xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 71501859)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 #include "dma-buf-sysfs-stats.h"
33 
34 static inline int is_dma_buf_file(struct file *);
35 
36 struct dma_buf_list {
37 	struct list_head head;
38 	struct mutex lock;
39 };
40 
41 static struct dma_buf_list db_list;
42 
43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 	struct dma_buf *dmabuf;
46 	char name[DMA_BUF_NAME_LEN];
47 	size_t ret = 0;
48 
49 	dmabuf = dentry->d_fsdata;
50 	spin_lock(&dmabuf->name_lock);
51 	if (dmabuf->name)
52 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 	spin_unlock(&dmabuf->name_lock);
54 
55 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 			     dentry->d_name.name, ret > 0 ? name : "");
57 }
58 
59 static void dma_buf_release(struct dentry *dentry)
60 {
61 	struct dma_buf *dmabuf;
62 
63 	dmabuf = dentry->d_fsdata;
64 	if (unlikely(!dmabuf))
65 		return;
66 
67 	BUG_ON(dmabuf->vmapping_counter);
68 
69 	/*
70 	 * Any fences that a dma-buf poll can wait on should be signaled
71 	 * before releasing dma-buf. This is the responsibility of each
72 	 * driver that uses the reservation objects.
73 	 *
74 	 * If you hit this BUG() it means someone dropped their ref to the
75 	 * dma-buf while still having pending operation to the buffer.
76 	 */
77 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
78 
79 	dmabuf->ops->release(dmabuf);
80 
81 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 		dma_resv_fini(dmabuf->resv);
83 
84 	dma_buf_stats_teardown(dmabuf);
85 	module_put(dmabuf->owner);
86 	kfree(dmabuf->name);
87 	kfree(dmabuf);
88 }
89 
90 static int dma_buf_file_release(struct inode *inode, struct file *file)
91 {
92 	struct dma_buf *dmabuf;
93 
94 	if (!is_dma_buf_file(file))
95 		return -EINVAL;
96 
97 	dmabuf = file->private_data;
98 
99 	mutex_lock(&db_list.lock);
100 	list_del(&dmabuf->list_node);
101 	mutex_unlock(&db_list.lock);
102 
103 	return 0;
104 }
105 
106 static const struct dentry_operations dma_buf_dentry_ops = {
107 	.d_dname = dmabuffs_dname,
108 	.d_release = dma_buf_release,
109 };
110 
111 static struct vfsmount *dma_buf_mnt;
112 
113 static int dma_buf_fs_init_context(struct fs_context *fc)
114 {
115 	struct pseudo_fs_context *ctx;
116 
117 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
118 	if (!ctx)
119 		return -ENOMEM;
120 	ctx->dops = &dma_buf_dentry_ops;
121 	return 0;
122 }
123 
124 static struct file_system_type dma_buf_fs_type = {
125 	.name = "dmabuf",
126 	.init_fs_context = dma_buf_fs_init_context,
127 	.kill_sb = kill_anon_super,
128 };
129 
130 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
131 {
132 	struct dma_buf *dmabuf;
133 
134 	if (!is_dma_buf_file(file))
135 		return -EINVAL;
136 
137 	dmabuf = file->private_data;
138 
139 	/* check if buffer supports mmap */
140 	if (!dmabuf->ops->mmap)
141 		return -EINVAL;
142 
143 	/* check for overflowing the buffer's size */
144 	if (vma->vm_pgoff + vma_pages(vma) >
145 	    dmabuf->size >> PAGE_SHIFT)
146 		return -EINVAL;
147 
148 	return dmabuf->ops->mmap(dmabuf, vma);
149 }
150 
151 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
152 {
153 	struct dma_buf *dmabuf;
154 	loff_t base;
155 
156 	if (!is_dma_buf_file(file))
157 		return -EBADF;
158 
159 	dmabuf = file->private_data;
160 
161 	/* only support discovering the end of the buffer,
162 	   but also allow SEEK_SET to maintain the idiomatic
163 	   SEEK_END(0), SEEK_CUR(0) pattern */
164 	if (whence == SEEK_END)
165 		base = dmabuf->size;
166 	else if (whence == SEEK_SET)
167 		base = 0;
168 	else
169 		return -EINVAL;
170 
171 	if (offset != 0)
172 		return -EINVAL;
173 
174 	return base + offset;
175 }
176 
177 /**
178  * DOC: implicit fence polling
179  *
180  * To support cross-device and cross-driver synchronization of buffer access
181  * implicit fences (represented internally in the kernel with &struct dma_fence)
182  * can be attached to a &dma_buf. The glue for that and a few related things are
183  * provided in the &dma_resv structure.
184  *
185  * Userspace can query the state of these implicitly tracked fences using poll()
186  * and related system calls:
187  *
188  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
189  *   most recent write or exclusive fence.
190  *
191  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
192  *   all attached fences, shared and exclusive ones.
193  *
194  * Note that this only signals the completion of the respective fences, i.e. the
195  * DMA transfers are complete. Cache flushing and any other necessary
196  * preparations before CPU access can begin still need to happen.
