1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 #include "dma-buf-sysfs-stats.h" 33 34 static inline int is_dma_buf_file(struct file *); 35 36 struct dma_buf_list { 37 struct list_head head; 38 struct mutex lock; 39 }; 40 41 static struct dma_buf_list db_list; 42 43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 44 { 45 struct dma_buf *dmabuf; 46 char name[DMA_BUF_NAME_LEN]; 47 size_t ret = 0; 48 49 dmabuf = dentry->d_fsdata; 50 spin_lock(&dmabuf->name_lock); 51 if (dmabuf->name) 52 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 53 spin_unlock(&dmabuf->name_lock); 54 55 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 56 dentry->d_name.name, ret > 0 ? name : ""); 57 } 58 59 static void dma_buf_release(struct dentry *dentry) 60 { 61 struct dma_buf *dmabuf; 62 63 dmabuf = dentry->d_fsdata; 64 if (unlikely(!dmabuf)) 65 return; 66 67 BUG_ON(dmabuf->vmapping_counter); 68 69 /* 70 * If you hit this BUG() it could mean: 71 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 72 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 73 */ 74 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 75 76 dma_buf_stats_teardown(dmabuf); 77 dmabuf->ops->release(dmabuf); 78 79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 80 dma_resv_fini(dmabuf->resv); 81 82 WARN_ON(!list_empty(&dmabuf->attachments)); 83 module_put(dmabuf->owner); 84 kfree(dmabuf->name); 85 kfree(dmabuf); 86 } 87 88 static int dma_buf_file_release(struct inode *inode, struct file *file) 89 { 90 struct dma_buf *dmabuf; 91 92 if (!is_dma_buf_file(file)) 93 return -EINVAL; 94 95 dmabuf = file->private_data; 96 97 mutex_lock(&db_list.lock); 98 list_del(&dmabuf->list_node); 99 mutex_unlock(&db_list.lock); 100 101 return 0; 102 } 103 104 static const struct dentry_operations dma_buf_dentry_ops = { 105 .d_dname = dmabuffs_dname, 106 .d_release = dma_buf_release, 107 }; 108 109 static struct vfsmount *dma_buf_mnt; 110 111 static int dma_buf_fs_init_context(struct fs_context *fc) 112 { 113 struct pseudo_fs_context *ctx; 114 115 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 116 if (!ctx) 117 return -ENOMEM; 118 ctx->dops = &dma_buf_dentry_ops; 119 return 0; 120 } 121 122 static struct file_system_type dma_buf_fs_type = { 123 .name = "dmabuf", 124 .init_fs_context = dma_buf_fs_init_context, 125 .kill_sb = kill_anon_super, 126 }; 127 128 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 129 { 130 struct dma_buf *dmabuf; 131 132 if (!is_dma_buf_file(file)) 133 return -EINVAL; 134 135 dmabuf = file->private_data; 136 137 /* check if buffer supports mmap */ 138 if (!dmabuf->ops->mmap) 139 return -EINVAL; 140 141 /* check for overflowing the buffer's size */ 142 if (vma->vm_pgoff + vma_pages(vma) > 143 dmabuf->size >> PAGE_SHIFT) 144 return -EINVAL; 145 146 return dmabuf->ops->mmap(dmabuf, vma); 147 } 148 149 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 150 { 151 struct dma_buf *dmabuf; 152 loff_t base; 153 154 if (!is_dma_buf_file(file)) 155 return -EBADF; 156 157 dmabuf = file->private_data; 158 159 /* only support discovering the end of the buffer, 160 but also allow SEEK_SET to maintain the idiomatic 161 SEEK_END(0), SEEK_CUR(0) pattern */ 162 if (whence == SEEK_END) 163 base = dmabuf->size; 164 else if (whence == SEEK_SET) 165 base = 0; 166 else 167 return -EINVAL; 168 169 if (offset != 0) 170 return -EINVAL; 171 172 return base + offset; 173 } 174 175 /** 176 * DOC: implicit fence polling 177 * 178 * To support cross-device and cross-driver synchronization of buffer access 179 * implicit fences (represented internally in the kernel with &struct dma_fence) 180 * can be attached to a &dma_buf. The glue for that and a few related things are 181 * provided in the &dma_resv structure. 182 * 183 * Userspace can query the state of these implicitly tracked fences using poll() 184 * and related system calls: 185 * 186 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 187 * most recent write or exclusive fence. 188 * 189 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 190 * all attached fences, shared and exclusive ones. 191 * 192 * Note that this only signals the completion of the respective fences, i.e. the 193 * DMA transfers are complete. Cache flushing and any other necessary 194 * preparations before CPU access can begin still need to happen. 195 */ 196 197 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 198 { 199 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 200 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 201 unsigned long flags; 202 203 spin_lock_irqsave(&dcb->poll->lock, flags); 204 wake_up_locked_poll(dcb->poll, dcb->active); 205 dcb->active = 0; 206 spin_unlock_irqrestore(&dcb->poll->lock, flags); 207 dma_fence_put(fence); 208 /* Paired with get_file in dma_buf_poll */ 209 fput(dmabuf->file); 210 } 211 212 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 213 struct dma_buf_poll_cb_t *dcb) 214 { 215 struct dma_resv_iter cursor; 216 struct dma_fence *fence; 217 int r; 218 219 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 220 fence) { 221 dma_fence_get(fence); 222 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 223 if (!r) 224 return true; 225 dma_fence_put(fence); 226 } 227 228 return false; 229 } 230 231 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 232 { 233 struct dma_buf *dmabuf; 234 