xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 675aaf05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/reservation.h>
25 #include <linux/mm.h>
26 
27 #include <uapi/linux/dma-buf.h>
28 
29 static inline int is_dma_buf_file(struct file *);
30 
31 struct dma_buf_list {
32 	struct list_head head;
33 	struct mutex lock;
34 };
35 
36 static struct dma_buf_list db_list;
37 
38 static int dma_buf_release(struct inode *inode, struct file *file)
39 {
40 	struct dma_buf *dmabuf;
41 
42 	if (!is_dma_buf_file(file))
43 		return -EINVAL;
44 
45 	dmabuf = file->private_data;
46 
47 	BUG_ON(dmabuf->vmapping_counter);
48 
49 	/*
50 	 * Any fences that a dma-buf poll can wait on should be signaled
51 	 * before releasing dma-buf. This is the responsibility of each
52 	 * driver that uses the reservation objects.
53 	 *
54 	 * If you hit this BUG() it means someone dropped their ref to the
55 	 * dma-buf while still having pending operation to the buffer.
56 	 */
57 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
58 
59 	dmabuf->ops->release(dmabuf);
60 
61 	mutex_lock(&db_list.lock);
62 	list_del(&dmabuf->list_node);
63 	mutex_unlock(&db_list.lock);
64 
65 	if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
66 		reservation_object_fini(dmabuf->resv);
67 
68 	module_put(dmabuf->owner);
69 	kfree(dmabuf);
70 	return 0;
71 }
72 
73 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
74 {
75 	struct dma_buf *dmabuf;
76 
77 	if (!is_dma_buf_file(file))
78 		return -EINVAL;
79 
80 	dmabuf = file->private_data;
81 
82 	/* check for overflowing the buffer's size */
83 	if (vma->vm_pgoff + vma_pages(vma) >
84 	    dmabuf->size >> PAGE_SHIFT)
85 		return -EINVAL;
86 
87 	return dmabuf->ops->mmap(dmabuf, vma);
88 }
89 
90 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
91 {
92 	struct dma_buf *dmabuf;
93 	loff_t base;
94 
95 	if (!is_dma_buf_file(file))
96 		return -EBADF;
97 
98 	dmabuf = file->private_data;
99 
100 	/* only support discovering the end of the buffer,
101 	   but also allow SEEK_SET to maintain the idiomatic
102 	   SEEK_END(0), SEEK_CUR(0) pattern */
103 	if (whence == SEEK_END)
104 		base = dmabuf->size;
105 	else if (whence == SEEK_SET)
106 		base = 0;
107 	else
108 		return -EINVAL;
109 
110 	if (offset != 0)
111 		return -EINVAL;
112 
113 	return base + offset;
114 }
115 
116 /**
117  * DOC: fence polling
118  *
119  * To support cross-device and cross-driver synchronization of buffer access
120  * implicit fences (represented internally in the kernel with &struct fence) can
121  * be attached to a &dma_buf. The glue for that and a few related things are
122  * provided in the &reservation_object structure.
123  *
124  * Userspace can query the state of these implicitly tracked fences using poll()
125  * and related system calls:
126  *
127  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
128  *   most recent write or exclusive fence.
129  *
130  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
131  *   all attached fences, shared and exclusive ones.
132  *
133  * Note that this only signals the completion of the respective fences, i.e. the
134  * DMA transfers are complete. Cache flushing and any other necessary
135  * preparations before CPU access can begin still need to happen.
