with the new data being consumed by say the GPU or the scanout 1014 * device) 1015 * - munmap once you don't need the buffer any more 1016 * 1017 * For correctness and optimal performance, it is always required to use 1018 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1019 * mapped address. Userspace cannot rely on coherent access, even when there 1020 * are systems where it just works without calling these ioctls. 1021 * 1022 * - And as a CPU fallback in userspace processing pipelines. 1023 * 1024 * Similar to the motivation for kernel cpu access it is again important that 1025 * the userspace code of a given importing subsystem can use the same 1026 * interfaces with a imported dma-buf buffer object as with a native buffer 1027 * object. This is especially important for drm where the userspace part of 1028 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1029 * use a different way to mmap a buffer rather invasive. 1030 * 1031 * The assumption in the current dma-buf interfaces is that redirecting the 1032 * initial mmap is all that's needed. A survey of some of the existing 1033 * subsystems shows that no driver seems to do any nefarious thing like 1034 * syncing up with outstanding asynchronous processing on the device or 1035 * allocating special resources at fault time. So hopefully this is good 1036 * enough, since adding interfaces to intercept pagefaults and allow pte 1037 * shootdowns would increase the complexity quite a bit. 1038 * 1039 * Interface:: 1040 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1041 * unsigned long); 1042 * 1043 * If the importing subsystem simply provides a special-purpose mmap call to 1044 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 1045 * equally achieve that for a dma-buf object. 1046 */ 1047 1048 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1049 enum dma_data_direction direction) 1050 { 1051 bool write = (direction == DMA_BIDIRECTIONAL || 1052 direction == DMA_TO_DEVICE); 1053 struct dma_resv *resv = dmabuf->resv; 1054 long ret; 1055 1056 /* Wait on any implicit rendering fences */ 1057 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1058 MAX_SCHEDULE_TIMEOUT); 1059 if (ret < 0) 1060 return ret; 1061 1062 return 0; 1063 } 1064 1065 /** 1066 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1067 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1068 * preparations. Coherency is only guaranteed in the specified range for the 1069 * specified access direction. 1070 * @dmabuf: [in] buffer to prepare cpu access for. 1071 * @direction: [in] length of range for cpu access. 1072 * 1073 * After the cpu access is complete the caller should call 1074 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1075 * it guaranteed to be coherent with other DMA access. 1076 * 1077 * Can return negative error values, returns 0 on success. 1078 */ 1079 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1080 enum dma_data_direction direction) 1081 { 1082 int ret = 0; 1083 1084 if (WARN_ON(!dmabuf)) 1085 return -EINVAL; 1086 1087 if (dmabuf->ops->begin_cpu_access) 1088 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1089 1090 /* Ensure that all fences are waited upon - but we first allow 1091 * the native handler the chance to do so more efficiently if it 1092 * chooses. A double invocation here will be reasonably cheap no-op. 1093 */ 1094 if (ret == 0) 1095 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1096 1097 return ret; 1098 } 1099 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1100 1101 /** 1102 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1103 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1104 * actions. Coherency is only guaranteed in the specified range for the 1105 * specified access direction. 1106 * @dmabuf: [in] buffer to complete cpu access for. 1107 * @direction: [in] length of range for cpu access. 1108 * 1109 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1110 * 1111 * Can return negative error values, returns 0 on success. 