struct dma_resv *resv; 235 __poll_t events; 236 237 dmabuf = file->private_data; 238 if (!dmabuf || !dmabuf->resv) 239 return EPOLLERR; 240 241 resv = dmabuf->resv; 242 243 poll_wait(file, &dmabuf->poll, poll); 244 245 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 246 if (!events) 247 return 0; 248 249 dma_resv_lock(resv, NULL); 250 251 if (events & EPOLLOUT) { 252 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 253 254 /* Check that callback isn't busy */ 255 spin_lock_irq(&dmabuf->poll.lock); 256 if (dcb->active) 257 events &= ~EPOLLOUT; 258 else 259 dcb->active = EPOLLOUT; 260 spin_unlock_irq(&dmabuf->poll.lock); 261 262 if (events & EPOLLOUT) { 263 /* Paired with fput in dma_buf_poll_cb */ 264 get_file(dmabuf->file); 265 266 if (!dma_buf_poll_add_cb(resv, true, dcb)) 267 /* No callback queued, wake up any other waiters */ 268 dma_buf_poll_cb(NULL, &dcb->cb); 269 else 270 events &= ~EPOLLOUT; 271 } 272 } 273 274 if (events & EPOLLIN) { 275 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 276 277 /* Check that callback isn't busy */ 278 spin_lock_irq(&dmabuf->poll.lock); 279 if (dcb->active) 280 events &= ~EPOLLIN; 281 else 282 dcb->active = EPOLLIN; 283 spin_unlock_irq(&dmabuf->poll.lock); 284 285 if (events & EPOLLIN) { 286 /* Paired with fput in dma_buf_poll_cb */ 287 get_file(dmabuf->file); 288 289 if (!dma_buf_poll_add_cb(resv, false, dcb)) 290 /* No callback queued, wake up any other waiters */ 291 dma_buf_poll_cb(NULL, &dcb->cb); 292 else 293 events &= ~EPOLLIN; 294 } 295 } 296 297 dma_resv_unlock(resv); 298 return events; 299 } 300 301 /** 302 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 303 * It could support changing the name of the dma-buf if the same 304 * piece of memory is used for multiple purpose between different devices. 305 * 306 * @dmabuf: [in] dmabuf buffer that will be renamed. 307 * @buf: [in] A piece of userspace memory that contains the name of 308 * the dma-buf. 309 * 310 * Returns 0 on success. If the dma-buf buffer is already attached to 311 * devices, return -EBUSY. 312 * 313 */ 314 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 315 { 316 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 317 318 if (IS_ERR(name)) 319 return PTR_ERR(name); 320 321 spin_lock(&dmabuf->name_lock); 322 kfree(dmabuf->name); 323 dmabuf->name = name; 324 spin_unlock(&dmabuf->name_lock); 325 326 return 0; 327 } 328 329 static long dma_buf_ioctl(struct file *file, 330 unsigned int cmd, unsigned long arg) 331 { 332 struct dma_buf *dmabuf; 333 struct dma_buf_sync sync; 334 enum dma_data_direction direction; 335 int ret; 336 337 dmabuf = file->private_data; 338 339 switch (cmd) { 340 case DMA_BUF_IOCTL_SYNC: 341 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 342 return -EFAULT; 343 344 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 345 return -EINVAL; 346 347 switch (sync.flags & DMA_BUF_SYNC_RW) { 348 case DMA_BUF_SYNC_READ: 349 direction = DMA_FROM_DEVICE; 350 break; 351 case DMA_BUF_SYNC_WRITE: 352 direction = DMA_TO_DEVICE; 353 break; 354 case DMA_BUF_SYNC_RW: 355 direction = DMA_BIDIRECTIONAL; 356 break; 357 default: 358 return -EINVAL; 359 } 360 361 if (sync.flags & DMA_BUF_SYNC_END) 362 ret = dma_buf_end_cpu_access(dmabuf, direction); 363 else 364 ret = dma_buf_begin_cpu_access(dmabuf, direction); 365 366 return ret; 367 368 case DMA_BUF_SET_NAME_A: 369 case DMA_BUF_SET_NAME_B: 370 return dma_buf_set_name(dmabuf, (const char __user *)arg); 371 372 default: 373 return -ENOTTY; 374 } 375 } 376 377 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 378 { 379 struct dma_buf *dmabuf = file->private_data; 380 381 seq_printf(m, "size:\t%zu\n", dmabuf->size); 382 /* Don't count the temporary reference taken inside procfs seq_show */ 383 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 384 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 385 spin_lock(&dmabuf->name_lock); 386 if (dmabuf->name) 387 seq_printf(m, "name:\t%s\n", dmabuf->name); 388 spin_unlock(&dmabuf->name_lock); 389 } 390 391 static const struct file_operations dma_buf_fops = { 392 .release = dma_buf_file_release, 393 .mmap = dma_buf_mmap_internal, 394 .llseek = dma_buf_llseek, 395 .poll = dma_buf_poll, 396 .unlocked_ioctl = dma_buf_ioctl, 397 .compat_ioctl = compat_ptr_ioctl, 398 .show_fdinfo = dma_buf_show_fdinfo, 399 }; 400 401 /* 402 * is_dma_buf_file - Check if struct file* is associated with dma_buf 403 */ 404 static inline int is_dma_buf_file(struct file *file) 405 { 406 return file->f_op == &dma_buf_fops; 407 } 408 409 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 410 { 411 struct file *file; 412 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 413 414 if (IS_ERR(inode)) 415 return ERR_CAST(inode); 416 417 inode->i_size = dmabuf->size; 418 inode_set_bytes(inode, dmabuf->size); 419 420 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 421 flags, &dma_buf_fops); 422 if (IS_ERR(file)) 423 goto err_alloc_file; 424 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 425 file->private_data = dmabuf; 426 file->f_path.dentry->d_fsdata = dmabuf; 427 428 return file; 429 430 err_alloc_file: 431 iput(inode); 432 return file; 433 } 434 435 /** 436 * DOC: dma buf device access 437 * 438 * For device DMA access to a shared DMA buffer the usual sequence of operations 439 * is fairly simple: 440 * 441 * 1. The exporter defines his exporter instance using 442 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 443 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 444 * as a file descriptor by calling dma_buf_fd(). 