1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 spin_lock(&dmabuf->name_lock); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 spin_unlock(&dmabuf->name_lock); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static void dma_buf_release(struct dentry *dentry) 58 { 59 struct dma_buf *dmabuf; 60 61 dmabuf = dentry->d_fsdata; 62 if (unlikely(!dmabuf)) 63 return; 64 65 BUG_ON(dmabuf->vmapping_counter); 66 67 /* 68 * Any fences that a dma-buf poll can wait on should be signaled 69 * before releasing dma-buf. This is the responsibility of each 70 * driver that uses the reservation objects. 71 * 72 * If you hit this BUG() it means someone dropped their ref to the 73 * dma-buf while still having pending operation to the buffer. 74 */ 75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 76 77 dmabuf->ops->release(dmabuf); 78 79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 80 dma_resv_fini(dmabuf->resv); 81 82 module_put(dmabuf->owner); 83 kfree(dmabuf->name); 84 kfree(dmabuf); 85 } 86 87 static int dma_buf_file_release(struct inode *inode, struct file *file) 88 { 89 struct dma_buf *dmabuf; 90 91 if (!is_dma_buf_file(file)) 92 return -EINVAL; 93 94 dmabuf = file->private_data; 95 96 mutex_lock(&db_list.lock); 97 list_del(&dmabuf->list_node); 98 mutex_unlock(&db_list.lock); 99 100 return 0; 101 } 102 103 static const struct dentry_operations dma_buf_dentry_ops = { 104 .d_dname = dmabuffs_dname, 105 .d_release = dma_buf_release, 106 }; 107 108 static struct vfsmount *dma_buf_mnt; 109 110 static int dma_buf_fs_init_context(struct fs_context *fc) 111 { 112 struct pseudo_fs_context *ctx; 113 114 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 115 if (!ctx) 116 return -ENOMEM; 117 ctx->dops = &dma_buf_dentry_ops; 118 return 0; 119 } 120 121 static struct file_system_type dma_buf_fs_type = { 122 .name = "dmabuf", 123 .init_fs_context = dma_buf_fs_init_context, 124 .kill_sb = kill_anon_super, 125 }; 126 127 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 128 { 129 struct dma_buf *dmabuf; 130 131 if (!is_dma_buf_file(file)) 132 return -EINVAL; 133 134 dmabuf = file->private_data; 135 136 /* check if buffer supports mmap */ 137 if (!dmabuf->ops->mmap) 138 return -EINVAL; 139 140 /* check for overflowing the buffer's size */ 141 if (vma->vm_pgoff + vma_pages(vma) > 142 dmabuf->size >> PAGE_SHIFT) 143 return -EINVAL; 144 145 return dmabuf->ops->mmap(dmabuf, vma); 146 } 147 148 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 149 { 150 struct dma_buf *dmabuf; 151 loff_t base; 152 153 if (!is_dma_buf_file(file)) 154 return -EBADF; 155 156 dmabuf = file->private_data; 157 158 /* only support discovering the end of the buffer, 159 but also allow SEEK_SET to maintain the idiomatic 160 SEEK_END(0), SEEK_CUR(0) pattern */ 161 if (whence == SEEK_END) 162 base = dmabuf->size; 163 else if (whence == SEEK_SET) 164 base = 0; 165 else 166 return -EINVAL; 167 168 if (offset != 0) 169 return -EINVAL; 170 171 return base + offset; 172 } 173 174 /** 175 * DOC: implicit fence polling 176 * 177 * To support cross-device and cross-driver synchronization of buffer access 178 * implicit fences (represented internally in the kernel with &struct dma_fence) 179 * can be attached to a &dma_buf. The glue for that and a few related things are 180 * provided in the &dma_resv structure. 181 * 182 * Userspace can query the state of these implicitly tracked fences using poll() 183 * and related system calls: 184 * 185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 186 * most recent write or exclusive fence. 187 * 188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 189 * all attached fences, shared and exclusive ones. 190 * 191 * Note that this only signals the completion of the respective fences, i.e. the 192 * DMA transfers are complete. Cache flushing and any other necessary 193 * preparations before CPU access can begin still need to happen. 194 */ 195 196 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 197 { 198 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 199 unsigned long flags; 200 201 spin_lock_irqsave(&dcb->poll->lock, flags); 202 wake_up_locked_poll(dcb->poll, dcb->active); 203 dcb->active = 0; 204 spin_unlock_irqrestore(&dcb->poll->lock, flags); 205 } 206 207 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 208 { 209 struct dma_buf *dmabuf; 210 struct dma_resv *resv; 211 struct dma_resv_list *fobj; 212 struct dma_fence *fence_excl; 213 __poll_t events; 214 unsigned shared_count, seq; 215 216 dmabuf = file->private_data; 217 if (!dmabuf || !dmabuf->resv) 218 return EPOLLERR; 219 220 resv = dmabuf->resv; 221 222 poll_wait(file, &dmabuf->poll, poll); 223 224 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 225 if (!events) 226 return 0; 227 228 retry: 229 seq = read_seqcount_begin(&resv->seq); 230 rcu_read_lock(); 231 232 fobj = rcu_dereference(resv->fence); 233 if (fobj) 234 shared_count = fobj->shared_count; 235 else 236 shared_count = 0; 237 fence_excl = rcu_dereference(resv->fence_excl); 238 if (read_seqcount_retry(&resv->seq, seq)) { 239 rcu_read_unlock(); 240 goto retry; 241 } 242 243 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 244 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 245 __poll_t pevents = EPOLLIN; 246 247 if (shared_count == 0) 248 pevents |= EPOLLOUT; 249 250 spin_lock_irq(&dmabuf->poll.lock); 251 if (dcb->active) { 252 dcb->active |= pevents; 253 events &= ~pevents; 254 } else 255 dcb->active = pevents; 256 spin_unlock_irq(&dmabuf->poll.lock); 257 258 if (events & pevents) { 259 if (!dma_fence_get_rcu(fence_excl)) { 260 /* force a recheck */ 261 events &= ~pevents; 262 dma_buf_poll_cb(NULL, &dcb->cb); 263 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 264 dma_buf_poll_cb)) { 265 events &= ~pevents; 266 dma_fence_put(fence_excl); 267 } else { 268 /* 269 * No callback queued, wake up any additional 270 * waiters. 