197  */
198 
199 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
200 {
201 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
202 	unsigned long flags;
203 
204 	spin_lock_irqsave(&dcb->poll->lock, flags);
205 	wake_up_locked_poll(dcb->poll, dcb->active);
206 	dcb->active = 0;
207 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
208 }
209 
210 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
211 {
212 	struct dma_buf *dmabuf;
213 	struct dma_resv *resv;
214 	struct dma_resv_list *fobj;
215 	struct dma_fence *fence_excl;
216 	__poll_t events;
217 	unsigned shared_count, seq;
218 
219 	dmabuf = file->private_data;
220 	if (!dmabuf || !dmabuf->resv)
221 		return EPOLLERR;
222 
223 	resv = dmabuf->resv;
224 
225 	poll_wait(file, &dmabuf->poll, poll);
226 
227 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
228 	if (!events)
229 		return 0;
230 
231 retry:
232 	seq = read_seqcount_begin(&resv->seq);
233 	rcu_read_lock();
234 
235 	fobj = rcu_dereference(resv->fence);
236 	if (fobj)
237 		shared_count = fobj->shared_count;
238 	else
239 		shared_count = 0;
240 	fence_excl = dma_resv_excl_fence(resv);
241 	if (read_seqcount_retry(&resv->seq, seq)) {
242 		rcu_read_unlock();
243 		goto retry;
244 	}
245 
246 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
247 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
248 		__poll_t pevents = EPOLLIN;
249 
250 		if (shared_count == 0)
251 			pevents |= EPOLLOUT;
252 
253 		spin_lock_irq(&dmabuf->poll.lock);
254 		if (dcb->active) {
255 			dcb->active |= pevents;
256 			events &= ~pevents;
257 		} else
258 			dcb->active = pevents;
259 		spin_unlock_irq(&dmabuf->poll.lock);
260 
261 		if (events & pevents) {
262 			if (!dma_fence_get_rcu(fence_excl)) {
263 				/* force a recheck */
264 				events &= ~pevents;
265 				dma_buf_poll_cb(NULL, &dcb->cb);
266 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
267 							   dma_buf_poll_cb)) {
268 				events &= ~pevents;
269 				dma_fence_put(fence_excl);
270 			} else {
271 				/*
272 				 * No callback queued, wake up any additional
273 				 * waiters.
274 				 */
275 				dma_fence_put(fence_excl);
276 				dma_buf_poll_cb(NULL, &dcb->cb);
277 			}
278 		}
279 	}
280 
281 	if ((events & EPOLLOUT) && shared_count > 0) {
282 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
283 		int i;
284 
285 		/* Only queue a new callback if no event has fired yet */
286 		spin_lock_irq(&dmabuf->poll.lock);
287 		if (dcb->active)
288 			events &= ~EPOLLOUT;
289 		else
290 			dcb->active = EPOLLOUT;
291 		spin_unlock_irq(&dmabuf->poll.lock);
292 
293 		if (!(events & EPOLLOUT))
294 			goto out;
295 
296 		for (i = 0; i < shared_count; ++i) {
297 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
298 
299 			if (!dma_fence_get_rcu(fence)) {
300 				/*
301 				 * fence refcount dropped to zero, this means
302 				 * that fobj has been freed
303 				 *
304 				 * call dma_buf_poll_cb and force a recheck!
305 				 */
306 				events &= ~EPOLLOUT;
307 				dma_buf_poll_cb(NULL, &dcb->cb);
308 				break;
309 			}
310 			if (!dma_fence_add_callback(fence, &dcb->cb,
311 						    dma_buf_poll_cb)) {
312 				dma_fence_put(fence);
313 				events &= ~EPOLLOUT;
314 				break;
315 			}
316 			dma_fence_put(fence);
317 		}
318 
319 		/* No callback queued, wake up any additional waiters. */
320 		if (i == shared_count)
321 			dma_buf_poll_cb(NULL, &dcb->cb);
322 	}
323 
324 out:
325 	rcu_read_unlock();
326 	return events;
327 }
328 
329 /**
330  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
331  * The name of the dma-buf buffer can only be set when the dma-buf is not
332  * attached to any devices. It could theoritically support changing the
333  * name of the dma-buf if the same piece of memory is used for multiple
334  * purpose between different devices.
335  *
336  * @dmabuf: [in]     dmabuf buffer that will be renamed.
337  * @buf:    [in]     A piece of userspace memory that contains the name of
338  *                   the dma-buf.
339  *
340  * Returns 0 on success. If the dma-buf buffer is already attached to
341  * devices, return -EBUSY.
342  *
343  */
344 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
345 {
346 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
347 	long ret = 0;
348 
349 	if (IS_ERR(name))
350 		return PTR_ERR(name);
351 
352 	dma_resv_lock(dmabuf->resv, NULL);
353 	if (!list_empty(&dmabuf->attachments)) {
354 		ret = -EBUSY;
355 		kfree(name);
356 		goto out_unlock;
357 	}
358 	spin_lock(&dmabuf->name_lock);
359 	kfree(dmabuf->name);
360 	dmabuf->name = name;
361 	spin_unlock(&dmabuf->name_lock);
362 
363 out_unlock:
364 	dma_resv_unlock(dmabuf->resv);
365 	return ret;
366 }
367 
368 static long dma_buf_ioctl(struct file *file,
369 			  unsigned int cmd, unsigned long arg)
370 {
371 	struct dma_buf *dmabuf;
372 	struct dma_buf_sync sync;
373 	enum dma_data_direction direction;
374 	int ret;
375 
376 	dmabuf = file->private_data;
377 
378 	switch (cmd) {
379 	case DMA_BUF_IOCTL_SYNC:
380 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
381 			return -EFAULT;
382 
383 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
384 			return -EINVAL;
385 
386 		switch (sync.flags & DMA_BUF_SYNC_RW) {
387 		case DMA_BUF_SYNC_READ:
388 			direction = DMA_FROM_DEVICE;
389 			break;
390 		case DMA_BUF_SYNC_WRITE:
391 			direction = DMA_TO_DEVICE;
392 			break;
393 		case DMA_BUF_SYNC_RW:
394 			direction = DMA_BIDIRECTIONAL;
395 			break;
396 		default:
397 			return -EINVAL;
398 		}
399 
400 		if (sync.flags & DMA_BUF_SYNC_END)
401 			ret = dma_buf_end_cpu_access(dmabuf, direction);
402 		else
403 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
404 
405 		return ret;
406 
407 	case DMA_BUF_SET_NAME_A:
408 	case DMA_BUF_SET_NAME_B:
409 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
410 
411 	default:
412 		return -ENOTTY;
413 	}
414 }
415 
416 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
417 {
418 	struct dma_buf *dmabuf = file->private_data;
419 