136  */
137 
138 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
139 {
140 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
141 	unsigned long flags;
142 
143 	spin_lock_irqsave(&dcb->poll->lock, flags);
144 	wake_up_locked_poll(dcb->poll, dcb->active);
145 	dcb->active = 0;
146 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
147 }
148 
149 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
150 {
151 	struct dma_buf *dmabuf;
152 	struct reservation_object *resv;
153 	struct reservation_object_list *fobj;
154 	struct dma_fence *fence_excl;
155 	__poll_t events;
156 	unsigned shared_count, seq;
157 
158 	dmabuf = file->private_data;
159 	if (!dmabuf || !dmabuf->resv)
160 		return EPOLLERR;
161 
162 	resv = dmabuf->resv;
163 
164 	poll_wait(file, &dmabuf->poll, poll);
165 
166 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
167 	if (!events)
168 		return 0;
169 
170 retry:
171 	seq = read_seqcount_begin(&resv->seq);
172 	rcu_read_lock();
173 
174 	fobj = rcu_dereference(resv->fence);
175 	if (fobj)
176 		shared_count = fobj->shared_count;
177 	else
178 		shared_count = 0;
179 	fence_excl = rcu_dereference(resv->fence_excl);
180 	if (read_seqcount_retry(&resv->seq, seq)) {
181 		rcu_read_unlock();
182 		goto retry;
183 	}
184 
185 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
186 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
187 		__poll_t pevents = EPOLLIN;
188 
189 		if (shared_count == 0)
190 			pevents |= EPOLLOUT;
191 
192 		spin_lock_irq(&dmabuf->poll.lock);
193 		if (dcb->active) {
194 			dcb->active |= pevents;
195 			events &= ~pevents;
196 		} else
197 			dcb->active = pevents;
198 		spin_unlock_irq(&dmabuf->poll.lock);
199 
200 		if (events & pevents) {
201 			if (!dma_fence_get_rcu(fence_excl)) {
202 				/* force a recheck */
203 				events &= ~pevents;
204 				dma_buf_poll_cb(NULL, &dcb->cb);
205 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
206 							   dma_buf_poll_cb)) {
207 				events &= ~pevents;
208 				dma_fence_put(fence_excl);
209 			} else {
210 				/*
211 				 * No callback queued, wake up any additional
212 				 * waiters.
213 				 */
214 				dma_fence_put(fence_excl);
215 				dma_buf_poll_cb(NULL, &dcb->cb);
216 			}
217 		}
218 	}
219 
220 	if ((events & EPOLLOUT) && shared_count > 0) {
221 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
222 		int i;
223 
224 		/* Only queue a new callback if no event has fired yet */
225 		spin_lock_irq(&dmabuf->poll.lock);
226 		if (dcb->active)
227 			events &= ~EPOLLOUT;
228 		else
229 			dcb->active = EPOLLOUT;
230 		spin_unlock_irq(&dmabuf->poll.lock);
231 
232 		if (!(events & EPOLLOUT))
233 			goto out;
234 
235 		for (i = 0; i < shared_count; ++i) {
236 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
237 
238 			if (!dma_fence_get_rcu(fence)) {
239 				/*
240 				 * fence refcount dropped to zero, this means
241 				 * that fobj has been freed
242 				 *
243 				 * call dma_buf_poll_cb and force a recheck!
244 				 */
245 				events &= ~EPOLLOUT;
246 				dma_buf_poll_cb(NULL, &dcb->cb);
247 				break;
248 			}
249 			if (!dma_fence_add_callback(fence, &dcb->cb,
250 						    dma_buf_poll_cb)) {
251 				dma_fence_put(fence);
252 				events &= ~EPOLLOUT;
253 				break;
254 			}
255 			dma_fence_put(fence);
256 		}
257 
258 		/* No callback queued, wake up any additional waiters. */
259 		if (i == shared_count)
260 			dma_buf_poll_cb(NULL, &dcb->cb);
261 	}
262 
263 out:
264 	rcu_read_unlock();
265 	return events;
266 }
267 
268 static long dma_buf_ioctl(struct file *file,
269 			  unsigned int cmd, unsigned long arg)
270 {
271 	struct dma_buf *dmabuf;
272 	struct dma_buf_sync sync;
273 	enum dma_data_direction direction;
274 	int ret;
275 
276 	dmabuf = file->private_data;
277 
278 	switch (cmd) {
279 	case DMA_BUF_IOCTL_SYNC:
280 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
281 			return -EFAULT;
282 
283 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
284 			return -EINVAL;
285 
286 		switch (sync.flags & DMA_BUF_SYNC_RW) {
287 		case DMA_BUF_SYNC_READ:
288 			direction = DMA_FROM_DEVICE;
289 			break;
290 		case DMA_BUF_SYNC_WRITE:
291 			direction = DMA_TO_DEVICE;
292 			break;
293 		case DMA_BUF_SYNC_RW:
294 			direction = DMA_BIDIRECTIONAL;
295 			break;
296 		default:
297 			return -EINVAL;
298 		}
299 
300 		if (sync.flags & DMA_BUF_SYNC_END)
301 			ret = dma_buf_end_cpu_access(dmabuf, direction);
302 		else
303 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
304 
305 		return ret;
306 	default:
307 		return -ENOTTY;
308 	}
309 }
310 
311 static const struct file_operations dma_buf_fops = {
312 	.release	= dma_buf_release,
313 	.mmap		= dma_buf_mmap_internal,
314 	.llseek		= dma_buf_llseek,
315 	.poll		= dma_buf_poll,
316 	.unlocked_ioctl	= dma_buf_ioctl,
317 #ifdef CONFIG_COMPAT
318 	.compat_ioctl	= dma_buf_ioctl,
319 #endif
320 };
321 
322 /*
323  * is_dma_buf_file - Check if struct file* is associated with dma_buf
324  */
325 static inline int is_dma_buf_file(struct file *file)
326 {
327 	return file->f_op == &dma_buf_fops;
328 }
329 
330 /**
331  * DOC: dma buf device access
332  *
333  * For device DMA access to a shared DMA buffer the usual sequence of operations
334  * is fairly simple:
335  *
336  * 1. The exporter defines his exporter instance using
337  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
338  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
339  *    as a file descriptor by calling dma_buf_fd().