271 */ 272 dma_fence_put(fence_excl); 273 dma_buf_poll_cb(NULL, &dcb->cb); 274 } 275 } 276 } 277 278 if ((events & EPOLLOUT) && shared_count > 0) { 279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 280 int i; 281 282 /* Only queue a new callback if no event has fired yet */ 283 spin_lock_irq(&dmabuf->poll.lock); 284 if (dcb->active) 285 events &= ~EPOLLOUT; 286 else 287 dcb->active = EPOLLOUT; 288 spin_unlock_irq(&dmabuf->poll.lock); 289 290 if (!(events & EPOLLOUT)) 291 goto out; 292 293 for (i = 0; i < shared_count; ++i) { 294 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 295 296 if (!dma_fence_get_rcu(fence)) { 297 /* 298 * fence refcount dropped to zero, this means 299 * that fobj has been freed 300 * 301 * call dma_buf_poll_cb and force a recheck! 302 */ 303 events &= ~EPOLLOUT; 304 dma_buf_poll_cb(NULL, &dcb->cb); 305 break; 306 } 307 if (!dma_fence_add_callback(fence, &dcb->cb, 308 dma_buf_poll_cb)) { 309 dma_fence_put(fence); 310 events &= ~EPOLLOUT; 311 break; 312 } 313 dma_fence_put(fence); 314 } 315 316 /* No callback queued, wake up any additional waiters. */ 317 if (i == shared_count) 318 dma_buf_poll_cb(NULL, &dcb->cb); 319 } 320 321 out: 322 rcu_read_unlock(); 323 return events; 324 } 325 326 /** 327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 328 * The name of the dma-buf buffer can only be set when the dma-buf is not 329 * attached to any devices. It could theoritically support changing the 330 * name of the dma-buf if the same piece of memory is used for multiple 331 * purpose between different devices. 332 * 333 * @dmabuf: [in] dmabuf buffer that will be renamed. 334 * @buf: [in] A piece of userspace memory that contains the name of 335 * the dma-buf. 336 * 337 * Returns 0 on success. If the dma-buf buffer is already attached to 338 * devices, return -EBUSY. 339 * 340 */ 341 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 342 { 343 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 344 long ret = 0; 345 346 if (IS_ERR(name)) 347 return PTR_ERR(name); 348 349 dma_resv_lock(dmabuf->resv, NULL); 350 if (!list_empty(&dmabuf->attachments)) { 351 ret = -EBUSY; 352 kfree(name); 353 goto out_unlock; 354 } 355 spin_lock(&dmabuf->name_lock); 356 kfree(dmabuf->name); 357 dmabuf->name = name; 358 spin_unlock(&dmabuf->name_lock); 359 360 out_unlock: 361 dma_resv_unlock(dmabuf->resv); 362 return ret; 363 } 364 365 static long dma_buf_ioctl(struct file *file, 366 unsigned int cmd, unsigned long arg) 367 { 368 struct dma_buf *dmabuf; 369 struct dma_buf_sync sync; 370 enum dma_data_direction direction; 371 int ret; 372 373 dmabuf = file->private_data; 374 375 switch (cmd) { 376 case DMA_BUF_IOCTL_SYNC: 377 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 378 return -EFAULT; 379 380 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 381 return -EINVAL; 382 383 switch (sync.flags & DMA_BUF_SYNC_RW) { 384 case DMA_BUF_SYNC_READ: 385 direction = DMA_FROM_DEVICE; 386 break; 387 case DMA_BUF_SYNC_WRITE: 388 direction = DMA_TO_DEVICE; 389 break; 390 case DMA_BUF_SYNC_RW: 391 direction = DMA_BIDIRECTIONAL; 392 break; 393 default: 394 return -EINVAL; 395 } 396 397 if (sync.flags & DMA_BUF_SYNC_END) 398 ret = dma_buf_end_cpu_access(dmabuf, direction); 399 else 400 ret = dma_buf_begin_cpu_access(dmabuf, direction); 401 402 return ret; 403 404 case DMA_BUF_SET_NAME_A: 405 case DMA_BUF_SET_NAME_B: 406 return dma_buf_set_name(dmabuf, (const char __user *)arg); 407 408 default: 409 return -ENOTTY; 410 } 411 } 412 413 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 414 { 415 struct dma_buf *dmabuf = file->private_data; 416 417 seq_printf(m, "size:\t%zu\n", dmabuf->size); 418 /* Don't count the temporary reference taken inside procfs seq_show */ 419 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 420 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 421 spin_lock(&dmabuf->name_lock); 422 if (dmabuf->name) 423 seq_printf(m, "name:\t%s\n", dmabuf->name); 424 spin_unlock(&dmabuf->name_lock); 425 } 426 427 static const struct file_operations dma_buf_fops = { 428 .release = dma_buf_file_release, 429 .mmap = dma_buf_mmap_internal, 430 .llseek = dma_buf_llseek, 431 .poll = dma_buf_poll, 432 .unlocked_ioctl = dma_buf_ioctl, 433 .compat_ioctl = compat_ptr_ioctl, 434 .show_fdinfo = dma_buf_show_fdinfo, 435 }; 436 437 /* 438 * is_dma_buf_file - Check if struct file* is associated with dma_buf 439 */ 440 static inline int is_dma_buf_file(struct file *file) 441 { 442 return file->f_op == &dma_buf_fops; 443 } 444 445 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 446 { 447 struct file *file; 448 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 449 450 if (IS_ERR(inode)) 451 return ERR_CAST(inode); 452 453 inode->i_size = dmabuf->size; 454 inode_set_bytes(inode, dmabuf->size); 455 456 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 457 flags, &dma_buf_fops); 458 if (IS_ERR(file)) 459 goto err_alloc_file; 460 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 461 file->private_data = dmabuf; 462 file->f_path.dentry->d_fsdata = dmabuf; 463 464 return file; 465 466 err_alloc_file: 467 iput(inode); 468 return file; 469 } 470 471 /** 472 * DOC: dma buf device access 473 * 474 * For device DMA access to a shared DMA buffer the usual sequence of operations 475 * is fairly simple: 476 * 477 * 1. The exporter defines his exporter instance using 478 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 479 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 480 * as a file descriptor by calling dma_buf_fd(). 