420 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
421 	/* Don't count the temporary reference taken inside procfs seq_show */
422 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
423 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
424 	spin_lock(&dmabuf->name_lock);
425 	if (dmabuf->name)
426 		seq_printf(m, "name:\t%s\n", dmabuf->name);
427 	spin_unlock(&dmabuf->name_lock);
428 }
429 
430 static const struct file_operations dma_buf_fops = {
431 	.release	= dma_buf_file_release,
432 	.mmap		= dma_buf_mmap_internal,
433 	.llseek		= dma_buf_llseek,
434 	.poll		= dma_buf_poll,
435 	.unlocked_ioctl	= dma_buf_ioctl,
436 	.compat_ioctl	= compat_ptr_ioctl,
437 	.show_fdinfo	= dma_buf_show_fdinfo,
438 };
439 
440 /*
441  * is_dma_buf_file - Check if struct file* is associated with dma_buf
442  */
443 static inline int is_dma_buf_file(struct file *file)
444 {
445 	return file->f_op == &dma_buf_fops;
446 }
447 
448 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
449 {
450 	struct file *file;
451 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
452 
453 	if (IS_ERR(inode))
454 		return ERR_CAST(inode);
455 
456 	inode->i_size = dmabuf->size;
457 	inode_set_bytes(inode, dmabuf->size);
458 
459 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
460 				 flags, &dma_buf_fops);
461 	if (IS_ERR(file))
462 		goto err_alloc_file;
463 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
464 	file->private_data = dmabuf;
465 	file->f_path.dentry->d_fsdata = dmabuf;
466 
467 	return file;
468 
469 err_alloc_file:
470 	iput(inode);
471 	return file;
472 }
473 
474 /**
475  * DOC: dma buf device access
476  *
477  * For device DMA access to a shared DMA buffer the usual sequence of operations
478  * is fairly simple:
479  *
480  * 1. The exporter defines his exporter instance using
481  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
482  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
483  *    as a file descriptor by calling dma_buf_fd().
484  *
485  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
486  *    to share with: First the filedescriptor is converted to a &dma_buf using
487  *    dma_buf_get(). Then the buffer is attached to the device using
488  *    dma_buf_attach().
489  *
490  *    Up to this stage the exporter is still free to migrate or reallocate the
491  *    backing storage.
492  *
493  * 3. Once the buffer is attached to all devices userspace can initiate DMA
494  *    access to the shared buffer. In the kernel this is done by calling
495  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
496  *
497  * 4. Once a driver is done with a shared buffer it needs to call
498  *    dma_buf_detach() (after cleaning up any mappings) and then release the
499  *    reference acquired with dma_buf_get() by calling dma_buf_put().
500  *
501  * For the detailed semantics exporters are expected to implement see
502  * &dma_buf_ops.
503  */
504 
505 /**
506  * dma_buf_export - Creates a new dma_buf, and associates an anon file
507  * with this buffer, so it can be exported.
508  * Also connect the allocator specific data and ops to the buffer.
509  * Additionally, provide a name string for exporter; useful in debugging.
510  *
511  * @exp_info:	[in]	holds all the export related information provided
512  *			by the exporter. see &struct dma_buf_export_info
513  *			for further details.
514  *
515  * Returns, on success, a newly created struct dma_buf object, which wraps the
516  * supplied private data and operations for struct dma_buf_ops. On either
517  * missing ops, or error in allocating struct dma_buf, will return negative
518  * error.
519  *
520  * For most cases the easiest way to create @exp_info is through the
521  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
522  */
523 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
524 {
525 	struct dma_buf *dmabuf;
526 	struct dma_resv *resv = exp_info->resv;
527 	struct file *file;
528 	size_t alloc_size = sizeof(struct dma_buf);
529 	int ret;
530 
531 	if (!exp_info->resv)
532 		alloc_size += sizeof(struct dma_resv);
533 	else
534 		/* prevent &dma_buf[1] == dma_buf->resv */
535 		alloc_size += 1;
536 
537 	if (WARN_ON(!exp_info->priv
538 			  || !exp_info->ops
539 			  || !exp_info->ops->map_dma_buf
540 			  || !exp_info->ops->unmap_dma_buf
541 			  || !exp_info->ops->release)) {
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
546 		    (exp_info->ops->pin || exp_info->ops->unpin)))
547 		return ERR_PTR(-EINVAL);
548 
549 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
550 		return ERR_PTR(-EINVAL);
551 
552 	if (!try_module_get(exp_info->owner))
553 		return ERR_PTR(-ENOENT);
554 
555 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
556 	if (!dmabuf) {
557 		ret = -ENOMEM;
558 		goto err_module;
559 	}
560 
561 	dmabuf->priv = exp_info->priv;
562 	dmabuf->ops = exp_info->ops;
563 	dmabuf->size = exp_info->size;
564 	dmabuf->exp_name = exp_info->exp_name;
565 	dmabuf->owner = exp_info->owner;
566 	spin_lock_init(&dmabuf->name_lock);
567 	init_waitqueue_head(&dmabuf->poll);
568 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
569 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
570 
571 	if (!resv) {
572 		resv = (struct dma_resv *)&dmabuf[1];
573 		dma_resv_init(resv);
574 	}
575 	dmabuf->resv = resv;
576 
577 	file = dma_buf_getfile(dmabuf, exp_info->flags);
578 	if (IS_ERR(file)) {
579 		ret = PTR_ERR(file);
580 		goto err_dmabuf;
581 	}
582 
583 	file->f_mode |= FMODE_LSEEK;
584 	dmabuf->file = file;
585 
586 	ret = dma_buf_stats_setup(dmabuf);
587 	if (ret)
588 		goto err_sysfs;
589 
590 	mutex_init(&dmabuf->lock);
591 	INIT_LIST_HEAD(&dmabuf->attachments);
592 
593 	mutex_lock(&db_list.lock);
594 	list_add(&dmabuf->list_node, &db_list.head);
595 	mutex_unlock(&db_list.lock);
596 
597 	return dmabuf;
598 
599 err_sysfs:
600 	/*
601 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
602 	 * dma_buf_release() gets invoked by dentry_ops, it exits
603 	 * early before calling the release() dma_buf op.
