1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 #include "dma-buf-sysfs-stats.h" 33 34 static inline int is_dma_buf_file(struct file *); 35 36 struct dma_buf_list { 37 struct list_head head; 38 struct mutex lock; 39 }; 40 41 static struct dma_buf_list db_list; 42 43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 44 { 45 struct dma_buf *dmabuf; 46 char name[DMA_BUF_NAME_LEN]; 47 size_t ret = 0; 48 49 dmabuf = dentry->d_fsdata; 50 spin_lock(&dmabuf->name_lock); 51 if (dmabuf->name) 52 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 53 spin_unlock(&dmabuf->name_lock); 54 55 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 56 dentry->d_name.name, ret > 0 ? name : ""); 57 } 58 59 static void dma_buf_release(struct dentry *dentry) 60 { 61 struct dma_buf *dmabuf; 62 63 dmabuf = dentry->d_fsdata; 64 if (unlikely(!dmabuf)) 65 return; 66 67 BUG_ON(dmabuf->vmapping_counter); 68 69 /* 70 * If you hit this BUG() it could mean: 71 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 72 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 73 */ 74 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 75 76 dma_buf_stats_teardown(dmabuf); 77 dmabuf->ops->release(dmabuf); 78 79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 80 dma_resv_fini(dmabuf->resv); 81 82 WARN_ON(!list_empty(&dmabuf->attachments)); 83 module_put(dmabuf->owner); 84 kfree(dmabuf->name); 85 kfree(dmabuf); 86 } 87 88 static int dma_buf_file_release(struct inode *inode, struct file *file) 89 { 90 struct dma_buf *dmabuf; 91 92 if (!is_dma_buf_file(file)) 93 return -EINVAL; 94 95 dmabuf = file->private_data; 96 97 mutex_lock(&db_list.lock); 98 list_del(&dmabuf->list_node); 99 mutex_unlock(&db_list.lock); 100 101 return 0; 102 } 103 104 static const struct dentry_operations dma_buf_dentry_ops = { 105 .d_dname = dmabuffs_dname, 106 .d_release = dma_buf_release, 107 }; 108 109 static struct vfsmount *dma_buf_mnt; 110 111 static int dma_buf_fs_init_context(struct fs_context *fc) 112 { 113 struct pseudo_fs_context *ctx; 114 115 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 116 if (!ctx) 117 return -ENOMEM; 118 ctx->dops = &dma_buf_dentry_ops; 119 return 0; 120 } 121 122 static struct file_system_type dma_buf_fs_type = { 123 .name = "dmabuf", 124 .init_fs_context = dma_buf_fs_init_context, 125 .kill_sb = kill_anon_super, 126 }; 127 128 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 129 { 130 struct dma_buf *dmabuf; 131 132 if (!is_dma_buf_file(file)) 133 return -EINVAL; 134 135 dmabuf = file->private_data; 136 137 /* check if buffer supports mmap */ 138 if (!dmabuf->ops->mmap) 139 return -EINVAL; 140 141 /* check for overflowing the buffer's size */ 142 if (vma->vm_pgoff + vma_pages(vma) > 143 dmabuf->size >> PAGE_SHIFT) 144 return -EINVAL; 145 146 return dmabuf->ops->mmap(dmabuf, vma); 147 } 148 149 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 150 { 151 struct dma_buf *dmabuf; 152 loff_t base; 153 154 if (!is_dma_buf_file(file)) 155 return -EBADF; 156 157 dmabuf = file->private_data; 158 159 /* only support discovering the end of the buffer, 160 but also allow SEEK_SET to maintain the idiomatic 161 SEEK_END(0), SEEK_CUR(0) pattern */ 162 if (whence == SEEK_END) 163 base = dmabuf->size; 164 else if (whence == SEEK_SET) 165 base = 0; 166 else 167 return -EINVAL; 168 169 if (offset != 0) 170 return -EINVAL; 171 172 return base + offset; 173 } 174 175 /** 176 * DOC: implicit fence polling 177 * 178 * To support cross-device and cross-driver synchronization of buffer access 179 * implicit fences (represented internally in the kernel with &struct dma_fence) 180 * can be attached to a &dma_buf. The glue for that and a few related things are 181 * provided in the &dma_resv structure. 182 * 183 * Userspace can query the state of these implicitly tracked fences using poll() 184 * and related system calls: 185 * 186 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 187 * most recent write or exclusive fence. 188 * 189 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 190 * all attached fences, shared and exclusive ones. 191 * 192 * Note that this only signals the completion of the respective fences, i.e. the 193 * DMA transfers are complete. Cache flushing and any other necessary 194 * preparations before CPU access can begin still need to happen. 195 */ 196 197 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 198 { 199 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 200 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 201 unsigned long flags; 202 203 spin_lock_irqsave(&dcb->poll->lock, flags); 204 wake_up_locked_poll(dcb->poll, dcb->active); 205 dcb->active = 0; 206 spin_unlock_irqrestore(&dcb->poll->lock, flags); 207 dma_fence_put(fence); 208 /* Paired with get_file in dma_buf_poll */ 209 fput(dmabuf->file); 210 } 211 212 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 213 struct dma_buf_poll_cb_t *dcb) 214 { 215 struct dma_resv_iter cursor; 216 struct dma_fence *fence; 217 int r; 218 219 dma_resv_for_each_fence(&cursor, resv, write, fence) { 220 dma_fence_get(fence); 221 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 222 if (!r) 223 return true; 224 dma_fence_put(fence); 225 } 226 227 return false; 228 } 229 230 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 231 { 232 struct dma_buf *dmabuf; 233 struct dma_resv *resv; 234 __poll_t events; 235 