445 * 446 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 447 * to share with: First the file descriptor is converted to a &dma_buf using 448 * dma_buf_get(). Then the buffer is attached to the device using 449 * dma_buf_attach(). 450 * 451 * Up to this stage the exporter is still free to migrate or reallocate the 452 * backing storage. 453 * 454 * 3. Once the buffer is attached to all devices userspace can initiate DMA 455 * access to the shared buffer. In the kernel this is done by calling 456 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 457 * 458 * 4. Once a driver is done with a shared buffer it needs to call 459 * dma_buf_detach() (after cleaning up any mappings) and then release the 460 * reference acquired with dma_buf_get() by calling dma_buf_put(). 461 * 462 * For the detailed semantics exporters are expected to implement see 463 * &dma_buf_ops. 464 */ 465 466 /** 467 * dma_buf_export - Creates a new dma_buf, and associates an anon file 468 * with this buffer, so it can be exported. 469 * Also connect the allocator specific data and ops to the buffer. 470 * Additionally, provide a name string for exporter; useful in debugging. 471 * 472 * @exp_info: [in] holds all the export related information provided 473 * by the exporter. see &struct dma_buf_export_info 474 * for further details. 475 * 476 * Returns, on success, a newly created struct dma_buf object, which wraps the 477 * supplied private data and operations for struct dma_buf_ops. On either 478 * missing ops, or error in allocating struct dma_buf, will return negative 479 * error. 480 * 481 * For most cases the easiest way to create @exp_info is through the 482 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 483 */ 484 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 485 { 486 struct dma_buf *dmabuf; 487 struct dma_resv *resv = exp_info->resv; 488 struct file *file; 489 size_t alloc_size = sizeof(struct dma_buf); 490 int ret; 491 492 if (!exp_info->resv) 493 alloc_size += sizeof(struct dma_resv); 494 else 495 /* prevent &dma_buf[1] == dma_buf->resv */ 496 alloc_size += 1; 497 498 if (WARN_ON(!exp_info->priv 499 || !exp_info->ops 500 || !exp_info->ops->map_dma_buf 501 || !exp_info->ops->unmap_dma_buf 502 || !exp_info->ops->release)) { 503 return ERR_PTR(-EINVAL); 504 } 505 506 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 507 (exp_info->ops->pin || exp_info->ops->unpin))) 508 return ERR_PTR(-EINVAL); 509 510 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 511 return ERR_PTR(-EINVAL); 512 513 if (!try_module_get(exp_info->owner)) 514 return ERR_PTR(-ENOENT); 515 516 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 517 if (!dmabuf) { 518 ret = -ENOMEM; 519 goto err_module; 520 } 521 522 dmabuf->priv = exp_info->priv; 523 dmabuf->ops = exp_info->ops; 524 dmabuf->size = exp_info->size; 525 dmabuf->exp_name = exp_info->exp_name; 526 dmabuf->owner = exp_info->owner; 527 spin_lock_init(&dmabuf->name_lock); 528 init_waitqueue_head(&dmabuf->poll); 529 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 530 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 531 532 if (!resv) { 533 resv = (struct dma_resv *)&dmabuf[1]; 534 dma_resv_init(resv); 535 } 536 dmabuf->resv = resv; 537 538 file = dma_buf_getfile(dmabuf, exp_info->flags); 539 if (IS_ERR(file)) { 540 ret = PTR_ERR(file); 541 goto err_dmabuf; 542 } 543 544 file->f_mode |= FMODE_LSEEK; 545 dmabuf->file = file; 546 547 ret = dma_buf_stats_setup(dmabuf); 548 if (ret) 549 goto err_sysfs; 550 551 mutex_init(&dmabuf->lock); 552 INIT_LIST_HEAD(&dmabuf->attachments); 553 554 mutex_lock(&db_list.lock); 555 list_add(&dmabuf->list_node, &db_list.head); 556 mutex_unlock(&db_list.lock); 557 558 return dmabuf; 559 560 err_sysfs: 561 /* 562 * Set file->f_path.dentry->d_fsdata to NULL so that when 563 * dma_buf_release() gets invoked by dentry_ops, it exits 564 * early before calling the release() dma_buf op. 565 */ 566 file->f_path.dentry->d_fsdata = NULL; 567 fput(file); 568 err_dmabuf: 569 kfree(dmabuf); 570 err_module: 571 module_put(exp_info->owner); 572 return ERR_PTR(ret); 573 } 574 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 575 576 /** 577 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 578 * @dmabuf: [in] pointer to dma_buf for which fd is required. 579 * @flags: [in] flags to give to fd 580 * 581 * On success, returns an associated 'fd'. Else, returns error. 582 */ 583 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 584 { 585 int fd; 586 587 if (!dmabuf || !dmabuf->file) 588 return -EINVAL; 589 590 fd = get_unused_fd_flags(flags); 591 if (fd < 0) 592 return fd; 593 594 fd_install(fd, dmabuf->file); 595 596 return fd; 597 } 598 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 599 600 /** 601 * dma_buf_get - returns the struct dma_buf related to an fd 602 * @fd: [in] fd associated with the struct dma_buf to be returned 603 * 604 * On success, returns the struct dma_buf associated with an fd; uses 605 * file's refcounting done by fget to increase refcount. returns ERR_PTR 606 * otherwise. 