604 	 */
605 	file->f_path.dentry->d_fsdata = NULL;
606 	fput(file);
607 err_dmabuf:
608 	kfree(dmabuf);
609 err_module:
610 	module_put(exp_info->owner);
611 	return ERR_PTR(ret);
612 }
613 EXPORT_SYMBOL_GPL(dma_buf_export);
614 
615 /**
616  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
617  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
618  * @flags:      [in]    flags to give to fd
619  *
620  * On success, returns an associated 'fd'. Else, returns error.
621  */
622 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
623 {
624 	int fd;
625 
626 	if (!dmabuf || !dmabuf->file)
627 		return -EINVAL;
628 
629 	fd = get_unused_fd_flags(flags);
630 	if (fd < 0)
631 		return fd;
632 
633 	fd_install(fd, dmabuf->file);
634 
635 	return fd;
636 }
637 EXPORT_SYMBOL_GPL(dma_buf_fd);
638 
639 /**
640  * dma_buf_get - returns the struct dma_buf related to an fd
641  * @fd:	[in]	fd associated with the struct dma_buf to be returned
642  *
643  * On success, returns the struct dma_buf associated with an fd; uses
644  * file's refcounting done by fget to increase refcount. returns ERR_PTR
645  * otherwise.
646  */
647 struct dma_buf *dma_buf_get(int fd)
648 {
649 	struct file *file;
650 
651 	file = fget(fd);
652 
653 	if (!file)
654 		return ERR_PTR(-EBADF);
655 
656 	if (!is_dma_buf_file(file)) {
657 		fput(file);
658 		return ERR_PTR(-EINVAL);
659 	}
660 
661 	return file->private_data;
662 }
663 EXPORT_SYMBOL_GPL(dma_buf_get);
664 
665 /**
666  * dma_buf_put - decreases refcount of the buffer
667  * @dmabuf:	[in]	buffer to reduce refcount of
668  *
669  * Uses file's refcounting done implicitly by fput().
670  *
671  * If, as a result of this call, the refcount becomes 0, the 'release' file
672  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
673  * in turn, and frees the memory allocated for dmabuf when exported.
674  */
675 void dma_buf_put(struct dma_buf *dmabuf)
676 {
677 	if (WARN_ON(!dmabuf || !dmabuf->file))
678 		return;
679 
680 	fput(dmabuf->file);
681 }
682 EXPORT_SYMBOL_GPL(dma_buf_put);
683 
684 static void mangle_sg_table(struct sg_table *sg_table)
685 {
686 #ifdef CONFIG_DMABUF_DEBUG
687 	int i;
688 	struct scatterlist *sg;
689 
690 	/* To catch abuse of the underlying struct page by importers mix
691 	 * up the bits, but take care to preserve the low SG_ bits to
692 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
693 	 * before passing the sgt back to the exporter. */
694 	for_each_sgtable_sg(sg_table, sg, i)
695 		sg->page_link ^= ~0xffUL;
696 #endif
697 
698 }
699 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
700 				       enum dma_data_direction direction)
701 {
702 	struct sg_table *sg_table;
703 
704 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
705 
706 	if (!IS_ERR_OR_NULL(sg_table))
707 		mangle_sg_table(sg_table);
708 
709 	return sg_table;
710 }
711 
712 /**
713  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
714  * @dmabuf:		[in]	buffer to attach device to.
715  * @dev:		[in]	device to be attached.
716  * @importer_ops:	[in]	importer operations for the attachment
717  * @importer_priv:	[in]	importer private pointer for the attachment
718  *
719  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
720  * must be cleaned up by calling dma_buf_detach().
721  *
722  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
723  * functionality.
724  *
725  * Returns:
726  *
727  * A pointer to newly created &dma_buf_attachment on success, or a negative
728  * error code wrapped into a pointer on failure.
729  *
730  * Note that this can fail if the backing storage of @dmabuf is in a place not
731  * accessible to @dev, and cannot be moved to a more suitable place. This is
732  * indicated with the error code -EBUSY.
733  */
734 struct dma_buf_attachment *
735 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
736 		       const struct dma_buf_attach_ops *importer_ops,
737 		       void *importer_priv)
738 {
739 	struct dma_buf_attachment *attach;
740 	int ret;
741 	unsigned int attach_uid;
742 
743 	if (WARN_ON(!dmabuf || !dev))
744 		return ERR_PTR(-EINVAL);
745 
746 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
747 		return ERR_PTR(-EINVAL);
748 
749 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
750 	if (!attach)
751 		return ERR_PTR(-ENOMEM);
752 
753 	attach->dev = dev;
754 	attach->dmabuf = dmabuf;
755 	if (importer_ops)
756 		attach->peer2peer = importer_ops->allow_peer2peer;
757 	attach->importer_ops = importer_ops;
758 	attach->importer_priv = importer_priv;
759 
760 	if (dmabuf->ops->attach) {
761 		ret = dmabuf->ops->attach(dmabuf, attach);
762 		if (ret)
763 			goto err_attach;
764 	}
765 	dma_resv_lock(dmabuf->resv, NULL);
766 	list_add(&attach->node, &dmabuf->attachments);
767 	attach_uid = dma_buf_update_attach_uid(dmabuf);
768 	dma_resv_unlock(dmabuf->resv);
769 
770 	ret = dma_buf_attach_stats_setup(attach, attach_uid);
771 	if (ret)
772 		goto err_sysfs;
773 
774 	/* When either the importer or the exporter can't handle dynamic
775 	 * mappings we cache the mapping here to avoid issues with the
776 	 * reservation object lock.