236 dmabuf = file->private_data; 237 if (!dmabuf || !dmabuf->resv) 238 return EPOLLERR; 239 240 resv = dmabuf->resv; 241 242 poll_wait(file, &dmabuf->poll, poll); 243 244 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 245 if (!events) 246 return 0; 247 248 dma_resv_lock(resv, NULL); 249 250 if (events & EPOLLOUT) { 251 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 252 253 /* Check that callback isn't busy */ 254 spin_lock_irq(&dmabuf->poll.lock); 255 if (dcb->active) 256 events &= ~EPOLLOUT; 257 else 258 dcb->active = EPOLLOUT; 259 spin_unlock_irq(&dmabuf->poll.lock); 260 261 if (events & EPOLLOUT) { 262 /* Paired with fput in dma_buf_poll_cb */ 263 get_file(dmabuf->file); 264 265 if (!dma_buf_poll_add_cb(resv, true, dcb)) 266 /* No callback queued, wake up any other waiters */ 267 dma_buf_poll_cb(NULL, &dcb->cb); 268 else 269 events &= ~EPOLLOUT; 270 } 271 } 272 273 if (events & EPOLLIN) { 274 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 275 276 /* Check that callback isn't busy */ 277 spin_lock_irq(&dmabuf->poll.lock); 278 if (dcb->active) 279 events &= ~EPOLLIN; 280 else 281 dcb->active = EPOLLIN; 282 spin_unlock_irq(&dmabuf->poll.lock); 283 284 if (events & EPOLLIN) { 285 /* Paired with fput in dma_buf_poll_cb */ 286 get_file(dmabuf->file); 287 288 if (!dma_buf_poll_add_cb(resv, false, dcb)) 289 /* No callback queued, wake up any other waiters */ 290 dma_buf_poll_cb(NULL, &dcb->cb); 291 else 292 events &= ~EPOLLIN; 293 } 294 } 295 296 dma_resv_unlock(resv); 297 return events; 298 } 299 300 /** 301 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 302 * The name of the dma-buf buffer can only be set when the dma-buf is not 303 * attached to any devices. It could theoritically support changing the 304 * name of the dma-buf if the same piece of memory is used for multiple 305 * purpose between different devices. 306 * 307 * @dmabuf: [in] dmabuf buffer that will be renamed. 308 * @buf: [in] A piece of userspace memory that contains the name of 309 * the dma-buf. 310 * 311 * Returns 0 on success. If the dma-buf buffer is already attached to 312 * devices, return -EBUSY. 313 * 314 */ 315 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 316 { 317 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 318 long ret = 0; 319 320 if (IS_ERR(name)) 321 return PTR_ERR(name); 322 323 dma_resv_lock(dmabuf->resv, NULL); 324 if (!list_empty(&dmabuf->attachments)) { 325 ret = -EBUSY; 326 kfree(name); 327 goto out_unlock; 328 } 329 spin_lock(&dmabuf->name_lock); 330 kfree(dmabuf->name); 331 dmabuf->name = name; 332 spin_unlock(&dmabuf->name_lock); 333 334 out_unlock: 335 dma_resv_unlock(dmabuf->resv); 336 return ret; 337 } 338 339 static long dma_buf_ioctl(struct file *file, 340 unsigned int cmd, unsigned long arg) 341 { 342 struct dma_buf *dmabuf; 343 struct dma_buf_sync sync; 344 enum dma_data_direction direction; 345 int ret; 346 347 dmabuf = file->private_data; 348 349 switch (cmd) { 350 case DMA_BUF_IOCTL_SYNC: 351 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 352 return -EFAULT; 353 354 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 355 return -EINVAL; 356 357 switch (sync.flags & DMA_BUF_SYNC_RW) { 358 case DMA_BUF_SYNC_READ: 359 direction = DMA_FROM_DEVICE; 360 break; 361 case DMA_BUF_SYNC_WRITE: 362 direction = DMA_TO_DEVICE; 363 break; 364 case DMA_BUF_SYNC_RW: 365 direction = DMA_BIDIRECTIONAL; 366 break; 367 default: 368 return -EINVAL; 369 } 370 371 if (sync.flags & DMA_BUF_SYNC_END) 372 ret = dma_buf_end_cpu_access(dmabuf, direction); 373 else 374 ret = dma_buf_begin_cpu_access(dmabuf, direction); 375 376 return ret; 377 378 case DMA_BUF_SET_NAME_A: 379 case DMA_BUF_SET_NAME_B: 380 return dma_buf_set_name(dmabuf, (const char __user *)arg); 381 382 default: 383 return -ENOTTY; 384 } 385 } 386 387 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 388 { 389 struct dma_buf *dmabuf = file->private_data; 390 391 seq_printf(m, "size:\t%zu\n", dmabuf->size); 392 /* Don't count the temporary reference taken inside procfs seq_show */ 393 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 394 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 395 spin_lock(&dmabuf->name_lock); 396 if (dmabuf->name) 397 seq_printf(m, "name:\t%s\n", dmabuf->name); 398 spin_unlock(&dmabuf->name_lock); 399 } 400 401 static const struct file_operations dma_buf_fops = { 402 .release = dma_buf_file_release, 403 .mmap = dma_buf_mmap_internal, 404 .llseek = dma_buf_llseek, 405 .poll = dma_buf_poll, 406 .unlocked_ioctl = dma_buf_ioctl, 407 .compat_ioctl = compat_ptr_ioctl, 408 .show_fdinfo = dma_buf_show_fdinfo, 409 }; 410 411 /* 412 * is_dma_buf_file - Check if struct file* is associated with dma_buf 413 */ 414 static inline int is_dma_buf_file(struct file *file) 415 { 416 return file->f_op == &dma_buf_fops; 417 } 418 419 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 420 { 421 struct file *file; 422 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 423 424 if (IS_ERR(inode)) 425 return ERR_CAST(inode); 426 427 inode->i_size = dmabuf->size; 428 inode_set_bytes(inode, dmabuf->size); 429 430 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 431 flags, &dma_buf_fops); 432 if (IS_ERR(file)) 433 goto err_alloc_file; 434 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 435 file->private_data = dmabuf; 436 file->f_path.dentry->d_fsdata = dmabuf; 437 438 return file; 439 440 err_alloc_file: 441 iput(inode); 442 return file; 443 } 444 445 /** 446 * DOC: dma buf device access 447 * 448 * For device DMA access to a shared DMA buffer the usual sequence of operations 449 * is fairly simple: 450 * 451 * 1. The exporter defines his exporter instance using 452 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 453 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 454 * as a file descriptor by calling dma_buf_fd(). 