481 * 482 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 483 * to share with: First the filedescriptor is converted to a &dma_buf using 484 * dma_buf_get(). Then the buffer is attached to the device using 485 * dma_buf_attach(). 486 * 487 * Up to this stage the exporter is still free to migrate or reallocate the 488 * backing storage. 489 * 490 * 3. Once the buffer is attached to all devices userspace can initiate DMA 491 * access to the shared buffer. In the kernel this is done by calling 492 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 493 * 494 * 4. Once a driver is done with a shared buffer it needs to call 495 * dma_buf_detach() (after cleaning up any mappings) and then release the 496 * reference acquired with dma_buf_get() by calling dma_buf_put(). 497 * 498 * For the detailed semantics exporters are expected to implement see 499 * &dma_buf_ops. 500 */ 501 502 /** 503 * dma_buf_export - Creates a new dma_buf, and associates an anon file 504 * with this buffer, so it can be exported. 505 * Also connect the allocator specific data and ops to the buffer. 506 * Additionally, provide a name string for exporter; useful in debugging. 507 * 508 * @exp_info: [in] holds all the export related information provided 509 * by the exporter. see &struct dma_buf_export_info 510 * for further details. 511 * 512 * Returns, on success, a newly created struct dma_buf object, which wraps the 513 * supplied private data and operations for struct dma_buf_ops. On either 514 * missing ops, or error in allocating struct dma_buf, will return negative 515 * error. 516 * 517 * For most cases the easiest way to create @exp_info is through the 518 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 519 */ 520 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 521 { 522 struct dma_buf *dmabuf; 523 struct dma_resv *resv = exp_info->resv; 524 struct file *file; 525 size_t alloc_size = sizeof(struct dma_buf); 526 int ret; 527 528 if (!exp_info->resv) 529 alloc_size += sizeof(struct dma_resv); 530 else 531 /* prevent &dma_buf[1] == dma_buf->resv */ 532 alloc_size += 1; 533 534 if (WARN_ON(!exp_info->priv 535 || !exp_info->ops 536 || !exp_info->ops->map_dma_buf 537 || !exp_info->ops->unmap_dma_buf 538 || !exp_info->ops->release)) { 539 return ERR_PTR(-EINVAL); 540 } 541 542 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 543 (exp_info->ops->pin || exp_info->ops->unpin))) 544 return ERR_PTR(-EINVAL); 545 546 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 547 return ERR_PTR(-EINVAL); 548 549 if (!try_module_get(exp_info->owner)) 550 return ERR_PTR(-ENOENT); 551 552 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 553 if (!dmabuf) { 554 ret = -ENOMEM; 555 goto err_module; 556 } 557 558 dmabuf->priv = exp_info->priv; 559 dmabuf->ops = exp_info->ops; 560 dmabuf->size = exp_info->size; 561 dmabuf->exp_name = exp_info->exp_name; 562 dmabuf->owner = exp_info->owner; 563 spin_lock_init(&dmabuf->name_lock); 564 init_waitqueue_head(&dmabuf->poll); 565 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 566 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 567 568 if (!resv) { 569 resv = (struct dma_resv *)&dmabuf[1]; 570 dma_resv_init(resv); 571 } 572 dmabuf->resv = resv; 573 574 file = dma_buf_getfile(dmabuf, exp_info->flags); 575 if (IS_ERR(file)) { 576 ret = PTR_ERR(file); 577 goto err_dmabuf; 578 } 579 580 file->f_mode |= FMODE_LSEEK; 581 dmabuf->file = file; 582 583 mutex_init(&dmabuf->lock); 584 INIT_LIST_HEAD(&dmabuf->attachments); 585 586 mutex_lock(&db_list.lock); 587 list_add(&dmabuf->list_node, &db_list.head); 588 mutex_unlock(&db_list.lock); 589 590 return dmabuf; 591 592 err_dmabuf: 593 kfree(dmabuf); 594 err_module: 595 module_put(exp_info->owner); 596 return ERR_PTR(ret); 597 } 598 EXPORT_SYMBOL_GPL(dma_buf_export); 599 600 /** 601 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 602 * @dmabuf: [in] pointer to dma_buf for which fd is required. 603 * @flags: [in] flags to give to fd 604 * 605 * On success, returns an associated 'fd'. Else, returns error. 606 */ 607 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 608 { 609 int fd; 610 611 if (!dmabuf || !dmabuf->file) 612 return -EINVAL; 613 614 fd = get_unused_fd_flags(flags); 615 if (fd < 0) 616 return fd; 617 618 fd_install(fd, dmabuf->file); 619 620 return fd; 621 } 622 EXPORT_SYMBOL_GPL(dma_buf_fd); 623 624 /** 625 * dma_buf_get - returns the struct dma_buf related to an fd 626 * @fd: [in] fd associated with the struct dma_buf to be returned 627 * 628 * On success, returns the struct dma_buf associated with an fd; uses 629 * file's refcounting done by fget to increase refcount. returns ERR_PTR 630 * otherwise. 