340  *
341  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
342  *    to share with: First the filedescriptor is converted to a &dma_buf using
343  *    dma_buf_get(). Then the buffer is attached to the device using
344  *    dma_buf_attach().
345  *
346  *    Up to this stage the exporter is still free to migrate or reallocate the
347  *    backing storage.
348  *
349  * 3. Once the buffer is attached to all devices userspace can initiate DMA
350  *    access to the shared buffer. In the kernel this is done by calling
351  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
352  *
353  * 4. Once a driver is done with a shared buffer it needs to call
354  *    dma_buf_detach() (after cleaning up any mappings) and then release the
355  *    reference acquired with dma_buf_get by calling dma_buf_put().
356  *
357  * For the detailed semantics exporters are expected to implement see
358  * &dma_buf_ops.
359  */
360 
361 /**
362  * dma_buf_export - Creates a new dma_buf, and associates an anon file
363  * with this buffer, so it can be exported.
364  * Also connect the allocator specific data and ops to the buffer.
365  * Additionally, provide a name string for exporter; useful in debugging.
366  *
367  * @exp_info:	[in]	holds all the export related information provided
368  *			by the exporter. see &struct dma_buf_export_info
369  *			for further details.
370  *
371  * Returns, on success, a newly created dma_buf object, which wraps the
372  * supplied private data and operations for dma_buf_ops. On either missing
373  * ops, or error in allocating struct dma_buf, will return negative error.
374  *
375  * For most cases the easiest way to create @exp_info is through the
376  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
377  */
378 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
379 {
380 	struct dma_buf *dmabuf;
381 	struct reservation_object *resv = exp_info->resv;
382 	struct file *file;
383 	size_t alloc_size = sizeof(struct dma_buf);
384 	int ret;
385 
386 	if (!exp_info->resv)
387 		alloc_size += sizeof(struct reservation_object);
388 	else
389 		/* prevent &dma_buf[1] == dma_buf->resv */
390 		alloc_size += 1;
391 
392 	if (WARN_ON(!exp_info->priv
393 			  || !exp_info->ops
394 			  || !exp_info->ops->map_dma_buf
395 			  || !exp_info->ops->unmap_dma_buf
396 			  || !exp_info->ops->release
397 			  || !exp_info->ops->mmap)) {
398 		return ERR_PTR(-EINVAL);
399 	}
400 
401 	if (!try_module_get(exp_info->owner))
402 		return ERR_PTR(-ENOENT);
403 
404 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
405 	if (!dmabuf) {
406 		ret = -ENOMEM;
407 		goto err_module;
408 	}
409 
410 	dmabuf->priv = exp_info->priv;
411 	dmabuf->ops = exp_info->ops;
412 	dmabuf->size = exp_info->size;
413 	dmabuf->exp_name = exp_info->exp_name;
414 	dmabuf->owner = exp_info->owner;
415 	init_waitqueue_head(&dmabuf->poll);
416 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
417 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
418 
419 	if (!resv) {
420 		resv = (struct reservation_object *)&dmabuf[1];
421 		reservation_object_init(resv);
422 	}
423 	dmabuf->resv = resv;
424 
425 	file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
426 					exp_info->flags);
427 	if (IS_ERR(file)) {
428 		ret = PTR_ERR(file);
429 		goto err_dmabuf;
430 	}
431 
432 	file->f_mode |= FMODE_LSEEK;
433 	dmabuf->file = file;
434 
435 	mutex_init(&dmabuf->lock);
436 	INIT_LIST_HEAD(&dmabuf->attachments);
437 
438 	mutex_lock(&db_list.lock);
439 	list_add(&dmabuf->list_node, &db_list.head);
440 	mutex_unlock(&db_list.lock);
441 
442 	return dmabuf;
443 
444 err_dmabuf:
445 	kfree(dmabuf);
446 err_module:
447 	module_put(exp_info->owner);
448 	return ERR_PTR(ret);
449 }
450 EXPORT_SYMBOL_GPL(dma_buf_export);
451 
452 /**
453  * dma_buf_fd - returns a file descriptor for the given dma_buf
454  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
455  * @flags:      [in]    flags to give to fd
456  *
457  * On success, returns an associated 'fd'. Else, returns error.