607 */ 608 struct dma_buf *dma_buf_get(int fd) 609 { 610 struct file *file; 611 612 file = fget(fd); 613 614 if (!file) 615 return ERR_PTR(-EBADF); 616 617 if (!is_dma_buf_file(file)) { 618 fput(file); 619 return ERR_PTR(-EINVAL); 620 } 621 622 return file->private_data; 623 } 624 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 625 626 /** 627 * dma_buf_put - decreases refcount of the buffer 628 * @dmabuf: [in] buffer to reduce refcount of 629 * 630 * Uses file's refcounting done implicitly by fput(). 631 * 632 * If, as a result of this call, the refcount becomes 0, the 'release' file 633 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 634 * in turn, and frees the memory allocated for dmabuf when exported. 635 */ 636 void dma_buf_put(struct dma_buf *dmabuf) 637 { 638 if (WARN_ON(!dmabuf || !dmabuf->file)) 639 return; 640 641 fput(dmabuf->file); 642 } 643 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 644 645 static void mangle_sg_table(struct sg_table *sg_table) 646 { 647 #ifdef CONFIG_DMABUF_DEBUG 648 int i; 649 struct scatterlist *sg; 650 651 /* To catch abuse of the underlying struct page by importers mix 652 * up the bits, but take care to preserve the low SG_ bits to 653 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 654 * before passing the sgt back to the exporter. */ 655 for_each_sgtable_sg(sg_table, sg, i) 656 sg->page_link ^= ~0xffUL; 657 #endif 658 659 } 660 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 661 enum dma_data_direction direction) 662 { 663 struct sg_table *sg_table; 664 signed long ret; 665 666 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 667 if (IS_ERR_OR_NULL(sg_table)) 668 return sg_table; 669 670 if (!dma_buf_attachment_is_dynamic(attach)) { 671 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 672 DMA_RESV_USAGE_KERNEL, true, 673 MAX_SCHEDULE_TIMEOUT); 674 if (ret < 0) { 675 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 676 direction); 677 return ERR_PTR(ret); 678 } 679 } 680 681 mangle_sg_table(sg_table); 682 return sg_table; 683 } 684 685 /** 686 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 687 * @dmabuf: [in] buffer to attach device to. 688 * @dev: [in] device to be attached. 689 * @importer_ops: [in] importer operations for the attachment 690 * @importer_priv: [in] importer private pointer for the attachment 691 * 692 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 693 * must be cleaned up by calling dma_buf_detach(). 694 * 695 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 696 * functionality. 697 * 698 * Returns: 699 * 700 * A pointer to newly created &dma_buf_attachment on success, or a negative 701 * error code wrapped into a pointer on failure. 702 * 703 * Note that this can fail if the backing storage of @dmabuf is in a place not 704 * accessible to @dev, and cannot be moved to a more suitable place. This is 705 * indicated with the error code -EBUSY. 706 */ 707 struct dma_buf_attachment * 708 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 709 const struct dma_buf_attach_ops *importer_ops, 710 void *importer_priv) 711 { 712 struct dma_buf_attachment *attach; 713 int ret; 714 715 if (WARN_ON(!dmabuf || !dev)) 716 return ERR_PTR(-EINVAL); 717 718 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 719 return ERR_PTR(-EINVAL); 720 721 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 722 if (!attach) 723 return ERR_PTR(-ENOMEM); 724 725 attach->dev = dev; 726 attach->dmabuf = dmabuf; 727 if (importer_ops) 728 attach->peer2peer = importer_ops->allow_peer2peer; 729 attach->importer_ops = importer_ops; 730 attach->importer_priv = importer_priv; 731 732 if (dmabuf->ops->attach) { 733 ret = dmabuf->ops->attach(dmabuf, attach); 734 if (ret) 735 goto err_attach; 736 } 737 dma_resv_lock(dmabuf->resv, NULL); 738 list_add(&attach->node, &dmabuf->attachments); 739 dma_resv_unlock(dmabuf->resv); 740 741 /* When either the importer or the exporter can't handle dynamic 742 * mappings we cache the mapping here to avoid issues with the 743 * reservation object lock. 744 */ 745 if (dma_buf_attachment_is_dynamic(attach) != 746 dma_buf_is_dynamic(dmabuf)) { 747 struct sg_table *sgt; 748 749 if (dma_buf_is_dynamic(attach->dmabuf)) { 750 dma_resv_lock(attach->dmabuf->resv, NULL); 751 ret = dmabuf->ops->pin(attach); 752 if (ret) 753 goto err_unlock; 754 } 755 756 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 757 if (!sgt) 758 sgt = ERR_PTR(-ENOMEM); 759 if (IS_ERR(sgt)) { 760 ret = PTR_ERR(sgt); 761 goto err_unpin; 762 } 763 if (dma_buf_is_dynamic(attach->dmabuf)) 764 dma_resv_unlock(attach->dmabuf->resv); 765 attach->sgt = sgt; 766 attach->dir = DMA_BIDIRECTIONAL; 767 } 768 769 return attach; 770 771 err_attach: 772 kfree(attach); 773 return ERR_PTR(ret); 774 775 err_unpin: 776 if (dma_buf_is_dynamic(attach->dmabuf)) 777 dmabuf->ops->unpin(attach); 778 779 err_unlock: 780 if (dma_buf_is_dynamic(attach->dmabuf)) 781 dma_resv_unlock(attach->dmabuf->resv); 782 783 dma_buf_detach(dmabuf, attach); 784 return ERR_PTR(ret); 785 } 786 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 787 788 /** 789 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 790 * @dmabuf: [in] buffer to attach device to. 791 * @dev: [in] device to be attached. 792 * 793 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 794 * mapping. 