631 */ 632 struct dma_buf *dma_buf_get(int fd) 633 { 634 struct file *file; 635 636 file = fget(fd); 637 638 if (!file) 639 return ERR_PTR(-EBADF); 640 641 if (!is_dma_buf_file(file)) { 642 fput(file); 643 return ERR_PTR(-EINVAL); 644 } 645 646 return file->private_data; 647 } 648 EXPORT_SYMBOL_GPL(dma_buf_get); 649 650 /** 651 * dma_buf_put - decreases refcount of the buffer 652 * @dmabuf: [in] buffer to reduce refcount of 653 * 654 * Uses file's refcounting done implicitly by fput(). 655 * 656 * If, as a result of this call, the refcount becomes 0, the 'release' file 657 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 658 * in turn, and frees the memory allocated for dmabuf when exported. 659 */ 660 void dma_buf_put(struct dma_buf *dmabuf) 661 { 662 if (WARN_ON(!dmabuf || !dmabuf->file)) 663 return; 664 665 fput(dmabuf->file); 666 } 667 EXPORT_SYMBOL_GPL(dma_buf_put); 668 669 static void mangle_sg_table(struct sg_table *sg_table) 670 { 671 #ifdef CONFIG_DMABUF_DEBUG 672 int i; 673 struct scatterlist *sg; 674 675 /* To catch abuse of the underlying struct page by importers mix 676 * up the bits, but take care to preserve the low SG_ bits to 677 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 678 * before passing the sgt back to the exporter. */ 679 for_each_sgtable_sg(sg_table, sg, i) 680 sg->page_link ^= ~0xffUL; 681 #endif 682 683 } 684 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 685 enum dma_data_direction direction) 686 { 687 struct sg_table *sg_table; 688 689 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 690 691 if (!IS_ERR_OR_NULL(sg_table)) 692 mangle_sg_table(sg_table); 693 694 return sg_table; 695 } 696 697 /** 698 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 699 * @dmabuf: [in] buffer to attach device to. 700 * @dev: [in] device to be attached. 701 * @importer_ops: [in] importer operations for the attachment 702 * @importer_priv: [in] importer private pointer for the attachment 703 * 704 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 705 * must be cleaned up by calling dma_buf_detach(). 706 * 707 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 708 * functionality. 709 * 710 * Returns: 711 * 712 * A pointer to newly created &dma_buf_attachment on success, or a negative 713 * error code wrapped into a pointer on failure. 714 * 715 * Note that this can fail if the backing storage of @dmabuf is in a place not 716 * accessible to @dev, and cannot be moved to a more suitable place. This is 717 * indicated with the error code -EBUSY. 718 */ 719 struct dma_buf_attachment * 720 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 721 const struct dma_buf_attach_ops *importer_ops, 722 void *importer_priv) 723 { 724 struct dma_buf_attachment *attach; 725 int ret; 726 727 if (WARN_ON(!dmabuf || !dev)) 728 return ERR_PTR(-EINVAL); 729 730 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 731 return ERR_PTR(-EINVAL); 732 733 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 734 if (!attach) 735 return ERR_PTR(-ENOMEM); 736 737 attach->dev = dev; 738 attach->dmabuf = dmabuf; 739 if (importer_ops) 740 attach->peer2peer = importer_ops->allow_peer2peer; 741 attach->importer_ops = importer_ops; 742 attach->importer_priv = importer_priv; 743 744 if (dmabuf->ops->attach) { 745 ret = dmabuf->ops->attach(dmabuf, attach); 746 if (ret) 747 goto err_attach; 748 } 749 dma_resv_lock(dmabuf->resv, NULL); 750 list_add(&attach->node, &dmabuf->attachments); 751 dma_resv_unlock(dmabuf->resv); 752 753 /* When either the importer or the exporter can't handle dynamic 754 * mappings we cache the mapping here to avoid issues with the 755 * reservation object lock. 756 */ 757 if (dma_buf_attachment_is_dynamic(attach) != 758 dma_buf_is_dynamic(dmabuf)) { 759 struct sg_table *sgt; 760 761 if (dma_buf_is_dynamic(attach->dmabuf)) { 762 dma_resv_lock(attach->dmabuf->resv, NULL); 763 ret = dma_buf_pin(attach); 764 if (ret) 765 goto err_unlock; 766 } 767 768 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 769 if (!sgt) 770 sgt = ERR_PTR(-ENOMEM); 771 if (IS_ERR(sgt)) { 772 ret = PTR_ERR(sgt); 773 goto err_unpin; 774 } 775 if (dma_buf_is_dynamic(attach->dmabuf)) 776 dma_resv_unlock(attach->dmabuf->resv); 777 attach->sgt = sgt; 778 attach->dir = DMA_BIDIRECTIONAL; 779 } 780 781 return attach; 782 783 err_attach: 784 kfree(attach); 785 return ERR_PTR(ret); 786 787 err_unpin: 788 if (dma_buf_is_dynamic(attach->dmabuf)) 789 dma_buf_unpin(attach); 790 791 err_unlock: 792 if (dma_buf_is_dynamic(attach->dmabuf)) 793 dma_resv_unlock(attach->dmabuf->resv); 794 795 dma_buf_detach(dmabuf, attach); 796 return ERR_PTR(ret); 797 } 798 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 799 800 /** 801 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 802 * @dmabuf: [in] buffer to attach device to. 803 * @dev: [in] device to be attached. 804 * 805 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 806 * mapping. 807 */ 808 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 809 struct device *dev) 810 { 811 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 812 } 813 EXPORT_SYMBOL_GPL(dma_buf_attach); 814 815 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 816 struct sg_table *sg_table, 817 enum dma_data_direction direction) 818 { 819 /* uses XOR, hence this unmangles */ 820 mangle_sg_table(sg_table); 821 822 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 823 } 824 825 /** 826 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 827 * @dmabuf: [in] buffer to detach from. 828 * @attach: [in] attachment to be detached; is free'd after this call. 829 * 830 * Clean up a device attachment obtained by calling dma_buf_attach(). 