458  */
459 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
460 {
461 	int fd;
462 
463 	if (!dmabuf || !dmabuf->file)
464 		return -EINVAL;
465 
466 	fd = get_unused_fd_flags(flags);
467 	if (fd < 0)
468 		return fd;
469 
470 	fd_install(fd, dmabuf->file);
471 
472 	return fd;
473 }
474 EXPORT_SYMBOL_GPL(dma_buf_fd);
475 
476 /**
477  * dma_buf_get - returns the dma_buf structure related to an fd
478  * @fd:	[in]	fd associated with the dma_buf to be returned
479  *
480  * On success, returns the dma_buf structure associated with an fd; uses
481  * file's refcounting done by fget to increase refcount. returns ERR_PTR
482  * otherwise.
483  */
484 struct dma_buf *dma_buf_get(int fd)
485 {
486 	struct file *file;
487 
488 	file = fget(fd);
489 
490 	if (!file)
491 		return ERR_PTR(-EBADF);
492 
493 	if (!is_dma_buf_file(file)) {
494 		fput(file);
495 		return ERR_PTR(-EINVAL);
496 	}
497 
498 	return file->private_data;
499 }
500 EXPORT_SYMBOL_GPL(dma_buf_get);
501 
502 /**
503  * dma_buf_put - decreases refcount of the buffer
504  * @dmabuf:	[in]	buffer to reduce refcount of
505  *
506  * Uses file's refcounting done implicitly by fput().
507  *
508  * If, as a result of this call, the refcount becomes 0, the 'release' file
509  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
510  * in turn, and frees the memory allocated for dmabuf when exported.
511  */
512 void dma_buf_put(struct dma_buf *dmabuf)
513 {
514 	if (WARN_ON(!dmabuf || !dmabuf->file))
515 		return;
516 
517 	fput(dmabuf->file);
518 }
519 EXPORT_SYMBOL_GPL(dma_buf_put);
520 
521 /**
522  * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
523  * calls attach() of dma_buf_ops to allow device-specific attach functionality
524  * @dmabuf:	[in]	buffer to attach device to.
525  * @dev:	[in]	device to be attached.
526  *
527  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
528  * must be cleaned up by calling dma_buf_detach().
529  *
530  * Returns:
531  *
532  * A pointer to newly created &dma_buf_attachment on success, or a negative
533  * error code wrapped into a pointer on failure.
534  *
535  * Note that this can fail if the backing storage of @dmabuf is in a place not
536  * accessible to @dev, and cannot be moved to a more suitable place. This is
537  * indicated with the error code -EBUSY.
538  */
539 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
540 					  struct device *dev)
541 {
542 	struct dma_buf_attachment *attach;
543 	int ret;
544 
545 	if (WARN_ON(!dmabuf || !dev))
546 		return ERR_PTR(-EINVAL);
547 
548 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
549 	if (!attach)
550 		return ERR_PTR(-ENOMEM);
551 
552 	attach->dev = dev;
553 	attach->dmabuf = dmabuf;
554 
555 	mutex_lock(&dmabuf->lock);
556 
557 	if (dmabuf->ops->attach) {
558 		ret = dmabuf->ops->attach(dmabuf, attach);
559 		if (ret)
560 			goto err_attach;
561 	}
562 	list_add(&attach->node, &dmabuf->attachments);
563 
564 	mutex_unlock(&dmabuf->lock);
565 	return attach;
566 
567 err_attach:
568 	kfree(attach);
569 	mutex_unlock(&dmabuf->lock);
570 	return ERR_PTR(ret);
571 }
572 EXPORT_SYMBOL_GPL(dma_buf_attach);
573 
574 /**
575  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
576  * optionally calls detach() of dma_buf_ops for device-specific detach
577  * @dmabuf:	[in]	buffer to detach from.
578  * @attach:	[in]	attachment to be detached; is free'd after this call.
579  *
580  * Clean up a device attachment obtained by calling dma_buf_attach().