795 */ 796 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 797 struct device *dev) 798 { 799 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 800 } 801 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 802 803 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 804 struct sg_table *sg_table, 805 enum dma_data_direction direction) 806 { 807 /* uses XOR, hence this unmangles */ 808 mangle_sg_table(sg_table); 809 810 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 811 } 812 813 /** 814 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 815 * @dmabuf: [in] buffer to detach from. 816 * @attach: [in] attachment to be detached; is free'd after this call. 817 * 818 * Clean up a device attachment obtained by calling dma_buf_attach(). 819 * 820 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 821 */ 822 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 823 { 824 if (WARN_ON(!dmabuf || !attach)) 825 return; 826 827 if (attach->sgt) { 828 if (dma_buf_is_dynamic(attach->dmabuf)) 829 dma_resv_lock(attach->dmabuf->resv, NULL); 830 831 __unmap_dma_buf(attach, attach->sgt, attach->dir); 832 833 if (dma_buf_is_dynamic(attach->dmabuf)) { 834 dmabuf->ops->unpin(attach); 835 dma_resv_unlock(attach->dmabuf->resv); 836 } 837 } 838 839 dma_resv_lock(dmabuf->resv, NULL); 840 list_del(&attach->node); 841 dma_resv_unlock(dmabuf->resv); 842 if (dmabuf->ops->detach) 843 dmabuf->ops->detach(dmabuf, attach); 844 845 kfree(attach); 846 } 847 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 848 849 /** 850 * dma_buf_pin - Lock down the DMA-buf 851 * @attach: [in] attachment which should be pinned 852 * 853 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 854 * call this, and only for limited use cases like scanout and not for temporary 855 * pin operations. It is not permitted to allow userspace to pin arbitrary 856 * amounts of buffers through this interface. 857 * 858 * Buffers must be unpinned by calling dma_buf_unpin(). 859 * 860 * Returns: 861 * 0 on success, negative error code on failure. 862 */ 863 int dma_buf_pin(struct dma_buf_attachment *attach) 864 { 865 struct dma_buf *dmabuf = attach->dmabuf; 866 int ret = 0; 867 868 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 869 870 dma_resv_assert_held(dmabuf->resv); 871 872 if (dmabuf->ops->pin) 873 ret = dmabuf->ops->pin(attach); 874 875 return ret; 876 } 877 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 878 879 /** 880 * dma_buf_unpin - Unpin a DMA-buf 881 * @attach: [in] attachment which should be unpinned 882 * 883 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 884 * any mapping of @attach again and inform the importer through 885 * &dma_buf_attach_ops.move_notify. 886 */ 887 void dma_buf_unpin(struct dma_buf_attachment *attach) 888 { 889 struct dma_buf *dmabuf = attach->dmabuf; 890 891 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 892 893 dma_resv_assert_held(dmabuf->resv); 894 895 if (dmabuf->ops->unpin) 896 dmabuf->ops->unpin(attach); 897 } 898 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 899 900 /** 901 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 902 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 903 * dma_buf_ops. 904 * @attach: [in] attachment whose scatterlist is to be returned 905 * @direction: [in] direction of DMA transfer 906 * 907 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 908 * on error. May return -EINTR if it is interrupted by a signal. 909 * 910 * On success, the DMA addresses and lengths in the returned scatterlist are 911 * PAGE_SIZE aligned. 912 * 913 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 914 * the underlying backing storage is pinned for as long as a mapping exists, 915 * therefore users/importers should not hold onto a mapping for undue amounts of 916 * time. 917 * 918 * Important: Dynamic importers must wait for the exclusive fence of the struct 919 * dma_resv attached to the DMA-BUF first. 920 */ 921 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 922 enum dma_data_direction direction) 923 { 924 struct sg_table *sg_table; 925 int r; 926 927 might_sleep(); 928 929 if (WARN_ON(!attach || !attach->dmabuf)) 930 return ERR_PTR(-EINVAL); 931 932 if (dma_buf_attachment_is_dynamic(attach)) 933 dma_resv_assert_held(attach->dmabuf->resv); 934 935 if (attach->sgt) { 936 /* 937 * Two mappings with different directions for the same 938 * attachment are not allowed. 939 */ 940 if (attach->dir != direction && 941 attach->dir != DMA_BIDIRECTIONAL) 942 return ERR_PTR(-EBUSY); 943 944 return attach->sgt; 945 } 946 947 if (dma_buf_is_dynamic(attach->dmabuf)) { 948 dma_resv_assert_held(attach->dmabuf->resv); 949 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 950 r = attach->dmabuf->ops->pin(attach); 951 if (r) 952 return ERR_PTR(r); 953 } 954 } 955 956 sg_table = __map_dma_buf(attach, direction); 957 if (!sg_table) 958 sg_table = ERR_PTR(-ENOMEM); 959 960 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 961 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 962 attach->dmabuf->ops->unpin(attach); 963 964 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 965 attach->sgt = sg_table; 966 attach->dir = direction; 967 } 968 969 #ifdef CONFIG_DMA_API_DEBUG 970 if (!IS_ERR(sg_table)) { 971 struct scatterlist *sg; 972 u64 addr; 973 int len; 974 int i; 975 976 for_each_sgtable_dma_sg(sg_table, sg, i) { 977 addr = sg_dma_address(sg); 978 len = sg_dma_len(sg); 979 