777 	 */
778 	if (dma_buf_attachment_is_dynamic(attach) !=
779 	    dma_buf_is_dynamic(dmabuf)) {
780 		struct sg_table *sgt;
781 
782 		if (dma_buf_is_dynamic(attach->dmabuf)) {
783 			dma_resv_lock(attach->dmabuf->resv, NULL);
784 			ret = dmabuf->ops->pin(attach);
785 			if (ret)
786 				goto err_unlock;
787 		}
788 
789 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
790 		if (!sgt)
791 			sgt = ERR_PTR(-ENOMEM);
792 		if (IS_ERR(sgt)) {
793 			ret = PTR_ERR(sgt);
794 			goto err_unpin;
795 		}
796 		if (dma_buf_is_dynamic(attach->dmabuf))
797 			dma_resv_unlock(attach->dmabuf->resv);
798 		attach->sgt = sgt;
799 		attach->dir = DMA_BIDIRECTIONAL;
800 		dma_buf_update_attachment_map_count(attach, 1 /* delta */);
801 	}
802 
803 	return attach;
804 
805 err_attach:
806 	kfree(attach);
807 	return ERR_PTR(ret);
808 
809 err_unpin:
810 	if (dma_buf_is_dynamic(attach->dmabuf))
811 		dmabuf->ops->unpin(attach);
812 
813 err_unlock:
814 	if (dma_buf_is_dynamic(attach->dmabuf))
815 		dma_resv_unlock(attach->dmabuf->resv);
816 
817 err_sysfs:
818 	dma_buf_detach(dmabuf, attach);
819 	return ERR_PTR(ret);
820 }
821 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
822 
823 /**
824  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
825  * @dmabuf:	[in]	buffer to attach device to.
826  * @dev:	[in]	device to be attached.
827  *
828  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
829  * mapping.
830  */
831 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
832 					  struct device *dev)
833 {
834 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
835 }
836 EXPORT_SYMBOL_GPL(dma_buf_attach);
837 
838 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
839 			    struct sg_table *sg_table,
840 			    enum dma_data_direction direction)
841 {
842 	/* uses XOR, hence this unmangles */
843 	mangle_sg_table(sg_table);
844 
845 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
846 }
847 
848 /**
849  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
850  * @dmabuf:	[in]	buffer to detach from.
851  * @attach:	[in]	attachment to be detached; is free'd after this call.
852  *
853  * Clean up a device attachment obtained by calling dma_buf_attach().
854  *
855  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
856  */
857 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
858 {
859 	if (WARN_ON(!dmabuf || !attach))
860 		return;
861 
862 	if (attach->sgt) {
863 		if (dma_buf_is_dynamic(attach->dmabuf))
864 			dma_resv_lock(attach->dmabuf->resv, NULL);
865 
866 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
867 		dma_buf_update_attachment_map_count(attach, -1 /* delta */);
868 
869 		if (dma_buf_is_dynamic(attach->dmabuf)) {
870 			dmabuf->ops->unpin(attach);
871 			dma_resv_unlock(attach->dmabuf->resv);
872 		}
873 	}
874 
875 	dma_resv_lock(dmabuf->resv, NULL);
876 	list_del(&attach->node);
877 	dma_resv_unlock(dmabuf->resv);
878 	if (dmabuf->ops->detach)
879 		dmabuf->ops->detach(dmabuf, attach);
880 
881 	dma_buf_attach_stats_teardown(attach);
882 	kfree(attach);
883 }
884 EXPORT_SYMBOL_GPL(dma_buf_detach);
885 
886 /**
887  * dma_buf_pin - Lock down the DMA-buf
888  * @attach:	[in]	attachment which should be pinned
889  *
890  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
891  * call this, and only for limited use cases like scanout and not for temporary
892  * pin operations. It is not permitted to allow userspace to pin arbitrary
893  * amounts of buffers through this interface.
894  *
895  * Buffers must be unpinned by calling dma_buf_unpin().
896  *
897  * Returns:
898  * 0 on success, negative error code on failure.
899  */
900 int dma_buf_pin(struct dma_buf_attachment *attach)
901 {
902 	struct dma_buf *dmabuf = attach->dmabuf;
903 	int ret = 0;
904 
905 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
906 
907 	dma_resv_assert_held(dmabuf->resv);
908 
909 	if (dmabuf->ops->pin)
910 		ret = dmabuf->ops->pin(attach);
911 
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(dma_buf_pin);
915 
916 /**
917  * dma_buf_unpin - Unpin a DMA-buf
918  * @attach:	[in]	attachment which should be unpinned
919  *
920  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
921  * any mapping of @attach again and inform the importer through
922  * &dma_buf_attach_ops.move_notify.
923  */
924 void dma_buf_unpin(struct dma_buf_attachment *attach)
925 {
926 	struct dma_buf *dmabuf = attach->dmabuf;
927 
928 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
929 
930 	dma_resv_assert_held(dmabuf->resv);
931 
932 	if (dmabuf->ops->unpin)
933 		dmabuf->ops->unpin(attach);
934 }
935 EXPORT_SYMBOL_GPL(dma_buf_unpin);
936 
937 /**
938  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
939  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
940  * dma_buf_ops.
941  * @attach:	[in]	attachment whose scatterlist is to be returned
942  * @direction:	[in]	direction of DMA transfer
943  *
944  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
945  * on error. May return -EINTR if it is interrupted by a signal.
946  *
947  * On success, the DMA addresses and lengths in the returned scatterlist are
948  * PAGE_SIZE aligned.
949  *
950  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
951  * the underlying backing storage is pinned for as long as a mapping exists,
952  * therefore users/importers should not hold onto a mapping for undue amounts of
953  * time.
954  *
955  * Important: Dynamic importers must wait for the exclusive fence of the struct
956  * dma_resv attached to the DMA-BUF first.