581  */
582 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
583 {
584 	if (WARN_ON(!dmabuf || !attach))
585 		return;
586 
587 	mutex_lock(&dmabuf->lock);
588 	list_del(&attach->node);
589 	if (dmabuf->ops->detach)
590 		dmabuf->ops->detach(dmabuf, attach);
591 
592 	mutex_unlock(&dmabuf->lock);
593 	kfree(attach);
594 }
595 EXPORT_SYMBOL_GPL(dma_buf_detach);
596 
597 /**
598  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
599  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
600  * dma_buf_ops.
601  * @attach:	[in]	attachment whose scatterlist is to be returned
602  * @direction:	[in]	direction of DMA transfer
603  *
604  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
605  * on error. May return -EINTR if it is interrupted by a signal.
606  *
607  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
608  * the underlying backing storage is pinned for as long as a mapping exists,
609  * therefore users/importers should not hold onto a mapping for undue amounts of
610  * time.
611  */
612 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
613 					enum dma_data_direction direction)
614 {
615 	struct sg_table *sg_table;
616 
617 	might_sleep();
618 
619 	if (WARN_ON(!attach || !attach->dmabuf))
620 		return ERR_PTR(-EINVAL);
621 
622 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
623 	if (!sg_table)
624 		sg_table = ERR_PTR(-ENOMEM);
625 
626 	return sg_table;
627 }
628 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
629 
630 /**
631  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
632  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
633  * dma_buf_ops.
634  * @attach:	[in]	attachment to unmap buffer from
635  * @sg_table:	[in]	scatterlist info of the buffer to unmap
636  * @direction:  [in]    direction of DMA transfer
637  *
638  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
639  */
640 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
641 				struct sg_table *sg_table,
642 				enum dma_data_direction direction)
643 {
644 	might_sleep();
645 
646 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
647 		return;
648 
649 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
650 						direction);
651 }
652 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
653 
654 /**
655  * DOC: cpu access
656  *
657  * There are mutliple reasons for supporting CPU access to a dma buffer object:
658  *
659  * - Fallback operations in the kernel, for example when a device is connected
660  *   over USB and the kernel needs to shuffle the data around first before
661  *   sending it away. Cache coherency is handled by braketing any transactions
662  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
663  *   access.
664  *
665  *   To support dma_buf objects residing in highmem cpu access is page-based
666  *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
667  *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
668  *   returns a pointer in kernel virtual address space. Afterwards the chunk
669  *   needs to be unmapped again. There is no limit on how often a given chunk
670  *   can be mapped and unmapped, i.e. the importer does not need to call
671  *   begin_cpu_access again before mapping the same chunk again.
672  *
673  *   Interfaces::
674  *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
675  *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
676  *
677  *   Implementing the functions is optional for exporters and for importers all
678  *   the restrictions of using kmap apply.
679  *
680  *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
681  *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
682  *   the partial chunks at the beginning and end but may return stale or bogus
683  *   data outside of the range (in these partial chunks).
684  *
685  *   For some cases the overhead of kmap can be too high, a vmap interface
686  *   is introduced. This interface should be used very carefully, as vmalloc
687  *   space is a limited resources on many architectures.
688  *
689  *   Interfaces::
690  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
691  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
692  *
693  *   The vmap call can fail if there is no vmap support in the exporter, or if
694  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
695  *   that the dma-buf layer keeps a reference count for all vmap access and
696  *   calls down into the exporter's vmap function only when no vmapping exists,
697  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
698  *   provided by taking the dma_buf->lock mutex.
699  *
700  * - For full compatibility on the importer side with existing userspace
701  *   interfaces, which might already support mmap'ing buffers. This is needed in
702  *   many processing pipelines (e.g. feeding a software rendered image into a
703  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
704  *   framework already supported this and for DMA buffer file descriptors to
705  *   replace ION buffers mmap support was needed.
706  *
707  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
708  *   fd. But like for CPU access there's a need to braket the actual access,
709  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
710  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
711  *   be restarted.
712  *
713  *   Some systems might need some sort of cache coherency management e.g. when
714  *   CPU and GPU domains are being accessed through dma-buf at the same time.
715  *   To circumvent this problem there are begin/end coherency markers, that
716  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
717  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
718  *   sequence would be used like following:
719  *
720  *     - mmap dma-buf fd
721  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
722  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
723  *       want (with the new data being consumed by say the GPU or the scanout
724  *       device)
725  *     - munmap once you don't need the buffer any more
726  *
727  *    For correctness and optimal performance, it is always required to use
728  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
729  *    mapped address. Userspace cannot rely on coherent access, even when there
730  *    are systems where it just works without calling these ioctls.