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 980 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 981 __func__, addr, len); 982 } 983 } 984 } 985 #endif /* CONFIG_DMA_API_DEBUG */ 986 return sg_table; 987 } 988 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 989 990 /** 991 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 992 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 993 * dma_buf_ops. 994 * @attach: [in] attachment to unmap buffer from 995 * @sg_table: [in] scatterlist info of the buffer to unmap 996 * @direction: [in] direction of DMA transfer 997 * 998 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 999 */ 1000 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1001 struct sg_table *sg_table, 1002 enum dma_data_direction direction) 1003 { 1004 might_sleep(); 1005 1006 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1007 return; 1008 1009 if (dma_buf_attachment_is_dynamic(attach)) 1010 dma_resv_assert_held(attach->dmabuf->resv); 1011 1012 if (attach->sgt == sg_table) 1013 return; 1014 1015 if (dma_buf_is_dynamic(attach->dmabuf)) 1016 dma_resv_assert_held(attach->dmabuf->resv); 1017 1018 __unmap_dma_buf(attach, sg_table, direction); 1019 1020 if (dma_buf_is_dynamic(attach->dmabuf) && 1021 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1022 dma_buf_unpin(attach); 1023 } 1024 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1025 1026 /** 1027 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1028 * 1029 * @dmabuf: [in] buffer which is moving 1030 * 1031 * Informs all attachmenst that they need to destroy and recreated all their 1032 * mappings. 1033 */ 1034 void dma_buf_move_notify(struct dma_buf *dmabuf) 1035 { 1036 struct dma_buf_attachment *attach; 1037 1038 dma_resv_assert_held(dmabuf->resv); 1039 1040 list_for_each_entry(attach, &dmabuf->attachments, node) 1041 if (attach->importer_ops) 1042 attach->importer_ops->move_notify(attach); 1043 } 1044 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1045 1046 /** 1047 * DOC: cpu access 1048 * 1049 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1050 * 1051 * - Fallback operations in the kernel, for example when a device is connected 1052 * over USB and the kernel needs to shuffle the data around first before 1053 * sending it away. Cache coherency is handled by braketing any transactions 1054 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1055 * access. 1056 * 1057 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1058 * vmap interface is introduced. Note that on very old 32-bit architectures 1059 * vmalloc space might be limited and result in vmap calls failing. 1060 * 1061 * Interfaces:: 1062 * 1063 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1064 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1065 * 1066 * The vmap call can fail if there is no vmap support in the exporter, or if 1067 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1068 * count for all vmap access and calls down into the exporter's vmap function 1069 * only when no vmapping exists, and only unmaps it once. Protection against 1070 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1071 * 1072 * - For full compatibility on the importer side with existing userspace 1073 * interfaces, which might already support mmap'ing buffers. This is needed in 1074 * many processing pipelines (e.g. feeding a software rendered image into a 1075 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1076 * framework already supported this and for DMA buffer file descriptors to 1077 * replace ION buffers mmap support was needed. 1078 * 1079 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1080 * fd. But like for CPU access there's a need to braket the actual access, 1081 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1082 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1083 * be restarted. 1084 * 1085 * Some systems might need some sort of cache coherency management e.g. when 1086 * CPU and GPU domains are being accessed through dma-buf at the same time. 1087 * To circumvent this problem there are begin/end coherency markers, that 1088 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1089 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1090 * sequence would be used like following: 1091 * 1092 * - mmap dma-buf fd 1093 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1094 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1095 * want (with the new data being consumed by say the GPU or the scanout 1096 * device) 1097 * - munmap once you don't need the buffer any more 1098 * 1099 * For correctness and optimal performance, it is always required to use 1100 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1101 * mapped address. Userspace cannot rely on coherent access, even when there 1102 * are systems where it just works without calling these ioctls. 1103 * 1104 * - And as a CPU fallback in userspace processing pipelines. 1105 * 1106 * Similar to the motivation for kernel cpu access it is again important that 1107 * the userspace code of a given importing subsystem can use the same 1108 * interfaces with a imported dma-buf buffer object as with a native buffer 1109 * object. This is especially important for drm where the userspace part of 1110 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1111 * use a different way to mmap a buffer rather invasive. 