455 * 456 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 457 * to share with: First the filedescriptor is converted to a &dma_buf using 458 * dma_buf_get(). Then the buffer is attached to the device using 459 * dma_buf_attach(). 460 * 461 * Up to this stage the exporter is still free to migrate or reallocate the 462 * backing storage. 463 * 464 * 3. Once the buffer is attached to all devices userspace can initiate DMA 465 * access to the shared buffer. In the kernel this is done by calling 466 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 467 * 468 * 4. Once a driver is done with a shared buffer it needs to call 469 * dma_buf_detach() (after cleaning up any mappings) and then release the 470 * reference acquired with dma_buf_get() by calling dma_buf_put(). 471 * 472 * For the detailed semantics exporters are expected to implement see 473 * &dma_buf_ops. 474 */ 475 476 /** 477 * dma_buf_export - Creates a new dma_buf, and associates an anon file 478 * with this buffer, so it can be exported. 479 * Also connect the allocator specific data and ops to the buffer. 480 * Additionally, provide a name string for exporter; useful in debugging. 481 * 482 * @exp_info: [in] holds all the export related information provided 483 * by the exporter. see &struct dma_buf_export_info 484 * for further details. 485 * 486 * Returns, on success, a newly created struct dma_buf object, which wraps the 487 * supplied private data and operations for struct dma_buf_ops. On either 488 * missing ops, or error in allocating struct dma_buf, will return negative 489 * error. 490 * 491 * For most cases the easiest way to create @exp_info is through the 492 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 493 */ 494 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 495 { 496 struct dma_buf *dmabuf; 497 struct dma_resv *resv = exp_info->resv; 498 struct file *file; 499 size_t alloc_size = sizeof(struct dma_buf); 500 int ret; 501 502 if (!exp_info->resv) 503 alloc_size += sizeof(struct dma_resv); 504 else 505 /* prevent &dma_buf[1] == dma_buf->resv */ 506 alloc_size += 1; 507 508 if (WARN_ON(!exp_info->priv 509 || !exp_info->ops 510 || !exp_info->ops->map_dma_buf 511 || !exp_info->ops->unmap_dma_buf 512 || !exp_info->ops->release)) { 513 return ERR_PTR(-EINVAL); 514 } 515 516 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 517 (exp_info->ops->pin || exp_info->ops->unpin))) 518 return ERR_PTR(-EINVAL); 519 520 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 521 return ERR_PTR(-EINVAL); 522 523 if (!try_module_get(exp_info->owner)) 524 return ERR_PTR(-ENOENT); 525 526 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 527 if (!dmabuf) { 528 ret = -ENOMEM; 529 goto err_module; 530 } 531 532 dmabuf->priv = exp_info->priv; 533 dmabuf->ops = exp_info->ops; 534 dmabuf->size = exp_info->size; 535 dmabuf->exp_name = exp_info->exp_name; 536 dmabuf->owner = exp_info->owner; 537 spin_lock_init(&dmabuf->name_lock); 538 init_waitqueue_head(&dmabuf->poll); 539 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 540 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 541 542 if (!resv) { 543 resv = (struct dma_resv *)&dmabuf[1]; 544 dma_resv_init(resv); 545 } 546 dmabuf->resv = resv; 547 548 file = dma_buf_getfile(dmabuf, exp_info->flags); 549 if (IS_ERR(file)) { 550 ret = PTR_ERR(file); 551 goto err_dmabuf; 552 } 553 554 file->f_mode |= FMODE_LSEEK; 555 dmabuf->file = file; 556 557 ret = dma_buf_stats_setup(dmabuf); 558 if (ret) 559 goto err_sysfs; 560 561 mutex_init(&dmabuf->lock); 562 INIT_LIST_HEAD(&dmabuf->attachments); 563 564 mutex_lock(&db_list.lock); 565 list_add(&dmabuf->list_node, &db_list.head); 566 mutex_unlock(&db_list.lock); 567 568 return dmabuf; 569 570 err_sysfs: 571 /* 572 * Set file->f_path.dentry->d_fsdata to NULL so that when 573 * dma_buf_release() gets invoked by dentry_ops, it exits 574 * early before calling the release() dma_buf op. 575 */ 576 file->f_path.dentry->d_fsdata = NULL; 577 fput(file); 578 err_dmabuf: 579 kfree(dmabuf); 580 err_module: 581 module_put(exp_info->owner); 582 return ERR_PTR(ret); 583 } 584 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 585 586 /** 587 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 588 * @dmabuf: [in] pointer to dma_buf for which fd is required. 589 * @flags: [in] flags to give to fd 590 * 591 * On success, returns an associated 'fd'. Else, returns error. 592 */ 593 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 594 { 595 int fd; 596 597 if (!dmabuf || !dmabuf->file) 598 return -EINVAL; 599 600 fd = get_unused_fd_flags(flags); 601 if (fd < 0) 602 return fd; 603 604 fd_install(fd, dmabuf->file); 605 606 return fd; 607 } 608 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 609 610 /** 611 * dma_buf_get - returns the struct dma_buf related to an fd 612 * @fd: [in] fd associated with the struct dma_buf to be returned 613 * 614 * On success, returns the struct dma_buf associated with an fd; uses 615 * file's refcounting done by fget to increase refcount. returns ERR_PTR 616 * otherwise. 