731  *
732  * - And as a CPU fallback in userspace processing pipelines.
733  *
734  *   Similar to the motivation for kernel cpu access it is again important that
735  *   the userspace code of a given importing subsystem can use the same
736  *   interfaces with a imported dma-buf buffer object as with a native buffer
737  *   object. This is especially important for drm where the userspace part of
738  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
739  *   use a different way to mmap a buffer rather invasive.
740  *
741  *   The assumption in the current dma-buf interfaces is that redirecting the
742  *   initial mmap is all that's needed. A survey of some of the existing
743  *   subsystems shows that no driver seems to do any nefarious thing like
744  *   syncing up with outstanding asynchronous processing on the device or
745  *   allocating special resources at fault time. So hopefully this is good
746  *   enough, since adding interfaces to intercept pagefaults and allow pte
747  *   shootdowns would increase the complexity quite a bit.
748  *
749  *   Interface::
750  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
751  *		       unsigned long);
752  *
753  *   If the importing subsystem simply provides a special-purpose mmap call to
754  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
755  *   equally achieve that for a dma-buf object.
756  */
757 
758 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
759 				      enum dma_data_direction direction)
760 {
761 	bool write = (direction == DMA_BIDIRECTIONAL ||
762 		      direction == DMA_TO_DEVICE);
763 	struct reservation_object *resv = dmabuf->resv;
764 	long ret;
765 
766 	/* Wait on any implicit rendering fences */
767 	ret = reservation_object_wait_timeout_rcu(resv, write, true,
768 						  MAX_SCHEDULE_TIMEOUT);
769 	if (ret < 0)
770 		return ret;
771 
772 	return 0;
773 }
774 
775 /**
776  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
777  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
778  * preparations. Coherency is only guaranteed in the specified range for the
779  * specified access direction.
780  * @dmabuf:	[in]	buffer to prepare cpu access for.
781  * @direction:	[in]	length of range for cpu access.
782  *
783  * After the cpu access is complete the caller should call
784  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
785  * it guaranteed to be coherent with other DMA access.
786  *
787  * Can return negative error values, returns 0 on success.
788  */
789 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
790 			     enum dma_data_direction direction)
791 {
792 	int ret = 0;
793 
794 	if (WARN_ON(!dmabuf))
795 		return -EINVAL;
796 
797 	if (dmabuf->ops->begin_cpu_access)
798 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
799 
800 	/* Ensure that all fences are waited upon - but we first allow
801 	 * the native handler the chance to do so more efficiently if it
802 	 * chooses. A double invocation here will be reasonably cheap no-op.
803 	 */
804 	if (ret == 0)
805 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
806 
807 	return ret;
808 }
809 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
810 
811 /**
812  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
813  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
814  * actions. Coherency is only guaranteed in the specified range for the
815  * specified access direction.
816  * @dmabuf:	[in]	buffer to complete cpu access for.
817  * @direction:	[in]	length of range for cpu access.
818  *
819  * This terminates CPU access started with dma_buf_begin_cpu_access().
820  *
821  * Can return negative error values, returns 0 on success.
822  */
823 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
824 			   enum dma_data_direction direction)
825 {
826 	int ret = 0;
827 
828 	WARN_ON(!dmabuf);
829 
830 	if (dmabuf->ops->end_cpu_access)
831 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
832 
833 	return ret;
834 }
835 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
836 
837 /**
838  * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
839  * same restrictions as for kmap and friends apply.
840  * @dmabuf:	[in]	buffer to map page from.
841  * @page_num:	[in]	page in PAGE_SIZE units to map.
842  *
843  * This call must always succeed, any necessary preparations that might fail
844  * need to be done in begin_cpu_access.
845  */
846 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
847 {
848 	WARN_ON(!dmabuf);
849 
850 	if (!dmabuf->ops->map)
851 		return NULL;
852 	return dmabuf->ops->map(dmabuf, page_num);
853 }
854 EXPORT_SYMBOL_GPL(dma_buf_kmap);
855 
856 /**
857  * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
858  * @dmabuf:	[in]	buffer to unmap page from.
859  * @page_num:	[in]	page in PAGE_SIZE units to unmap.
860  * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
861  *
862  * This call must always succeed.