831 * 832 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 833 */ 834 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 835 { 836 if (WARN_ON(!dmabuf || !attach)) 837 return; 838 839 if (attach->sgt) { 840 if (dma_buf_is_dynamic(attach->dmabuf)) 841 dma_resv_lock(attach->dmabuf->resv, NULL); 842 843 __unmap_dma_buf(attach, attach->sgt, attach->dir); 844 845 if (dma_buf_is_dynamic(attach->dmabuf)) { 846 dma_buf_unpin(attach); 847 dma_resv_unlock(attach->dmabuf->resv); 848 } 849 } 850 851 dma_resv_lock(dmabuf->resv, NULL); 852 list_del(&attach->node); 853 dma_resv_unlock(dmabuf->resv); 854 if (dmabuf->ops->detach) 855 dmabuf->ops->detach(dmabuf, attach); 856 857 kfree(attach); 858 } 859 EXPORT_SYMBOL_GPL(dma_buf_detach); 860 861 /** 862 * dma_buf_pin - Lock down the DMA-buf 863 * @attach: [in] attachment which should be pinned 864 * 865 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 866 * call this, and only for limited use cases like scanout and not for temporary 867 * pin operations. It is not permitted to allow userspace to pin arbitrary 868 * amounts of buffers through this interface. 869 * 870 * Buffers must be unpinned by calling dma_buf_unpin(). 871 * 872 * Returns: 873 * 0 on success, negative error code on failure. 874 */ 875 int dma_buf_pin(struct dma_buf_attachment *attach) 876 { 877 struct dma_buf *dmabuf = attach->dmabuf; 878 int ret = 0; 879 880 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 881 882 dma_resv_assert_held(dmabuf->resv); 883 884 if (dmabuf->ops->pin) 885 ret = dmabuf->ops->pin(attach); 886 887 return ret; 888 } 889 EXPORT_SYMBOL_GPL(dma_buf_pin); 890 891 /** 892 * dma_buf_unpin - Unpin a DMA-buf 893 * @attach: [in] attachment which should be unpinned 894 * 895 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 896 * any mapping of @attach again and inform the importer through 897 * &dma_buf_attach_ops.move_notify. 898 */ 899 void dma_buf_unpin(struct dma_buf_attachment *attach) 900 { 901 struct dma_buf *dmabuf = attach->dmabuf; 902 903 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 904 905 dma_resv_assert_held(dmabuf->resv); 906 907 if (dmabuf->ops->unpin) 908 dmabuf->ops->unpin(attach); 909 } 910 EXPORT_SYMBOL_GPL(dma_buf_unpin); 911 912 /** 913 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 914 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 915 * dma_buf_ops. 916 * @attach: [in] attachment whose scatterlist is to be returned 917 * @direction: [in] direction of DMA transfer 918 * 919 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 920 * on error. May return -EINTR if it is interrupted by a signal. 921 * 922 * On success, the DMA addresses and lengths in the returned scatterlist are 923 * PAGE_SIZE aligned. 924 * 925 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 926 * the underlying backing storage is pinned for as long as a mapping exists, 927 * therefore users/importers should not hold onto a mapping for undue amounts of 928 * time. 929 */ 930 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 931 enum dma_data_direction direction) 932 { 933 struct sg_table *sg_table; 934 int r; 935 936 might_sleep(); 937 938 if (WARN_ON(!attach || !attach->dmabuf)) 939 return ERR_PTR(-EINVAL); 940 941 if (dma_buf_attachment_is_dynamic(attach)) 942 dma_resv_assert_held(attach->dmabuf->resv); 943 944 if (attach->sgt) { 945 /* 946 * Two mappings with different directions for the same 947 * attachment are not allowed. 948 */ 949 if (attach->dir != direction && 950 attach->dir != DMA_BIDIRECTIONAL) 951 return ERR_PTR(-EBUSY); 952 953 return attach->sgt; 954 } 955 956 if (dma_buf_is_dynamic(attach->dmabuf)) { 957 dma_resv_assert_held(attach->dmabuf->resv); 958 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 959 r = dma_buf_pin(attach); 960 if (r) 961 return ERR_PTR(r); 962 } 963 } 964 965 sg_table = __map_dma_buf(attach, direction); 966 if (!sg_table) 967 sg_table = ERR_PTR(-ENOMEM); 968 969 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 970 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 971 dma_buf_unpin(attach); 972 973 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 974 attach->sgt = sg_table; 975 attach->dir = direction; 976 } 977 978 #ifdef CONFIG_DMA_API_DEBUG 979 if (!IS_ERR(sg_table)) { 980 struct scatterlist *sg; 981 u64 addr; 982 int len; 983 int i; 984 985 for_each_sgtable_dma_sg(sg_table, sg, i) { 986 addr = sg_dma_address(sg); 987 len = sg_dma_len(sg); 988 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 989 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 990 __func__, addr, len); 991 } 992 } 993 } 994 #endif /* CONFIG_DMA_API_DEBUG */ 995 996 return sg_table; 997 } 998 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 999 1000 /** 1001 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1002 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1003 * dma_buf_ops. 1004 * @attach: [in] attachment to unmap buffer from 1005 * @sg_table: [in] scatterlist info of the buffer to unmap 1006 * @direction: [in] direction of DMA transfer 1007 * 1008 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1009 */ 1010 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1011 struct sg_table *sg_table, 1012 enum dma_data_direction direction) 1013 { 1014 might_sleep(); 1015 1016 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1017 return; 1018 1019 if (dma_buf_attachment_is_dynamic(attach)) 1020 dma_resv_assert_held(attach->dmabuf->resv); 1021 1022 if (attach->sgt == sg_table) 1023 return; 1024 1025 if (dma_buf_is_dynamic(attach->dmabuf)) 1026 dma_resv_assert_held(attach->dmabuf->resv); 1027 1028 __unmap_dma_buf(attach, sg_table, direction); 1029 1030 if (dma_buf_is_dynamic(attach->dmabuf) && 1031 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1032 dma_buf_unpin(attach); 1033 } 1034 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 1035 1036 /** 1037 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1038 * 1039 * @dmabuf: [in] buffer which is moving 1040 * 1041 * Informs all attachmenst that they need to destroy and recreated all their 1042 * mappings. 1043 */ 1044 void dma_buf_move_notify(struct dma_buf *dmabuf) 1045 { 1046 struct dma_buf_attachment *attach; 1047 1048 dma_resv_assert_held(dmabuf->resv); 1049 1050 list_for_each_entry(attach, &dmabuf->attachments, node) 1051 if (attach->importer_ops) 1052 attach->importer_ops->move_notify(attach); 1053 } 1054 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 1055 1056 /** 1057 * DOC: cpu access 1058 * 1059 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1060 * 1061 * - Fallback operations in the kernel, for example when a device is connected 1062 * over USB and the kernel needs to shuffle the data around first before 1063 * sending it away. Cache coherency is handled by braketing any transactions 1064 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1065 * access. 1066 * 1067 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1068 * vmap interface is introduced. Note that on very old 32-bit architectures 1069 * vmalloc space might be limited and result in vmap calls failing. 1070 * 1071 * Interfaces:: 1072 * 1073 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 1074 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 1075 * 1076 * The vmap call can fail if there is no vmap support in the exporter, or if 1077 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1078 * count for all vmap access and calls down into the exporter's vmap function 1079 * only when no vmapping exists, and only unmaps it once. Protection against 1080 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1081 * 1082 * - For full compatibility on the importer side with existing userspace 1083 * interfaces, which might already support mmap'ing buffers. This is needed in 1084 * many processing pipelines (e.g. feeding a software rendered image into a 1085 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1086 * framework already supported this and for DMA buffer file descriptors to 1087 * replace ION buffers mmap support was needed. 1088 * 1089 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1090 * fd. But like for CPU access there's a need to braket the actual access, 1091 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1092 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1093 * be restarted. 1094 * 1095 * Some systems might need some sort of cache coherency management e.g. when 1096 * CPU and GPU domains are being accessed through dma-buf at the same time. 1097 * To circumvent this problem there are begin/end coherency markers, that 1098 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1099 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1100 * sequence would be used like following: 1101 * 1102 * - mmap dma-buf fd 1103 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1104 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1105 * want (with the new data being consumed by say the GPU or the scanout 1106 * device) 1107 * - munmap once you don't need the buffer any more 1108 * 1109 * For correctness and optimal performance, it is always required to use 1110 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1111 * mapped address. Userspace cannot rely on coherent access, even when there 1112 * are systems where it just works without calling these ioctls. 1113 * 1114 * - And as a CPU fallback in userspace processing pipelines. 1115 * 1116 * Similar to the motivation for kernel cpu access it is again important that 1117 * the userspace code of a given importing subsystem can use the same 1118 * interfaces with a imported dma-buf buffer object as with a native buffer 1119 * object. This is especially important for drm where the userspace part of 1120 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1121 * use a different way to mmap a buffer rather invasive. 1122 * 1123 * The assumption in the current dma-buf interfaces is that redirecting the 1124 * initial mmap is all that's needed. A survey of some of the existing 1125 * subsystems shows that no driver seems to do any nefarious thing like 1126 * syncing up with outstanding asynchronous processing on the device or 1127 * allocating special resources at fault time. So hopefully this is good 1128 * enough, since adding interfaces to intercept pagefaults and allow pte 1129 * shootdowns would increase the complexity quite a bit. 1130 * 1131 * Interface:: 1132 * 1133 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1134 * unsigned long); 1135 * 1136 * If the importing subsystem simply provides a special-purpose mmap call to 1137 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1138 * equally achieve that for a dma-buf object. 