617 */ 618 struct dma_buf *dma_buf_get(int fd) 619 { 620 struct file *file; 621 622 file = fget(fd); 623 624 if (!file) 625 return ERR_PTR(-EBADF); 626 627 if (!is_dma_buf_file(file)) { 628 fput(file); 629 return ERR_PTR(-EINVAL); 630 } 631 632 return file->private_data; 633 } 634 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 635 636 /** 637 * dma_buf_put - decreases refcount of the buffer 638 * @dmabuf: [in] buffer to reduce refcount of 639 * 640 * Uses file's refcounting done implicitly by fput(). 641 * 642 * If, as a result of this call, the refcount becomes 0, the 'release' file 643 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 644 * in turn, and frees the memory allocated for dmabuf when exported. 645 */ 646 void dma_buf_put(struct dma_buf *dmabuf) 647 { 648 if (WARN_ON(!dmabuf || !dmabuf->file)) 649 return; 650 651 fput(dmabuf->file); 652 } 653 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 654 655 static void mangle_sg_table(struct sg_table *sg_table) 656 { 657 #ifdef CONFIG_DMABUF_DEBUG 658 int i; 659 struct scatterlist *sg; 660 661 /* To catch abuse of the underlying struct page by importers mix 662 * up the bits, but take care to preserve the low SG_ bits to 663 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 664 * before passing the sgt back to the exporter. */ 665 for_each_sgtable_sg(sg_table, sg, i) 666 sg->page_link ^= ~0xffUL; 667 #endif 668 669 } 670 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 671 enum dma_data_direction direction) 672 { 673 struct sg_table *sg_table; 674 675 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 676 677 if (!IS_ERR_OR_NULL(sg_table)) 678 mangle_sg_table(sg_table); 679 680 return sg_table; 681 } 682 683 /** 684 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 685 * @dmabuf: [in] buffer to attach device to. 686 * @dev: [in] device to be attached. 687 * @importer_ops: [in] importer operations for the attachment 688 * @importer_priv: [in] importer private pointer for the attachment 689 * 690 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 691 * must be cleaned up by calling dma_buf_detach(). 692 * 693 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 694 * functionality. 695 * 696 * Returns: 697 * 698 * A pointer to newly created &dma_buf_attachment on success, or a negative 699 * error code wrapped into a pointer on failure. 700 * 701 * Note that this can fail if the backing storage of @dmabuf is in a place not 702 * accessible to @dev, and cannot be moved to a more suitable place. This is 703 * indicated with the error code -EBUSY. 704 */ 705 struct dma_buf_attachment * 706 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 707 const struct dma_buf_attach_ops *importer_ops, 708 void *importer_priv) 709 { 710 struct dma_buf_attachment *attach; 711 int ret; 712 713 if (WARN_ON(!dmabuf || !dev)) 714 return ERR_PTR(-EINVAL); 715 716 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 717 return ERR_PTR(-EINVAL); 718 719 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 720 if (!attach) 721 return ERR_PTR(-ENOMEM); 722 723 attach->dev = dev; 724 attach->dmabuf = dmabuf; 725 if (importer_ops) 726 attach->peer2peer = importer_ops->allow_peer2peer; 727 attach->importer_ops = importer_ops; 728 attach->importer_priv = importer_priv; 729 730 if (dmabuf->ops->attach) { 731 ret = dmabuf->ops->attach(dmabuf, attach); 732 if (ret) 733 goto err_attach; 734 } 735 dma_resv_lock(dmabuf->resv, NULL); 736 list_add(&attach->node, &dmabuf->attachments); 737 dma_resv_unlock(dmabuf->resv); 738 739 /* When either the importer or the exporter can't handle dynamic 740 * mappings we cache the mapping here to avoid issues with the 741 * reservation object lock. 742 */ 743 if (dma_buf_attachment_is_dynamic(attach) != 744 dma_buf_is_dynamic(dmabuf)) { 745 struct sg_table *sgt; 746 747 if (dma_buf_is_dynamic(attach->dmabuf)) { 748 dma_resv_lock(attach->dmabuf->resv, NULL); 749 ret = dmabuf->ops->pin(attach); 750 if (ret) 751 goto err_unlock; 752 } 753 754 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 755 if (!sgt) 756 sgt = ERR_PTR(-ENOMEM); 757 if (IS_ERR(sgt)) { 758 ret = PTR_ERR(sgt); 759 goto err_unpin; 760 } 761 if (dma_buf_is_dynamic(attach->dmabuf)) 762 dma_resv_unlock(attach->dmabuf->resv); 763 attach->sgt = sgt; 764 attach->dir = DMA_BIDIRECTIONAL; 765 } 766 767 return attach; 768 769 err_attach: 770 kfree(attach); 771 return ERR_PTR(ret); 772 773 err_unpin: 774 if (dma_buf_is_dynamic(attach->dmabuf)) 775 dmabuf->ops->unpin(attach); 776 777 err_unlock: 778 if (dma_buf_is_dynamic(attach->dmabuf)) 779 dma_resv_unlock(attach->dmabuf->resv); 780 781 dma_buf_detach(dmabuf, attach); 782 return ERR_PTR(ret); 783 } 784 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 785 786 /** 787 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 788 * @dmabuf: [in] buffer to attach device to. 789 * @dev: [in] device to be attached. 790 * 791 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 792 * mapping. 