863  */
864 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
865 		    void *vaddr)
866 {
867 	WARN_ON(!dmabuf);
868 
869 	if (dmabuf->ops->unmap)
870 		dmabuf->ops->unmap(dmabuf, page_num, vaddr);
871 }
872 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
873 
874 
875 /**
876  * dma_buf_mmap - Setup up a userspace mmap with the given vma
877  * @dmabuf:	[in]	buffer that should back the vma
878  * @vma:	[in]	vma for the mmap
879  * @pgoff:	[in]	offset in pages where this mmap should start within the
880  *			dma-buf buffer.
881  *
882  * This function adjusts the passed in vma so that it points at the file of the
883  * dma_buf operation. It also adjusts the starting pgoff and does bounds
884  * checking on the size of the vma. Then it calls the exporters mmap function to
885  * set up the mapping.
886  *
887  * Can return negative error values, returns 0 on success.
888  */
889 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
890 		 unsigned long pgoff)
891 {
892 	struct file *oldfile;
893 	int ret;
894 
895 	if (WARN_ON(!dmabuf || !vma))
896 		return -EINVAL;
897 
898 	/* check for offset overflow */
899 	if (pgoff + vma_pages(vma) < pgoff)
900 		return -EOVERFLOW;
901 
902 	/* check for overflowing the buffer's size */
903 	if (pgoff + vma_pages(vma) >
904 	    dmabuf->size >> PAGE_SHIFT)
905 		return -EINVAL;
906 
907 	/* readjust the vma */
908 	get_file(dmabuf->file);
909 	oldfile = vma->vm_file;
910 	vma->vm_file = dmabuf->file;
911 	vma->vm_pgoff = pgoff;
912 
913 	ret = dmabuf->ops->mmap(dmabuf, vma);
914 	if (ret) {
915 		/* restore old parameters on failure */
916 		vma->vm_file = oldfile;
917 		fput(dmabuf->file);
918 	} else {
919 		if (oldfile)
920 			fput(oldfile);
921 	}
922 	return ret;
923 
924 }
925 EXPORT_SYMBOL_GPL(dma_buf_mmap);
926 
927 /**
928  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
929  * address space. Same restrictions as for vmap and friends apply.
930  * @dmabuf:	[in]	buffer to vmap
931  *
932  * This call may fail due to lack of virtual mapping address space.
933  * These calls are optional in drivers. The intended use for them
934  * is for mapping objects linear in kernel space for high use objects.
935  * Please attempt to use kmap/kunmap before thinking about these interfaces.
936  *
937  * Returns NULL on error.
938  */
939 void *dma_buf_vmap(struct dma_buf *dmabuf)
940 {
941 	void *ptr;
942 
943 	if (WARN_ON(!dmabuf))
944 		return NULL;
945 
946 	if (!dmabuf->ops->vmap)
947 		return NULL;
948 
949 	mutex_lock(&dmabuf->lock);
950 	if (dmabuf->vmapping_counter) {
951 		dmabuf->vmapping_counter++;
952 		BUG_ON(!dmabuf->vmap_ptr);
953 		ptr = dmabuf->vmap_ptr;
954 		goto out_unlock;
955 	}
956 
957 	BUG_ON(dmabuf->vmap_ptr);
958 
959 	ptr = dmabuf->ops->vmap(dmabuf);
960 	if (WARN_ON_ONCE(IS_ERR(ptr)))
961 		ptr = NULL;
962 	if (!ptr)
963 		goto out_unlock;
964 
965 	dmabuf->vmap_ptr = ptr;
966 	dmabuf->vmapping_counter = 1;
967 
968 out_unlock:
969 	mutex_unlock(&dmabuf->lock);
970 	return ptr;
971 }
972 EXPORT_SYMBOL_GPL(dma_buf_vmap);
973 
974 /**
975  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
976  * @dmabuf:	[in]	buffer to vunmap
977  * @vaddr:	[in]	vmap to vunmap
978  */
979 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
980 {
981 	if (WARN_ON(!dmabuf))
982 		return;
983 
984 	BUG_ON(!dmabuf->vmap_ptr);
985 	BUG_ON(dmabuf->vmapping_counter == 0);
986 	BUG_ON(dmabuf->vmap_ptr != vaddr);
987 
988 	mutex_lock(&dmabuf->lock);
989 	if (--dmabuf->vmapping_counter == 0) {
990 		if (dmabuf->ops->vunmap)
991 			dmabuf->ops->vunmap(dmabuf, vaddr);
992 		dmabuf->vmap_ptr = NULL;
993 	}
994 	mutex_unlock(&dmabuf->lock);
995 }
996 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
997 
998 #ifdef CONFIG_DEBUG_FS
999 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1000 {
1001 	int ret;
1002 	struct dma_buf *buf_obj;