1139 */ 1140 1141 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1142 enum dma_data_direction direction) 1143 { 1144 bool write = (direction == DMA_BIDIRECTIONAL || 1145 direction == DMA_TO_DEVICE); 1146 struct dma_resv *resv = dmabuf->resv; 1147 long ret; 1148 1149 /* Wait on any implicit rendering fences */ 1150 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1151 MAX_SCHEDULE_TIMEOUT); 1152 if (ret < 0) 1153 return ret; 1154 1155 return 0; 1156 } 1157 1158 /** 1159 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1160 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1161 * preparations. Coherency is only guaranteed in the specified range for the 1162 * specified access direction. 1163 * @dmabuf: [in] buffer to prepare cpu access for. 1164 * @direction: [in] length of range for cpu access. 1165 * 1166 * After the cpu access is complete the caller should call 1167 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1168 * it guaranteed to be coherent with other DMA access. 1169 * 1170 * This function will also wait for any DMA transactions tracked through 1171 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1172 * synchronization this function will only ensure cache coherency, callers must 1173 * ensure synchronization with such DMA transactions on their own. 1174 * 1175 * Can return negative error values, returns 0 on success. 1176 */ 1177 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1178 enum dma_data_direction direction) 1179 { 1180 int ret = 0; 1181 1182 if (WARN_ON(!dmabuf)) 1183 return -EINVAL; 1184 1185 might_lock(&dmabuf->resv->lock.base); 1186 1187 if (dmabuf->ops->begin_cpu_access) 1188 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1189 1190 /* Ensure that all fences are waited upon - but we first allow 1191 * the native handler the chance to do so more efficiently if it 1192 * chooses. A double invocation here will be reasonably cheap no-op. 1193 */ 1194 if (ret == 0) 1195 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1200 1201 /** 1202 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1203 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1204 * actions. Coherency is only guaranteed in the specified range for the 1205 * specified access direction. 1206 * @dmabuf: [in] buffer to complete cpu access for. 1207 * @direction: [in] length of range for cpu access. 1208 * 1209 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1210 * 1211 * Can return negative error values, returns 0 on success. 1212 */ 1213 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1214 enum dma_data_direction direction) 1215 { 1216 int ret = 0; 1217 1218 WARN_ON(!dmabuf); 1219 1220 might_lock(&dmabuf->resv->lock.base); 1221 1222 if (dmabuf->ops->end_cpu_access) 1223 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1224 1225 return ret; 1226 } 1227 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1228 1229 1230 /** 1231 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1232 * @dmabuf: [in] buffer that should back the vma 1233 * @vma: [in] vma for the mmap 1234 * @pgoff: [in] offset in pages where this mmap should start within the 1235 * dma-buf buffer. 1236 * 1237 * This function adjusts the passed in vma so that it points at the file of the 1238 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1239 * checking on the size of the vma. Then it calls the exporters mmap function to 1240 * set up the mapping. 1241 * 1242 * Can return negative error values, returns 0 on success. 1243 */ 1244 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1245 unsigned long pgoff) 1246 { 1247 if (WARN_ON(!dmabuf || !vma)) 1248 return -EINVAL; 1249 1250 /* check if buffer supports mmap */ 1251 if (!dmabuf->ops->mmap) 1252 return -EINVAL; 1253 1254 /* check for offset overflow */ 1255 if (pgoff + vma_pages(vma) < pgoff) 1256 return -EOVERFLOW; 1257 1258 /* check for overflowing the buffer's size */ 1259 if (pgoff + vma_pages(vma) > 1260 dmabuf->size >> PAGE_SHIFT) 1261 return -EINVAL; 1262 1263 /* readjust the vma */ 1264 vma_set_file(vma, dmabuf->file); 1265 vma->vm_pgoff = pgoff; 1266 1267 return dmabuf->ops->mmap(dmabuf, vma); 1268 } 1269 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1270 1271 /** 1272 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1273 * address space. Same restrictions as for vmap and friends apply. 1274 * @dmabuf: [in] buffer to vmap 1275 * @map: [out] returns the vmap pointer 1276 * 1277 * This call may fail due to lack of virtual mapping address space. 1278 * These calls are optional in drivers. The intended use for them 1279 * is for mapping objects linear in kernel space for high use objects. 1280 * 1281 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1282 * dma_buf_end_cpu_access() around any cpu access performed through this 1283 * mapping. 1284 * 1285 * Returns 0 on success, or a negative errno code otherwise. 