1112 */ 1113 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1114 enum dma_data_direction direction) 1115 { 1116 int ret = 0; 1117 1118 WARN_ON(!dmabuf); 1119 1120 if (dmabuf->ops->end_cpu_access) 1121 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1122 1123 return ret; 1124 } 1125 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1126 1127 1128 /** 1129 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1130 * @dmabuf: [in] buffer that should back the vma 1131 * @vma: [in] vma for the mmap 1132 * @pgoff: [in] offset in pages where this mmap should start within the 1133 * dma-buf buffer. 1134 * 1135 * This function adjusts the passed in vma so that it points at the file of the 1136 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1137 * checking on the size of the vma. Then it calls the exporters mmap function to 1138 * set up the mapping. 1139 * 1140 * Can return negative error values, returns 0 on success. 1141 */ 1142 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1143 unsigned long pgoff) 1144 { 1145 struct file *oldfile; 1146 int ret; 1147 1148 if (WARN_ON(!dmabuf || !vma)) 1149 return -EINVAL; 1150 1151 /* check if buffer supports mmap */ 1152 if (!dmabuf->ops->mmap) 1153 return -EINVAL; 1154 1155 /* check for offset overflow */ 1156 if (pgoff + vma_pages(vma) < pgoff) 1157 return -EOVERFLOW; 1158 1159 /* check for overflowing the buffer's size */ 1160 if (pgoff + vma_pages(vma) > 1161 dmabuf->size >> PAGE_SHIFT) 1162 return -EINVAL; 1163 1164 /* readjust the vma */ 1165 get_file(dmabuf->file); 1166 oldfile = vma->vm_file; 1167 vma->vm_file = dmabuf->file; 1168 vma->vm_pgoff = pgoff; 1169 1170 ret = dmabuf->ops->mmap(dmabuf, vma); 1171 if (ret) { 1172 /* restore old parameters on failure */ 1173 vma->vm_file = oldfile; 1174 fput(dmabuf->file); 1175 } else { 1176 if (oldfile) 1177 fput(oldfile); 1178 } 1179 return ret; 1180 1181 } 1182 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1183 1184 /** 1185 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1186 * address space. Same restrictions as for vmap and friends apply. 1187 * @dmabuf: [in] buffer to vmap 1188 * 1189 * This call may fail due to lack of virtual mapping address space. 1190 * These calls are optional in drivers. The intended use for them 1191 * is for mapping objects linear in kernel space for high use objects. 1192 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1193 * 1194 * Returns NULL on error. 1195 */ 1196 void *dma_buf_vmap(struct dma_buf *dmabuf) 1197 { 1198 void *ptr; 1199 1200 if (WARN_ON(!dmabuf)) 1201 return NULL; 1202 1203 if (!dmabuf->ops->vmap) 1204 return NULL; 1205 1206 mutex_lock(&dmabuf->lock); 1207 if (dmabuf->vmapping_counter) { 1208 dmabuf->vmapping_counter++; 1209 BUG_ON(!dmabuf->vmap_ptr); 1210 ptr = dmabuf->vmap_ptr; 1211 goto out_unlock; 1212 } 1213 1214 BUG_ON(dmabuf->vmap_ptr); 1215 1216 ptr = dmabuf->ops->vmap(dmabuf); 1217 if (WARN_ON_ONCE(IS_ERR(ptr))) 1218 ptr = NULL; 1219 if (!ptr) 1220 goto out_unlock; 1221 1222 dmabuf->vmap_ptr = ptr; 1223 dmabuf->vmapping_counter = 1; 1224 1225 out_unlock: 1226 mutex_unlock(&dmabuf->lock); 1227 return ptr; 1228 } 1229 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1230 1231 /** 1232 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1233 * @dmabuf: [in] buffer to vunmap 1234 * @vaddr: [in] vmap to vunmap 1235 */ 1236 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1237 { 1238 if (WARN_ON(!dmabuf)) 1239 return; 1240 1241 BUG_ON(!dmabuf->vmap_ptr); 1242 BUG_ON(dmabuf->vmapping_counter == 0); 1243 BUG_ON(dmabuf->vmap_ptr != vaddr); 1244 1245 mutex_lock(&dmabuf->lock); 1246 if (--dmabuf->vmapping_counter == 0) { 1247 if (dmabuf->ops->vunmap) 1248 dmabuf->ops->vunmap(dmabuf, vaddr); 1249 dmabuf->vmap_ptr = NULL; 1250 } 1251 mutex_unlock(&dmabuf->lock); 1252 } 1253 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1254 1255 #ifdef CONFIG_DEBUG_FS 1256 