793 */ 794 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 795 struct device *dev) 796 { 797 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 798 } 799 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 800 801 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 802 struct sg_table *sg_table, 803 enum dma_data_direction direction) 804 { 805 /* uses XOR, hence this unmangles */ 806 mangle_sg_table(sg_table); 807 808 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 809 } 810 811 /** 812 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 813 * @dmabuf: [in] buffer to detach from. 814 * @attach: [in] attachment to be detached; is free'd after this call. 815 * 816 * Clean up a device attachment obtained by calling dma_buf_attach(). 817 * 818 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 819 */ 820 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 821 { 822 if (WARN_ON(!dmabuf || !attach)) 823 return; 824 825 if (attach->sgt) { 826 if (dma_buf_is_dynamic(attach->dmabuf)) 827 dma_resv_lock(attach->dmabuf->resv, NULL); 828 829 __unmap_dma_buf(attach, attach->sgt, attach->dir); 830 831 if (dma_buf_is_dynamic(attach->dmabuf)) { 832 dmabuf->ops->unpin(attach); 833 dma_resv_unlock(attach->dmabuf->resv); 834 } 835 } 836 837 dma_resv_lock(dmabuf->resv, NULL); 838 list_del(&attach->node); 839 dma_resv_unlock(dmabuf->resv); 840 if (dmabuf->ops->detach) 841 dmabuf->ops->detach(dmabuf, attach); 842 843 kfree(attach); 844 } 845 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 846 847 /** 848 * dma_buf_pin - Lock down the DMA-buf 849 * @attach: [in] attachment which should be pinned 850 * 851 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 852 * call this, and only for limited use cases like scanout and not for temporary 853 * pin operations. It is not permitted to allow userspace to pin arbitrary 854 * amounts of buffers through this interface. 855 * 856 * Buffers must be unpinned by calling dma_buf_unpin(). 857 * 858 * Returns: 859 * 0 on success, negative error code on failure. 860 */ 861 int dma_buf_pin(struct dma_buf_attachment *attach) 862 { 863 struct dma_buf *dmabuf = attach->dmabuf; 864 int ret = 0; 865 866 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 867 868 dma_resv_assert_held(dmabuf->resv); 869 870 if (dmabuf->ops->pin) 871 ret = dmabuf->ops->pin(attach); 872 873 return ret; 874 } 875 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 876 877 /** 878 * dma_buf_unpin - Unpin a DMA-buf 879 * @attach: [in] attachment which should be unpinned 880 * 881 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 882 * any mapping of @attach again and inform the importer through 883 * &dma_buf_attach_ops.move_notify. 884 */ 885 void dma_buf_unpin(struct dma_buf_attachment *attach) 886 { 887 struct dma_buf *dmabuf = attach->dmabuf; 888 889 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 890 891 dma_resv_assert_held(dmabuf->resv); 892 893 if (dmabuf->ops->unpin) 894 dmabuf->ops->unpin(attach); 895 } 896 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 897 898 /** 899 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 900 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 901 * dma_buf_ops. 902 * @attach: [in] attachment whose scatterlist is to be returned 903 * @direction: [in] direction of DMA transfer 904 * 905 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 906 * on error. May return -EINTR if it is interrupted by a signal. 907 * 908 * On success, the DMA addresses and lengths in the returned scatterlist are 909 * PAGE_SIZE aligned. 910 * 911 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 912 * the underlying backing storage is pinned for as long as a mapping exists, 913 * therefore users/importers should not hold onto a mapping for undue amounts of 914 * time. 915 * 916 * Important: Dynamic importers must wait for the exclusive fence of the struct 917 * dma_resv attached to the DMA-BUF first. 918 */ 919 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 920 enum dma_data_direction direction) 921 { 922 struct sg_table *sg_table; 923 int r; 924 925 might_sleep(); 926 927 if (WARN_ON(!attach || !attach->dmabuf)) 928 return ERR_PTR(-EINVAL); 929 930 if (dma_buf_attachment_is_dynamic(attach)) 931 dma_resv_assert_held(attach->dmabuf->resv); 932 933 if (attach->sgt) { 934 /* 935 * Two mappings with different directions for the same 936 * attachment are not allowed. 937 */ 938 if (attach->dir != direction && 939 attach->dir != DMA_BIDIRECTIONAL) 940 return ERR_PTR(-EBUSY); 941 942 return attach->sgt; 943 } 944 945 if (dma_buf_is_dynamic(attach->dmabuf)) { 946 dma_resv_assert_held(attach->dmabuf->resv); 947 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 948 r = attach->dmabuf->ops->pin(attach); 949 if (r) 950 return ERR_PTR(r); 951 } 952 } 953 954 sg_table = __map_dma_buf(attach, direction); 955 if (!sg_table) 956 sg_table = ERR_PTR(-ENOMEM); 957 958 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 959 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 960 attach->dmabuf->ops->unpin(attach); 961 962 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 963 attach->sgt = sg_table; 964 attach->dir = direction; 965 } 966 967 #ifdef CONFIG_DMA_API_DEBUG 968 if (!IS_ERR(sg_table)) { 969 struct scatterlist *sg; 970 u64 addr; 971 int len; 972 int i; 973 974 for_each_sgtable_dma_sg(sg_table, sg, i) { 975 addr = sg_dma_address(sg); 976 len = sg_dma_len(sg); 977 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 978 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 979 __func__, addr, len); 980 } 981 } 982 } 983 #endif /* CONFIG_DMA_API_DEBUG */ 984 return sg_table; 985 } 986 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 987 988 /** 989 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 990 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 991 * dma_buf_ops. 992 * @attach: [in] attachment to unmap buffer from 993 * @sg_table: [in] scatterlist info of the buffer to unmap 994 * @direction: [in] direction of DMA transfer 995 * 996 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 997 */ 998 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 999 struct sg_table *sg_table, 1000 enum dma_data_direction direction) 1001 { 1002 might_sleep(); 1003 1004 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1005 return; 1006 1007 if (dma_buf_attachment_is_dynamic(attach)) 1008 dma_resv_assert_held(attach->dmabuf->resv); 1009 1010 if (attach->sgt == sg_table) 1011 return; 1012 1013 if (dma_buf_is_dynamic(attach->dmabuf)) 1014 dma_resv_assert_held(attach->dmabuf->resv); 1015 1016 __unmap_dma_buf(attach, sg_table, direction); 1017 1018 if (dma_buf_is_dynamic(attach->dmabuf) && 1019 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1020 dma_buf_unpin(attach); 1021 } 1022 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1023 1024 /** 1025 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1026 * 1027 * @dmabuf: [in] buffer which is moving 1028 * 1029 * Informs all attachmenst that they need to destroy and recreated all their 1030 * mappings. 1031 */ 1032 void dma_buf_move_notify(struct dma_buf *dmabuf) 1033 { 1034 struct dma_buf_attachment *attach; 1035 1036 dma_resv_assert_held(dmabuf->resv); 1037 1038 list_for_each_entry(attach, &dmabuf->attachments, node) 1039 if (attach->importer_ops) 1040 attach->importer_ops->move_notify(attach); 1041 } 1042 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1043 1044 /** 1045 * DOC: cpu access 1046 * 1047 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1048 * 1049 * - Fallback operations in the kernel, for example when a device is connected 1050 * over USB and the kernel needs to shuffle the data around first before 1051 * sending it away. Cache coherency is handled by braketing any transactions 1052 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1053 * access. 1054 * 1055 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1056 * vmap interface is introduced. Note that on very old 32-bit architectures 1057 * vmalloc space might be limited and result in vmap calls failing. 1058 * 1059 * Interfaces:: 1060 * 1061 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 1062 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 1063 * 1064 * The vmap call can fail if there is no vmap support in the exporter, or if 1065 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1066 * count for all vmap access and calls down into the exporter's vmap function 1067 * only when no vmapping exists, and only unmaps it once. Protection against 1068 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1069 * 1070 * - For full compatibility on the importer side with existing userspace 1071 * interfaces, which might already support mmap'ing buffers. This is needed in 1072 * many processing pipelines (e.g. feeding a software rendered image into a 1073 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1074 * framework already supported this and for DMA buffer file descriptors to 1075 * replace ION buffers mmap support was needed. 1076 * 1077 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1078 * fd. But like for CPU access there's a need to braket the actual access, 1079 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1080 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1081 * be restarted. 1082 * 1083 * Some systems might need some sort of cache coherency management e.g. when 1084 * CPU and GPU domains are being accessed through dma-buf at the same time. 1085 * To circumvent this problem there are begin/end coherency markers, that 1086 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1087 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1088 * sequence would be used like following: 1089 * 1090 * - mmap dma-buf fd 1091 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1092 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1093 * want (with the new data being consumed by say the GPU or the scanout 1094 * device) 1095 * - munmap once you don't need the buffer any more 1096 * 1097 * For correctness and optimal performance, it is always required to use 1098 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1099 * mapped address. Userspace cannot rely on coherent access, even when there 1100 * are systems where it just works without calling these ioctls. 1101 * 1102 * - And as a CPU fallback in userspace processing pipelines. 1103 * 1104 * Similar to the motivation for kernel cpu access it is again important that 1105 * the userspace code of a given importing subsystem can use the same 1106 * interfaces with a imported dma-buf buffer object as with a native buffer 1107 * object. This is especially important for drm where the userspace part of 1108 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1109 * use a different way to mmap a buffer rather invasive. 