957  */
958 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
959 					enum dma_data_direction direction)
960 {
961 	struct sg_table *sg_table;
962 	int r;
963 
964 	might_sleep();
965 
966 	if (WARN_ON(!attach || !attach->dmabuf))
967 		return ERR_PTR(-EINVAL);
968 
969 	if (dma_buf_attachment_is_dynamic(attach))
970 		dma_resv_assert_held(attach->dmabuf->resv);
971 
972 	if (attach->sgt) {
973 		/*
974 		 * Two mappings with different directions for the same
975 		 * attachment are not allowed.
976 		 */
977 		if (attach->dir != direction &&
978 		    attach->dir != DMA_BIDIRECTIONAL)
979 			return ERR_PTR(-EBUSY);
980 
981 		return attach->sgt;
982 	}
983 
984 	if (dma_buf_is_dynamic(attach->dmabuf)) {
985 		dma_resv_assert_held(attach->dmabuf->resv);
986 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
987 			r = attach->dmabuf->ops->pin(attach);
988 			if (r)
989 				return ERR_PTR(r);
990 		}
991 	}
992 
993 	sg_table = __map_dma_buf(attach, direction);
994 	if (!sg_table)
995 		sg_table = ERR_PTR(-ENOMEM);
996 
997 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
998 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
999 		attach->dmabuf->ops->unpin(attach);
1000 
1001 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1002 		attach->sgt = sg_table;
1003 		attach->dir = direction;
1004 	}
1005 
1006 #ifdef CONFIG_DMA_API_DEBUG
1007 	if (!IS_ERR(sg_table)) {
1008 		struct scatterlist *sg;
1009 		u64 addr;
1010 		int len;
1011 		int i;
1012 
1013 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1014 			addr = sg_dma_address(sg);
1015 			len = sg_dma_len(sg);
1016 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1017 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1018 					 __func__, addr, len);
1019 			}
1020 		}
1021 	}
1022 #endif /* CONFIG_DMA_API_DEBUG */
1023 
1024 	if (!IS_ERR(sg_table))
1025 		dma_buf_update_attachment_map_count(attach, 1 /* delta */);
1026 
1027 	return sg_table;
1028 }
1029 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
1030 
1031 /**
1032  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1033  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1034  * dma_buf_ops.
1035  * @attach:	[in]	attachment to unmap buffer from
1036  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1037  * @direction:  [in]    direction of DMA transfer
1038  *
1039  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1040  */
1041 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1042 				struct sg_table *sg_table,
1043 				enum dma_data_direction direction)
1044 {
1045 	might_sleep();
1046 
1047 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1048 		return;
1049 
1050 	if (dma_buf_attachment_is_dynamic(attach))
1051 		dma_resv_assert_held(attach->dmabuf->resv);
1052 
1053 	if (attach->sgt == sg_table)
1054 		return;
1055 
1056 	if (dma_buf_is_dynamic(attach->dmabuf))
1057 		dma_resv_assert_held(attach->dmabuf->resv);
1058 
1059 	__unmap_dma_buf(attach, sg_table, direction);
1060 
1061 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1062 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1063 		dma_buf_unpin(attach);
1064 
1065 	dma_buf_update_attachment_map_count(attach, -1 /* delta */);
1066 }
1067 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
1068 
1069 /**
1070  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1071  *
1072  * @dmabuf:	[in]	buffer which is moving
1073  *
1074  * Informs all attachmenst that they need to destroy and recreated all their
1075  * mappings.
1076  */
1077 void dma_buf_move_notify(struct dma_buf *dmabuf)
1078 {
1079 	struct dma_buf_attachment *attach;
1080 
1081 	dma_resv_assert_held(dmabuf->resv);
1082 
1083 	list_for_each_entry(attach, &dmabuf->attachments, node)
1084 		if (attach->importer_ops)
1085 			attach->importer_ops->move_notify(attach);
1086 }
1087 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1088 
1089 /**
1090  * DOC: cpu access
1091  *
1092  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1093  *
1094  * - Fallback operations in the kernel, for example when a device is connected
1095  *   over USB and the kernel needs to shuffle the data around first before
1096  *   sending it away. Cache coherency is handled by braketing any transactions
1097  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1098  *   access.
1099  *
1100  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1101  *   vmap interface is introduced. Note that on very old 32-bit architectures
1102  *   vmalloc space might be limited and result in vmap calls failing.
1103  *
1104  *   Interfaces::
1105  *
1106  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1107  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1108  *
1109  *   The vmap call can fail if there is no vmap support in the exporter, or if
1110  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1111  *   count for all vmap access and calls down into the exporter's vmap function
1112  *   only when no vmapping exists, and only unmaps it once. Protection against
1113  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1114  *
1115  * - For full compatibility on the importer side with existing userspace
1116  *   interfaces, which might already support mmap'ing buffers. This is needed in
1117  *   many processing pipelines (e.g. feeding a software rendered image into a
1118  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1119  *   framework already supported this and for DMA buffer file descriptors to
1120  *   replace ION buffers mmap support was needed.
1121  *
1122  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1123  *   fd. But like for CPU access there's a need to braket the actual access,
1124  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1125  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1126  *   be restarted.
1127  *
1128  *   Some systems might need some sort of cache coherency management e.g. when
1129  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1130  *   To circumvent this problem there are begin/end coherency markers, that
1131  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1132  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1133  *   sequence would be used like following:
1134  *
1135  *     - mmap dma-buf fd
1136  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1137  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1138  *       want (with the new data being consumed by say the GPU or the scanout
1139  *       device)
1140  *     - munmap once you don't need the buffer any more
1141  *
1142  *    For correctness and optimal performance, it is always required to use
1143  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1144  *    mapped address. Userspace cannot rely on coherent access, even when there
1145  *    are systems where it just works without calling these ioctls.
1146  *
1147  * - And as a CPU fallback in userspace processing pipelines.
1148  *
1149  *   Similar to the motivation for kernel cpu access it is again important that
1150  *   the userspace code of a given importing subsystem can use the same
1151  *   interfaces with a imported dma-buf buffer object as with a native buffer
1152  *   object. This is especially important for drm where the userspace part of
1153  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1154  *   use a different way to mmap a buffer rather invasive.