1003 	struct dma_buf_attachment *attach_obj;
1004 	struct reservation_object *robj;
1005 	struct reservation_object_list *fobj;
1006 	struct dma_fence *fence;
1007 	unsigned seq;
1008 	int count = 0, attach_count, shared_count, i;
1009 	size_t size = 0;
1010 
1011 	ret = mutex_lock_interruptible(&db_list.lock);
1012 
1013 	if (ret)
1014 		return ret;
1015 
1016 	seq_puts(s, "\nDma-buf Objects:\n");
1017 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n",
1018 		   "size", "flags", "mode", "count");
1019 
1020 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1021 		ret = mutex_lock_interruptible(&buf_obj->lock);
1022 
1023 		if (ret) {
1024 			seq_puts(s,
1025 				 "\tERROR locking buffer object: skipping\n");
1026 			continue;
1027 		}
1028 
1029 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
1030 				buf_obj->size,
1031 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1032 				file_count(buf_obj->file),
1033 				buf_obj->exp_name);
1034 
1035 		robj = buf_obj->resv;
1036 		while (true) {
1037 			seq = read_seqcount_begin(&robj->seq);
1038 			rcu_read_lock();
1039 			fobj = rcu_dereference(robj->fence);
1040 			shared_count = fobj ? fobj->shared_count : 0;
1041 			fence = rcu_dereference(robj->fence_excl);
1042 			if (!read_seqcount_retry(&robj->seq, seq))
1043 				break;
1044 			rcu_read_unlock();
1045 		}
1046 
1047 		if (fence)
1048 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1049 				   fence->ops->get_driver_name(fence),
1050 				   fence->ops->get_timeline_name(fence),
1051 				   dma_fence_is_signaled(fence) ? "" : "un");
1052 		for (i = 0; i < shared_count; i++) {
1053 			fence = rcu_dereference(fobj->shared[i]);
1054 			if (!dma_fence_get_rcu(fence))
1055 				continue;
1056 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1057 				   fence->ops->get_driver_name(fence),
1058 				   fence->ops->get_timeline_name(fence),
1059 				   dma_fence_is_signaled(fence) ? "" : "un");
1060 		}
1061 		rcu_read_unlock();
1062 
1063 		seq_puts(s, "\tAttached Devices:\n");
1064 		attach_count = 0;
1065 
1066 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1067 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1068 			attach_count++;
1069 		}
1070 
1071 		seq_printf(s, "Total %d devices attached\n\n",
1072 				attach_count);
1073 
1074 		count++;
1075 		size += buf_obj->size;
1076 		mutex_unlock(&buf_obj->lock);
1077 	}
1078 
1079 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1080 
1081 	mutex_unlock(&db_list.lock);
1082 	return 0;
1083 }
1084 
1085 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1086 
1087 static struct dentry *dma_buf_debugfs_dir;
1088 
1089 static int dma_buf_init_debugfs(void)
1090 {
1091 	struct dentry *d;
1092 	int err = 0;
1093 
1094 	d = debugfs_create_dir("dma_buf", NULL);
1095 	if (IS_ERR(d))
1096 		return PTR_ERR(d);
1097 
1098 	dma_buf_debugfs_dir = d;
1099 
1100 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1101 				NULL, &dma_buf_debug_fops);
1102 	if (IS_ERR(d)) {
1103 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1104 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1105 		dma_buf_debugfs_dir = NULL;
1106 		err = PTR_ERR(d);
1107 	}
1108 
1109 	return err;
1110 }
1111 
1112 static void dma_buf_uninit_debugfs(void)
1113 {
1114 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1115 }
1116 #else
1117 static inline int dma_buf_init_debugfs(void)
1118 {
1119 	return 0;
1120 }
1121 static inline void dma_buf_uninit_debugfs(void)
1122 {
1123 }
1124 #endif
1125 
1126 static int __init dma_buf_init(void)
1127 {
1128 	mutex_init(&db_list.lock);
1129 	INIT_LIST_HEAD(&db_list.head);
1130 	dma_buf_init_debugfs();
1131 	return 0;
1132 }
1133 subsys_initcall(dma_buf_init);
1134 
1135 static void __exit dma_buf_deinit(void)
1136 {
1137 	dma_buf_uninit_debugfs();
1138 }
1139 __exitcall(dma_buf_deinit);
1140