1112 * 1113 * The assumption in the current dma-buf interfaces is that redirecting the 1114 * initial mmap is all that's needed. A survey of some of the existing 1115 * subsystems shows that no driver seems to do any nefarious thing like 1116 * syncing up with outstanding asynchronous processing on the device or 1117 * allocating special resources at fault time. So hopefully this is good 1118 * enough, since adding interfaces to intercept pagefaults and allow pte 1119 * shootdowns would increase the complexity quite a bit. 1120 * 1121 * Interface:: 1122 * 1123 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1124 * unsigned long); 1125 * 1126 * If the importing subsystem simply provides a special-purpose mmap call to 1127 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1128 * equally achieve that for a dma-buf object. 1129 */ 1130 1131 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1132 enum dma_data_direction direction) 1133 { 1134 bool write = (direction == DMA_BIDIRECTIONAL || 1135 direction == DMA_TO_DEVICE); 1136 struct dma_resv *resv = dmabuf->resv; 1137 long ret; 1138 1139 /* Wait on any implicit rendering fences */ 1140 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1141 true, MAX_SCHEDULE_TIMEOUT); 1142 if (ret < 0) 1143 return ret; 1144 1145 return 0; 1146 } 1147 1148 /** 1149 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1150 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1151 * preparations. Coherency is only guaranteed in the specified range for the 1152 * specified access direction. 1153 * @dmabuf: [in] buffer to prepare cpu access for. 1154 * @direction: [in] length of range for cpu access. 1155 * 1156 * After the cpu access is complete the caller should call 1157 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1158 * it guaranteed to be coherent with other DMA access. 1159 * 1160 * This function will also wait for any DMA transactions tracked through 1161 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1162 * synchronization this function will only ensure cache coherency, callers must 1163 * ensure synchronization with such DMA transactions on their own. 1164 * 1165 * Can return negative error values, returns 0 on success. 1166 */ 1167 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1168 enum dma_data_direction direction) 1169 { 1170 int ret = 0; 1171 1172 if (WARN_ON(!dmabuf)) 1173 return -EINVAL; 1174 1175 might_lock(&dmabuf->resv->lock.base); 1176 1177 if (dmabuf->ops->begin_cpu_access) 1178 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1179 1180 /* Ensure that all fences are waited upon - but we first allow 1181 * the native handler the chance to do so more efficiently if it 1182 * chooses. A double invocation here will be reasonably cheap no-op. 1183 */ 1184 if (ret == 0) 1185 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1186 1187 return ret; 1188 } 1189 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1190 1191 /** 1192 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1193 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1194 * actions. Coherency is only guaranteed in the specified range for the 1195 * specified access direction. 1196 * @dmabuf: [in] buffer to complete cpu access for. 1197 * @direction: [in] length of range for cpu access. 1198 * 1199 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1200 * 1201 * Can return negative error values, returns 0 on success. 1202 */ 1203 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1204 enum dma_data_direction direction) 1205 { 1206 int ret = 0; 1207 1208 WARN_ON(!dmabuf); 1209 1210 might_lock(&dmabuf->resv->lock.base); 1211 1212 if (dmabuf->ops->end_cpu_access) 1213 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1214 1215 return ret; 1216 } 1217 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1218 1219 1220 /** 1221 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1222 * @dmabuf: [in] buffer that should back the vma 1223 * @vma: [in] vma for the mmap 1224 * @pgoff: [in] offset in pages where this mmap should start within the 1225 * dma-buf buffer. 1226 * 1227 * This function adjusts the passed in vma so that it points at the file of the 1228 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1229 * checking on the size of the vma. Then it calls the exporters mmap function to 1230 * set up the mapping. 1231 * 1232 * Can return negative error values, returns 0 on success. 1233 */ 1234 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1235 unsigned long pgoff) 1236 { 1237 if (WARN_ON(!dmabuf || !vma)) 1238 return -EINVAL; 1239 1240 /* check if buffer supports mmap */ 1241 if (!dmabuf->ops->mmap) 1242 return -EINVAL; 1243 1244 /* check for offset overflow */ 1245 if (pgoff + vma_pages(vma) < pgoff) 1246 return -EOVERFLOW; 1247 1248 /* check for overflowing the buffer's size */ 1249 if (pgoff + vma_pages(vma) > 1250 dmabuf->size >> PAGE_SHIFT) 1251 return -EINVAL; 1252 1253 /* readjust the vma */ 1254 vma_set_file(vma, dmabuf->file); 1255 vma->vm_pgoff = pgoff; 1256 1257 return dmabuf->ops->mmap(dmabuf, vma); 1258 } 1259 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1260 1261 /** 1262 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1263 * address space. Same restrictions as for vmap and friends apply. 