1155  *
1156  *   The assumption in the current dma-buf interfaces is that redirecting the
1157  *   initial mmap is all that's needed. A survey of some of the existing
1158  *   subsystems shows that no driver seems to do any nefarious thing like
1159  *   syncing up with outstanding asynchronous processing on the device or
1160  *   allocating special resources at fault time. So hopefully this is good
1161  *   enough, since adding interfaces to intercept pagefaults and allow pte
1162  *   shootdowns would increase the complexity quite a bit.
1163  *
1164  *   Interface::
1165  *
1166  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1167  *		       unsigned long);
1168  *
1169  *   If the importing subsystem simply provides a special-purpose mmap call to
1170  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1171  *   equally achieve that for a dma-buf object.
1172  */
1173 
1174 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1175 				      enum dma_data_direction direction)
1176 {
1177 	bool write = (direction == DMA_BIDIRECTIONAL ||
1178 		      direction == DMA_TO_DEVICE);
1179 	struct dma_resv *resv = dmabuf->resv;
1180 	long ret;
1181 
1182 	/* Wait on any implicit rendering fences */
1183 	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1184 	if (ret < 0)
1185 		return ret;
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1192  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1193  * preparations. Coherency is only guaranteed in the specified range for the
1194  * specified access direction.
1195  * @dmabuf:	[in]	buffer to prepare cpu access for.
1196  * @direction:	[in]	length of range for cpu access.
1197  *
1198  * After the cpu access is complete the caller should call
1199  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1200  * it guaranteed to be coherent with other DMA access.
1201  *
1202  * This function will also wait for any DMA transactions tracked through
1203  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1204  * synchronization this function will only ensure cache coherency, callers must
1205  * ensure synchronization with such DMA transactions on their own.
1206  *
1207  * Can return negative error values, returns 0 on success.
1208  */
1209 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1210 			     enum dma_data_direction direction)
1211 {
1212 	int ret = 0;
1213 
1214 	if (WARN_ON(!dmabuf))
1215 		return -EINVAL;
1216 
1217 	might_lock(&dmabuf->resv->lock.base);
1218 
1219 	if (dmabuf->ops->begin_cpu_access)
1220 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1221 
1222 	/* Ensure that all fences are waited upon - but we first allow
1223 	 * the native handler the chance to do so more efficiently if it
1224 	 * chooses. A double invocation here will be reasonably cheap no-op.
1225 	 */
1226 	if (ret == 0)
1227 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1228 
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1232 
1233 /**
1234  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1235  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1236  * actions. Coherency is only guaranteed in the specified range for the
1237  * specified access direction.
1238  * @dmabuf:	[in]	buffer to complete cpu access for.
1239  * @direction:	[in]	length of range for cpu access.
1240  *
1241  * This terminates CPU access started with dma_buf_begin_cpu_access().
1242  *
1243  * Can return negative error values, returns 0 on success.
1244  */
1245 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1246 			   enum dma_data_direction direction)
1247 {
1248 	int ret = 0;
1249 
1250 	WARN_ON(!dmabuf);
1251 
1252 	might_lock(&dmabuf->resv->lock.base);
1253 
1254 	if (dmabuf->ops->end_cpu_access)
1255 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1256 
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1260 
1261 
1262 /**
1263  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1264  * @dmabuf:	[in]	buffer that should back the vma
1265  * @vma:	[in]	vma for the mmap
1266  * @pgoff:	[in]	offset in pages where this mmap should start within the
1267  *			dma-buf buffer.
1268  *
1269  * This function adjusts the passed in vma so that it points at the file of the
1270  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1271  * checking on the size of the vma. Then it calls the exporters mmap function to
1272  * set up the mapping.
1273  *
1274  * Can return negative error values, returns 0 on success.
1275  */
1276 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1277 		 unsigned long pgoff)
1278 {
1279 	if (WARN_ON(!dmabuf || !vma))
1280 		return -EINVAL;
1281 
1282 	/* check if buffer supports mmap */
1283 	if (!dmabuf->ops->mmap)
1284 		return -EINVAL;
1285 
1286 	/* check for offset overflow */
1287 	if (pgoff + vma_pages(vma) < pgoff)
1288 		return -EOVERFLOW;
1289 
1290 	/* check for overflowing the buffer's size */
1291 	if (pgoff + vma_pages(vma) >
1292 	    dmabuf->size >> PAGE_SHIFT)
1293 		return -EINVAL;
1294 
1295 	/* readjust the vma */
1296 	vma_set_file(vma, dmabuf->file);
1297 	vma->vm_pgoff = pgoff;
1298 
1299 	return dmabuf->ops->mmap(dmabuf, vma);
1300 }
1301 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1302 
1303 /**
1304  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1305  * address space. Same restrictions as for vmap and friends apply.
1306  * @dmabuf:	[in]	buffer to vmap
1307  * @map:	[out]	returns the vmap pointer
1308  *
1309  * This call may fail due to lack of virtual mapping address space.
1310  * These calls are optional in drivers. The intended use for them
1311  * is for mapping objects linear in kernel space for high use objects.
1312  *
1313  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1314  * dma_buf_end_cpu_access() around any cpu access performed through this
1315  * mapping.
1316  *
1317  * Returns 0 on success, or a negative errno code otherwise.