1110 * 1111 * The assumption in the current dma-buf interfaces is that redirecting the 1112 * initial mmap is all that's needed. A survey of some of the existing 1113 * subsystems shows that no driver seems to do any nefarious thing like 1114 * syncing up with outstanding asynchronous processing on the device or 1115 * allocating special resources at fault time. So hopefully this is good 1116 * enough, since adding interfaces to intercept pagefaults and allow pte 1117 * shootdowns would increase the complexity quite a bit. 1118 * 1119 * Interface:: 1120 * 1121 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1122 * unsigned long); 1123 * 1124 * If the importing subsystem simply provides a special-purpose mmap call to 1125 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1126 * equally achieve that for a dma-buf object. 1127 */ 1128 1129 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1130 enum dma_data_direction direction) 1131 { 1132 bool write = (direction == DMA_BIDIRECTIONAL || 1133 direction == DMA_TO_DEVICE); 1134 struct dma_resv *resv = dmabuf->resv; 1135 long ret; 1136 1137 /* Wait on any implicit rendering fences */ 1138 ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT); 1139 if (ret < 0) 1140 return ret; 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1147 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1148 * preparations. Coherency is only guaranteed in the specified range for the 1149 * specified access direction. 1150 * @dmabuf: [in] buffer to prepare cpu access for. 1151 * @direction: [in] length of range for cpu access. 1152 * 1153 * After the cpu access is complete the caller should call 1154 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1155 * it guaranteed to be coherent with other DMA access. 1156 * 1157 * This function will also wait for any DMA transactions tracked through 1158 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1159 * synchronization this function will only ensure cache coherency, callers must 1160 * ensure synchronization with such DMA transactions on their own. 1161 * 1162 * Can return negative error values, returns 0 on success. 1163 */ 1164 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1165 enum dma_data_direction direction) 1166 { 1167 int ret = 0; 1168 1169 if (WARN_ON(!dmabuf)) 1170 return -EINVAL; 1171 1172 might_lock(&dmabuf->resv->lock.base); 1173 1174 if (dmabuf->ops->begin_cpu_access) 1175 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1176 1177 /* Ensure that all fences are waited upon - but we first allow 1178 * the native handler the chance to do so more efficiently if it 1179 * chooses. A double invocation here will be reasonably cheap no-op. 1180 */ 1181 if (ret == 0) 1182 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1183 1184 return ret; 1185 } 1186 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1187 1188 /** 1189 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1190 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1191 * actions. Coherency is only guaranteed in the specified range for the 1192 * specified access direction. 1193 * @dmabuf: [in] buffer to complete cpu access for. 1194 * @direction: [in] length of range for cpu access. 1195 * 1196 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1197 * 1198 * Can return negative error values, returns 0 on success. 1199 */ 1200 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1201 enum dma_data_direction direction) 1202 { 1203 int ret = 0; 1204 1205 WARN_ON(!dmabuf); 1206 1207 might_lock(&dmabuf->resv->lock.base); 1208 1209 if (dmabuf->ops->end_cpu_access) 1210 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1211 1212 return ret; 1213 } 1214 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1215 1216 1217 /** 1218 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1219 * @dmabuf: [in] buffer that should back the vma 1220 * @vma: [in] vma for the mmap 1221 * @pgoff: [in] offset in pages where this mmap should start within the 1222 * dma-buf buffer. 1223 * 1224 * This function adjusts the passed in vma so that it points at the file of the 1225 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1226 * checking on the size of the vma. Then it calls the exporters mmap function to 1227 * set up the mapping. 1228 * 1229 * Can return negative error values, returns 0 on success. 1230 */ 1231 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1232 unsigned long pgoff) 1233 { 1234 if (WARN_ON(!dmabuf || !vma)) 1235 return -EINVAL; 1236 1237 /* check if buffer supports mmap */ 1238 if (!dmabuf->ops->mmap) 1239 return -EINVAL; 1240 1241 /* check for offset overflow */ 1242 if (pgoff + vma_pages(vma) < pgoff) 1243 return -EOVERFLOW; 1244 1245 /* check for overflowing the buffer's size */ 1246 if (pgoff + vma_pages(vma) > 1247 dmabuf->size >> PAGE_SHIFT) 1248 return -EINVAL; 1249 1250 /* readjust the vma */ 1251 vma_set_file(vma, dmabuf->file); 1252 vma->vm_pgoff = pgoff; 1253 1254 return dmabuf->ops->mmap(dmabuf, vma); 1255 } 1256 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1257 1258 /** 1259 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1260 * address space. Same restrictions as for vmap and friends apply. 1261 * @dmabuf: [in] buffer to vmap 1262 * @map: [out] returns the vmap pointer 1263 * 1264 * This call may fail due to lack of virtual mapping address space. 1265 * These calls are optional in drivers. The intended use for them 1266 * is for mapping objects linear in kernel space for high use objects. 