1264 * @dmabuf: [in] buffer to vmap 1265 * @map: [out] returns the vmap pointer 1266 * 1267 * This call may fail due to lack of virtual mapping address space. 1268 * These calls are optional in drivers. The intended use for them 1269 * is for mapping objects linear in kernel space for high use objects. 1270 * 1271 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1272 * dma_buf_end_cpu_access() around any cpu access performed through this 1273 * mapping. 1274 * 1275 * Returns 0 on success, or a negative errno code otherwise. 1276 */ 1277 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1278 { 1279 struct iosys_map ptr; 1280 int ret = 0; 1281 1282 iosys_map_clear(map); 1283 1284 if (WARN_ON(!dmabuf)) 1285 return -EINVAL; 1286 1287 if (!dmabuf->ops->vmap) 1288 return -EINVAL; 1289 1290 mutex_lock(&dmabuf->lock); 1291 if (dmabuf->vmapping_counter) { 1292 dmabuf->vmapping_counter++; 1293 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1294 *map = dmabuf->vmap_ptr; 1295 goto out_unlock; 1296 } 1297 1298 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1299 1300 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1301 if (WARN_ON_ONCE(ret)) 1302 goto out_unlock; 1303 1304 dmabuf->vmap_ptr = ptr; 1305 dmabuf->vmapping_counter = 1; 1306 1307 *map = dmabuf->vmap_ptr; 1308 1309 out_unlock: 1310 mutex_unlock(&dmabuf->lock); 1311 return ret; 1312 } 1313 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1314 1315 /** 1316 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1317 * @dmabuf: [in] buffer to vunmap 1318 * @map: [in] vmap pointer to vunmap 1319 */ 1320 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1321 { 1322 if (WARN_ON(!dmabuf)) 1323 return; 1324 1325 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1326 BUG_ON(dmabuf->vmapping_counter == 0); 1327 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1328 1329 mutex_lock(&dmabuf->lock); 1330 if (--dmabuf->vmapping_counter == 0) { 1331 if (dmabuf->ops->vunmap) 1332 dmabuf->ops->vunmap(dmabuf, map); 1333 iosys_map_clear(&dmabuf->vmap_ptr); 1334 } 1335 mutex_unlock(&dmabuf->lock); 1336 } 1337 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1338 1339 #ifdef CONFIG_DEBUG_FS 1340 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1341 { 1342 struct dma_buf *buf_obj; 1343 struct dma_buf_attachment *attach_obj; 1344 int count = 0, attach_count; 1345 size_t size = 0; 1346 int ret; 1347 1348 ret = mutex_lock_interruptible(&db_list.lock); 1349 1350 if (ret) 1351 return ret; 1352 1353 seq_puts(s, "\nDma-buf Objects:\n"); 1354 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1355 "size", "flags", "mode", "count", "ino"); 1356 1357 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1358 1359 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1360 if (ret) 1361 goto error_unlock; 1362 1363 1364 spin_lock(&buf_obj->name_lock); 1365 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1366 buf_obj->size, 1367 buf_obj->file->f_flags, buf_obj->file->f_mode, 1368 file_count(buf_obj->file), 1369 buf_obj->exp_name, 1370 file_inode(buf_obj->file)->i_ino, 1371 buf_obj->name ?: "<none>"); 1372 spin_unlock(&buf_obj->name_lock); 1373 1374 dma_resv_describe(buf_obj->resv, s); 1375 1376 seq_puts(s, "\tAttached Devices:\n"); 1377 attach_count = 0; 1378 1379 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1380 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1381 attach_count++; 1382 } 1383 dma_resv_unlock(buf_obj->resv); 1384 1385 seq_printf(s, "Total %d devices attached\n\n", 1386 attach_count); 1387 1388 count++; 1389 size += buf_obj->size; 1390 } 1391 1392 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1393 1394 mutex_unlock(&db_list.lock); 1395 return 0; 1396 1397 error_unlock: 1398 mutex_unlock(&db_list.lock); 1399 return ret; 1400 } 1401 1402 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1403 1404 static struct dentry *dma_buf_debugfs_dir; 1405 1406 static int dma_buf_init_debugfs(void) 1407 { 1408 struct dentry *d; 1409 int err = 0; 1410 1411 d = debugfs_create_dir("dma_buf", NULL); 1412 if (IS_ERR(d)) 1413 return PTR_ERR(d); 1414 1415 dma_buf_debugfs_dir = d; 1416 1417 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1418 NULL, &dma_buf_debug_fops); 1419 if (IS_ERR(d)) { 1420 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1421 debugfs_remove_recursive(dma_buf_debugfs_dir); 1422 dma_buf_debugfs_dir = NULL; 1423 err = PTR_ERR(d); 1424 } 1425 1426 return err; 1427 } 1428 1429 static void dma_buf_uninit_debugfs(void) 1430 { 1431 debugfs_remove_recursive(dma_buf_debugfs_dir); 1432 } 1433 #else 1434 static inline int dma_buf_init_debugfs(void) 1435 { 1436 return 0; 1437 } 1438 static inline void dma_buf_uninit_debugfs(void) 1439 { 1440 } 1441 #endif 1442 1443 static int __init dma_buf_init(void) 1444 { 1445 int ret; 1446 1447 ret = dma_buf_init_sysfs_statistics(); 1448 if (ret) 1449 return ret; 1450 1451 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1452 if (IS_ERR(dma_buf_mnt)) 1453 return PTR_ERR(dma_buf_mnt); 1454 1455 mutex_init(&db_list.lock); 1456 INIT_LIST_HEAD(&db_list.head); 1457 dma_buf_init_debugfs(); 1458 return 0; 1459 } 1460 subsys_initcall(dma_buf_init); 1461 1462 static void __exit dma_buf_deinit(void) 1463 { 1464 dma_buf_uninit_debugfs(); 1465 kern_unmount(dma_buf_mnt); 1466 dma_buf_uninit_sysfs_statistics(); 1467 } 1468 __exitcall(dma_buf_deinit); 1469