1318  */
1319 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1320 {
1321 	struct dma_buf_map ptr;
1322 	int ret = 0;
1323 
1324 	dma_buf_map_clear(map);
1325 
1326 	if (WARN_ON(!dmabuf))
1327 		return -EINVAL;
1328 
1329 	if (!dmabuf->ops->vmap)
1330 		return -EINVAL;
1331 
1332 	mutex_lock(&dmabuf->lock);
1333 	if (dmabuf->vmapping_counter) {
1334 		dmabuf->vmapping_counter++;
1335 		BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1336 		*map = dmabuf->vmap_ptr;
1337 		goto out_unlock;
1338 	}
1339 
1340 	BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1341 
1342 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1343 	if (WARN_ON_ONCE(ret))
1344 		goto out_unlock;
1345 
1346 	dmabuf->vmap_ptr = ptr;
1347 	dmabuf->vmapping_counter = 1;
1348 
1349 	*map = dmabuf->vmap_ptr;
1350 
1351 out_unlock:
1352 	mutex_unlock(&dmabuf->lock);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1356 
1357 /**
1358  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1359  * @dmabuf:	[in]	buffer to vunmap
1360  * @map:	[in]	vmap pointer to vunmap
1361  */
1362 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1363 {
1364 	if (WARN_ON(!dmabuf))
1365 		return;
1366 
1367 	BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1368 	BUG_ON(dmabuf->vmapping_counter == 0);
1369 	BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1370 
1371 	mutex_lock(&dmabuf->lock);
1372 	if (--dmabuf->vmapping_counter == 0) {
1373 		if (dmabuf->ops->vunmap)
1374 			dmabuf->ops->vunmap(dmabuf, map);
1375 		dma_buf_map_clear(&dmabuf->vmap_ptr);
1376 	}
1377 	mutex_unlock(&dmabuf->lock);
1378 }
1379 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1380 
1381 #ifdef CONFIG_DEBUG_FS
1382 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1383 {
1384 	struct dma_buf *buf_obj;
1385 	struct dma_buf_attachment *attach_obj;
1386 	struct dma_resv *robj;
1387 	struct dma_resv_list *fobj;
1388 	struct dma_fence *fence;
1389 	int count = 0, attach_count, shared_count, i;
1390 	size_t size = 0;
1391 	int ret;
1392 
1393 	ret = mutex_lock_interruptible(&db_list.lock);
1394 
1395 	if (ret)
1396 		return ret;
1397 
1398 	seq_puts(s, "\nDma-buf Objects:\n");
1399 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1400 		   "size", "flags", "mode", "count", "ino");
1401 
1402 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1403 
1404 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1405 		if (ret)
1406 			goto error_unlock;
1407 
1408 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1409 				buf_obj->size,
1410 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1411 				file_count(buf_obj->file),
1412 				buf_obj->exp_name,
1413 				file_inode(buf_obj->file)->i_ino,
1414 				buf_obj->name ?: "");
1415 
1416 		robj = buf_obj->resv;
1417 		fence = dma_resv_excl_fence(robj);
1418 		if (fence)
1419 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1420 				   fence->ops->get_driver_name(fence),
1421 				   fence->ops->get_timeline_name(fence),
1422 				   dma_fence_is_signaled(fence) ? "" : "un");
1423 
1424 		fobj = rcu_dereference_protected(robj->fence,
1425 						 dma_resv_held(robj));
1426 		shared_count = fobj ? fobj->shared_count : 0;
1427 		for (i = 0; i < shared_count; i++) {
1428 			fence = rcu_dereference_protected(fobj->shared[i],
1429 							  dma_resv_held(robj));
1430 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1431 				   fence->ops->get_driver_name(fence),
1432 				   fence->ops->get_timeline_name(fence),
1433 				   dma_fence_is_signaled(fence) ? "" : "un");
1434 		}
1435 
1436 		seq_puts(s, "\tAttached Devices:\n");
1437 		attach_count = 0;
1438 
1439 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1440 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1441 			attach_count++;
1442 		}
1443 		dma_resv_unlock(buf_obj->resv);
1444 
1445 		seq_printf(s, "Total %d devices attached\n\n",
1446 				attach_count);
1447 
1448 		count++;
1449 		size += buf_obj->size;
1450 	}
1451 
1452 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1453 
1454 	mutex_unlock(&db_list.lock);
1455 	return 0;
1456 
1457 error_unlock:
1458 	mutex_unlock(&db_list.lock);
1459 	return ret;
1460 }
1461 
1462 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1463 
1464 static struct dentry *dma_buf_debugfs_dir;
1465 
1466 static int dma_buf_init_debugfs(void)
1467 {
1468 	struct dentry *d;
1469 	int err = 0;
1470 
1471 	d = debugfs_create_dir("dma_buf", NULL);
1472 	if (IS_ERR(d))
1473 		return PTR_ERR(d);
1474 
1475 	dma_buf_debugfs_dir = d;
1476 
1477 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1478 				NULL, &dma_buf_debug_fops);
1479 	if (IS_ERR(d)) {
1480 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1481 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1482 		dma_buf_debugfs_dir = NULL;
1483 		err = PTR_ERR(d);
1484 	}
1485 
1486 	return err;
1487 }
1488 
1489 static void dma_buf_uninit_debugfs(void)
1490 {
1491 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1492 }
1493 #else
1494 static inline int dma_buf_init_debugfs(void)
1495 {
1496 	return 0;
1497 }
1498 static inline void dma_buf_uninit_debugfs(void)
1499 {
1500 }
1501 #endif
1502 
1503 static int __init dma_buf_init(void)
1504 {
1505 	int ret;
1506 
1507 	ret = dma_buf_init_sysfs_statistics();
1508 	if (ret)
1509 		return ret;
1510 
1511 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1512 	if (IS_ERR(dma_buf_mnt))
1513 		return PTR_ERR(dma_buf_mnt);
1514 
1515 	mutex_init(&db_list.lock);
1516 	INIT_LIST_HEAD(&db_list.head);
1517 	dma_buf_init_debugfs();
1518 	return 0;
1519 }
1520 subsys_initcall(dma_buf_init);
1521 
1522 static void __exit dma_buf_deinit(void)
1523 {
1524 	dma_buf_uninit_debugfs();
1525 	kern_unmount(dma_buf_mnt);
1526 	dma_buf_uninit_sysfs_statistics();
1527 }
1528 __exitcall(dma_buf_deinit);
1529