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1257 { 1258 int ret; 1259 struct dma_buf *buf_obj; 1260 struct dma_buf_attachment *attach_obj; 1261 struct dma_resv *robj; 1262 struct dma_resv_list *fobj; 1263 struct dma_fence *fence; 1264 unsigned seq; 1265 int count = 0, attach_count, shared_count, i; 1266 size_t size = 0; 1267 1268 ret = mutex_lock_interruptible(&db_list.lock); 1269 1270 if (ret) 1271 return ret; 1272 1273 seq_puts(s, "\nDma-buf Objects:\n"); 1274 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1275 "size", "flags", "mode", "count", "ino"); 1276 1277 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1278 1279 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1280 if (ret) 1281 goto error_unlock; 1282 1283 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1284 buf_obj->size, 1285 buf_obj->file->f_flags, buf_obj->file->f_mode, 1286 file_count(buf_obj->file), 1287 buf_obj->exp_name, 1288 file_inode(buf_obj->file)->i_ino, 1289 buf_obj->name ?: ""); 1290 1291 robj = buf_obj->resv; 1292 while (true) { 1293 seq = read_seqcount_begin(&robj->seq); 1294 rcu_read_lock(); 1295 fobj = rcu_dereference(robj->fence); 1296 shared_count = fobj ? fobj->shared_count : 0; 1297 fence = rcu_dereference(robj->fence_excl); 1298 if (!read_seqcount_retry(&robj->seq, seq)) 1299 break; 1300 rcu_read_unlock(); 1301 } 1302 1303 if (fence) 1304 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1305 fence->ops->get_driver_name(fence), 1306 fence->ops->get_timeline_name(fence), 1307 dma_fence_is_signaled(fence) ? "" : "un"); 1308 for (i = 0; i < shared_count; i++) { 1309 fence = rcu_dereference(fobj->shared[i]); 1310 if (!dma_fence_get_rcu(fence)) 1311 continue; 1312 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1313 fence->ops->get_driver_name(fence), 1314 fence->ops->get_timeline_name(fence), 1315 dma_fence_is_signaled(fence) ? "" : "un"); 1316 dma_fence_put(fence); 1317 } 1318 rcu_read_unlock(); 1319 1320 seq_puts(s, "\tAttached Devices:\n"); 1321 attach_count = 0; 1322 1323 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1324 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1325 attach_count++; 1326 } 1327 dma_resv_unlock(buf_obj->resv); 1328 1329 seq_printf(s, "Total %d devices attached\n\n", 1330 attach_count); 1331 1332 count++; 1333 size += buf_obj->size; 1334 } 1335 1336 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1337 1338 mutex_unlock(&db_list.lock); 1339 return 0; 1340 1341 error_unlock: 1342 mutex_unlock(&db_list.lock); 1343 return ret; 1344 } 1345 1346 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1347 1348 static struct dentry *dma_buf_debugfs_dir; 1349 1350 static int dma_buf_init_debugfs(void) 1351 { 1352 struct dentry *d; 1353 int err = 0; 1354 1355 d = debugfs_create_dir("dma_buf", NULL); 1356 if (IS_ERR(d)) 1357 return PTR_ERR(d); 1358 1359 dma_buf_debugfs_dir = d; 1360 1361 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1362 NULL, &dma_buf_debug_fops); 1363 if (IS_ERR(d)) { 1364 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1365 debugfs_remove_recursive(dma_buf_debugfs_dir); 1366 dma_buf_debugfs_dir = NULL; 1367 err = PTR_ERR(d); 1368 } 1369 1370 return err; 1371 } 1372 1373 static void dma_buf_uninit_debugfs(void) 1374 { 1375 debugfs_remove_recursive(dma_buf_debugfs_dir); 1376 } 1377 #else 1378 static inline int dma_buf_init_debugfs(void) 1379 { 1380 return 0; 1381 } 1382 static inline void dma_buf_uninit_debugfs(void) 1383 { 1384 } 1385 #endif 1386 1387 static int __init dma_buf_init(void) 1388 { 1389 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1390 if (IS_ERR(dma_buf_mnt)) 1391 return PTR_ERR(dma_buf_mnt); 1392 1393 mutex_init(&db_list.lock); 1394 INIT_LIST_HEAD(&db_list.head); 1395 dma_buf_init_debugfs(); 1396 return 0; 1397 } 1398 subsys_initcall(dma_buf_init); 1399 1400 static void __exit dma_buf_deinit(void) 1401 { 1402 dma_buf_uninit_debugfs(); 1403 kern_unmount(dma_buf_mnt); 1404 } 1405 __exitcall(dma_buf_deinit); 1406