1286 */ 1287 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1288 { 1289 struct dma_buf_map ptr; 1290 int ret = 0; 1291 1292 dma_buf_map_clear(map); 1293 1294 if (WARN_ON(!dmabuf)) 1295 return -EINVAL; 1296 1297 if (!dmabuf->ops->vmap) 1298 return -EINVAL; 1299 1300 mutex_lock(&dmabuf->lock); 1301 if (dmabuf->vmapping_counter) { 1302 dmabuf->vmapping_counter++; 1303 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1304 *map = dmabuf->vmap_ptr; 1305 goto out_unlock; 1306 } 1307 1308 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr)); 1309 1310 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1311 if (WARN_ON_ONCE(ret)) 1312 goto out_unlock; 1313 1314 dmabuf->vmap_ptr = ptr; 1315 dmabuf->vmapping_counter = 1; 1316 1317 *map = dmabuf->vmap_ptr; 1318 1319 out_unlock: 1320 mutex_unlock(&dmabuf->lock); 1321 return ret; 1322 } 1323 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1324 1325 /** 1326 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1327 * @dmabuf: [in] buffer to vunmap 1328 * @map: [in] vmap pointer to vunmap 1329 */ 1330 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1331 { 1332 if (WARN_ON(!dmabuf)) 1333 return; 1334 1335 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1336 BUG_ON(dmabuf->vmapping_counter == 0); 1337 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map)); 1338 1339 mutex_lock(&dmabuf->lock); 1340 if (--dmabuf->vmapping_counter == 0) { 1341 if (dmabuf->ops->vunmap) 1342 dmabuf->ops->vunmap(dmabuf, map); 1343 dma_buf_map_clear(&dmabuf->vmap_ptr); 1344 } 1345 mutex_unlock(&dmabuf->lock); 1346 } 1347 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1348 1349 #ifdef CONFIG_DEBUG_FS 1350 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1351 { 1352 int ret; 1353 struct dma_buf *buf_obj; 1354 struct dma_buf_attachment *attach_obj; 1355 struct dma_resv *robj; 1356 struct dma_resv_list *fobj; 1357 struct dma_fence *fence; 1358 unsigned seq; 1359 int count = 0, attach_count, shared_count, i; 1360 size_t size = 0; 1361 1362 ret = mutex_lock_interruptible(&db_list.lock); 1363 1364 if (ret) 1365 return ret; 1366 1367 seq_puts(s, "\nDma-buf Objects:\n"); 1368 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1369 "size", "flags", "mode", "count", "ino"); 1370 1371 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1372 1373 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1374 if (ret) 1375 goto error_unlock; 1376 1377 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1378 buf_obj->size, 1379 buf_obj->file->f_flags, buf_obj->file->f_mode, 1380 file_count(buf_obj->file), 1381 buf_obj->exp_name, 1382 file_inode(buf_obj->file)->i_ino, 1383 buf_obj->name ?: ""); 1384 1385 robj = buf_obj->resv; 1386 while (true) { 1387 seq = read_seqcount_begin(&robj->seq); 1388 rcu_read_lock(); 1389 fobj = rcu_dereference(robj->fence); 1390 shared_count = fobj ? fobj->shared_count : 0; 1391 fence = rcu_dereference(robj->fence_excl); 1392 if (!read_seqcount_retry(&robj->seq, seq)) 1393 break; 1394 rcu_read_unlock(); 1395 } 1396 1397 if (fence) 1398 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1399 fence->ops->get_driver_name(fence), 1400 fence->ops->get_timeline_name(fence), 1401 dma_fence_is_signaled(fence) ? "" : "un"); 1402 for (i = 0; i < shared_count; i++) { 1403 fence = rcu_dereference(fobj->shared[i]); 1404 if (!dma_fence_get_rcu(fence)) 1405 continue; 1406 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1407 fence->ops->get_driver_name(fence), 1408 fence->ops->get_timeline_name(fence), 1409 dma_fence_is_signaled(fence) ? "" : "un"); 1410 dma_fence_put(fence); 1411 } 1412 rcu_read_unlock(); 1413 1414 seq_puts(s, "\tAttached Devices:\n"); 1415 attach_count = 0; 1416 1417 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1418 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1419 attach_count++; 1420 } 1421 dma_resv_unlock(buf_obj->resv); 1422 1423 seq_printf(s, "Total %d devices attached\n\n", 1424 attach_count); 1425 1426 count++; 1427 size += buf_obj->size; 1428 } 1429 1430 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1431 1432 mutex_unlock(&db_list.lock); 1433 return 0; 1434 1435 error_unlock: 1436 mutex_unlock(&db_list.lock); 1437 return ret; 1438 } 1439 1440 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1441 1442 static struct dentry *dma_buf_debugfs_dir; 1443 1444 static int dma_buf_init_debugfs(void) 1445 { 1446 struct dentry *d; 1447 int err = 0; 1448 1449 d = debugfs_create_dir("dma_buf", NULL); 1450 if (IS_ERR(d)) 1451 return PTR_ERR(d); 1452 1453 dma_buf_debugfs_dir = d; 1454 1455 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1456 NULL, &dma_buf_debug_fops); 1457 if (IS_ERR(d)) { 1458 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1459 debugfs_remove_recursive(dma_buf_debugfs_dir); 1460 dma_buf_debugfs_dir = NULL; 1461 err = PTR_ERR(d); 1462 } 1463 1464 return err; 1465 } 1466 1467 static void dma_buf_uninit_debugfs(void) 1468 { 1469 debugfs_remove_recursive(dma_buf_debugfs_dir); 1470 } 1471 #else 1472 static inline int dma_buf_init_debugfs(void) 1473 { 1474 return 0; 1475 } 1476 static inline void dma_buf_uninit_debugfs(void) 1477 { 1478 } 1479 #endif 1480 1481 static int __init dma_buf_init(void) 1482 { 1483 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1484 if (IS_ERR(dma_buf_mnt)) 1485 return PTR_ERR(dma_buf_mnt); 1486 1487 mutex_init(&db_list.lock); 1488 INIT_LIST_HEAD(&db_list.head); 1489 dma_buf_init_debugfs(); 1490 return 0; 1491 } 1492 subsys_initcall(dma_buf_init); 1493 1494 static void __exit dma_buf_deinit(void) 1495 { 1496 dma_buf_uninit_debugfs(); 1497 kern_unmount(dma_buf_mnt); 1498 } 1499 __exitcall(dma_buf_deinit); 1500