1267 * 1268 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1269 * dma_buf_end_cpu_access() around any cpu access performed through this 1270 * mapping. 1271 * 1272 * Returns 0 on success, or a negative errno code otherwise. 1273 */ 1274 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1275 { 1276 struct dma_buf_map ptr; 1277 int ret = 0; 1278 1279 dma_buf_map_clear(map); 1280 1281 if (WARN_ON(!dmabuf)) 1282 return -EINVAL; 1283 1284 if (!dmabuf->ops->vmap) 1285 return -EINVAL; 1286 1287 mutex_lock(&dmabuf->lock); 1288 if (dmabuf->vmapping_counter) { 1289 dmabuf->vmapping_counter++; 1290 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1291 *map = dmabuf->vmap_ptr; 1292 goto out_unlock; 1293 } 1294 1295 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr)); 1296 1297 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1298 if (WARN_ON_ONCE(ret)) 1299 goto out_unlock; 1300 1301 dmabuf->vmap_ptr = ptr; 1302 dmabuf->vmapping_counter = 1; 1303 1304 *map = dmabuf->vmap_ptr; 1305 1306 out_unlock: 1307 mutex_unlock(&dmabuf->lock); 1308 return ret; 1309 } 1310 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1311 1312 /** 1313 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1314 * @dmabuf: [in] buffer to vunmap 1315 * @map: [in] vmap pointer to vunmap 1316 */ 1317 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1318 { 1319 if (WARN_ON(!dmabuf)) 1320 return; 1321 1322 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1323 BUG_ON(dmabuf->vmapping_counter == 0); 1324 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map)); 1325 1326 mutex_lock(&dmabuf->lock); 1327 if (--dmabuf->vmapping_counter == 0) { 1328 if (dmabuf->ops->vunmap) 1329 dmabuf->ops->vunmap(dmabuf, map); 1330 dma_buf_map_clear(&dmabuf->vmap_ptr); 1331 } 1332 mutex_unlock(&dmabuf->lock); 1333 } 1334 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1335 1336 #ifdef CONFIG_DEBUG_FS 1337 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1338 { 1339 struct dma_buf *buf_obj; 1340 struct dma_buf_attachment *attach_obj; 1341 struct dma_resv_iter cursor; 1342 struct dma_fence *fence; 1343 int count = 0, attach_count; 1344 size_t size = 0; 1345 int ret; 1346 1347 ret = mutex_lock_interruptible(&db_list.lock); 1348 1349 if (ret) 1350 return ret; 1351 1352 seq_puts(s, "\nDma-buf Objects:\n"); 1353 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1354 "size", "flags", "mode", "count", "ino"); 1355 1356 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1357 1358 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1359 if (ret) 1360 goto error_unlock; 1361 1362 1363 spin_lock(&buf_obj->name_lock); 1364 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1365 buf_obj->size, 1366 buf_obj->file->f_flags, buf_obj->file->f_mode, 1367 file_count(buf_obj->file), 1368 buf_obj->exp_name, 1369 file_inode(buf_obj->file)->i_ino, 1370 buf_obj->name ?: ""); 1371 spin_unlock(&buf_obj->name_lock); 1372 1373 dma_resv_for_each_fence(&cursor, buf_obj->resv, true, fence) { 1374 seq_printf(s, "\t%s fence: %s %s %ssignalled\n", 1375 dma_resv_iter_is_exclusive(&cursor) ? 1376 "Exclusive" : "Shared", 1377 fence->ops->get_driver_name(fence), 1378 fence->ops->get_timeline_name(fence), 1379 dma_fence_is_signaled(fence) ? "" : "un"); 1380 } 1381 1382 seq_puts(s, "\tAttached Devices:\n"); 1383 attach_count = 0; 1384 1385 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1386 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1387 attach_count++; 1388 } 1389 dma_resv_unlock(buf_obj->resv); 1390 1391 seq_printf(s, "Total %d devices attached\n\n", 1392 attach_count); 1393 1394 count++; 1395 size += buf_obj->size; 1396 } 1397 1398 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1399 1400 mutex_unlock(&db_list.lock); 1401 return 0; 1402 1403 error_unlock: 1404 mutex_unlock(&db_list.lock); 1405 return ret; 1406 } 1407 1408 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1409 1410 static struct dentry *dma_buf_debugfs_dir; 1411 1412 static int dma_buf_init_debugfs(void) 1413 { 1414 struct dentry *d; 1415 int err = 0; 1416 1417 d = debugfs_create_dir("dma_buf", NULL); 1418 if (IS_ERR(d)) 1419 return PTR_ERR(d); 1420 1421 dma_buf_debugfs_dir = d; 1422 1423 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1424 NULL, &dma_buf_debug_fops); 1425 if (IS_ERR(d)) { 1426 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1427 debugfs_remove_recursive(dma_buf_debugfs_dir); 1428 dma_buf_debugfs_dir = NULL; 1429 err = PTR_ERR(d); 1430 } 1431 1432 return err; 1433 } 1434 1435 static void dma_buf_uninit_debugfs(void) 1436 { 1437 debugfs_remove_recursive(dma_buf_debugfs_dir); 1438 } 1439 #else 1440 static inline int dma_buf_init_debugfs(void) 1441 { 1442 return 0; 1443 } 1444 static inline void dma_buf_uninit_debugfs(void) 1445 { 1446 } 1447 #endif 1448 1449 static int __init dma_buf_init(void) 1450 { 1451 int ret; 1452 1453 ret = dma_buf_init_sysfs_statistics(); 1454 if (ret) 1455 return ret; 1456 1457 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1458 if (IS_ERR(dma_buf_mnt)) 1459 return PTR_ERR(dma_buf_mnt); 1460 1461 mutex_init(&db_list.lock); 1462 INIT_LIST_HEAD(&db_list.head); 1463 dma_buf_init_debugfs(); 1464 return 0; 1465 } 1466 subsys_initcall(dma_buf_init); 1467 1468 static void __exit dma_buf_deinit(void) 1469 { 1470 dma_buf_uninit_debugfs(); 1471 kern_unmount(dma_buf_mnt); 1472 dma_buf_uninit_sysfs_statistics(); 1473 } 1474 __exitcall(dma_buf_deinit); 1475