xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 359f608f66b4434fb83b74e23ad14631ea3efc4e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/sync_file.h>
25 #include <linux/poll.h>
26 #include <linux/dma-resv.h>
27 #include <linux/mm.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 
31 #include <uapi/linux/dma-buf.h>
32 #include <uapi/linux/magic.h>
33 
34 #include "dma-buf-sysfs-stats.h"
35 
36 static inline int is_dma_buf_file(struct file *);
37 
38 struct dma_buf_list {
39 	struct list_head head;
40 	struct mutex lock;
41 };
42 
43 static struct dma_buf_list db_list;
44 
45 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
46 {
47 	struct dma_buf *dmabuf;
48 	char name[DMA_BUF_NAME_LEN];
49 	size_t ret = 0;
50 
51 	dmabuf = dentry->d_fsdata;
52 	spin_lock(&dmabuf->name_lock);
53 	if (dmabuf->name)
54 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
55 	spin_unlock(&dmabuf->name_lock);
56 
57 	return dynamic_dname(buffer, buflen, "/%s:%s",
58 			     dentry->d_name.name, ret > 0 ? name : "");
59 }
60 
61 static void dma_buf_release(struct dentry *dentry)
62 {
63 	struct dma_buf *dmabuf;
64 
65 	dmabuf = dentry->d_fsdata;
66 	if (unlikely(!dmabuf))
67 		return;
68 
69 	BUG_ON(dmabuf->vmapping_counter);
70 
71 	/*
72 	 * If you hit this BUG() it could mean:
73 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
74 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
75 	 */
76 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
77 
78 	dma_buf_stats_teardown(dmabuf);
79 	dmabuf->ops->release(dmabuf);
80 
81 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 		dma_resv_fini(dmabuf->resv);
83 
84 	WARN_ON(!list_empty(&dmabuf->attachments));
85 	module_put(dmabuf->owner);
86 	kfree(dmabuf->name);
87 	kfree(dmabuf);
88 }
89 
90 static int dma_buf_file_release(struct inode *inode, struct file *file)
91 {
92 	struct dma_buf *dmabuf;
93 
94 	if (!is_dma_buf_file(file))
95 		return -EINVAL;
96 
97 	dmabuf = file->private_data;
98 
99 	mutex_lock(&db_list.lock);
100 	list_del(&dmabuf->list_node);
101 	mutex_unlock(&db_list.lock);
102 
103 	return 0;
104 }
105 
106 static const struct dentry_operations dma_buf_dentry_ops = {
107 	.d_dname = dmabuffs_dname,
108 	.d_release = dma_buf_release,
109 };
110 
111 static struct vfsmount *dma_buf_mnt;
112 
113 static int dma_buf_fs_init_context(struct fs_context *fc)
114 {
115 	struct pseudo_fs_context *ctx;
116 
117 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
118 	if (!ctx)
119 		return -ENOMEM;
120 	ctx->dops = &dma_buf_dentry_ops;
121 	return 0;
122 }
123 
124 static struct file_system_type dma_buf_fs_type = {
125 	.name = "dmabuf",
126 	.init_fs_context = dma_buf_fs_init_context,
127 	.kill_sb = kill_anon_super,
128 };
129 
130 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
131 {
132 	struct dma_buf *dmabuf;
133 
134 	if (!is_dma_buf_file(file))
135 		return -EINVAL;
136 
137 	dmabuf = file->private_data;
138 
139 	/* check if buffer supports mmap */
140 	if (!dmabuf->ops->mmap)
141 		return -EINVAL;
142 
143 	/* check for overflowing the buffer's size */
144 	if (vma->vm_pgoff + vma_pages(vma) >
145 	    dmabuf->size >> PAGE_SHIFT)
146 		return -EINVAL;
147 
148 	return dmabuf->ops->mmap(dmabuf, vma);
149 }
150 
151 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
152 {
153 	struct dma_buf *dmabuf;
154 	loff_t base;
155 
156 	if (!is_dma_buf_file(file))
157 		return -EBADF;
158 
159 	dmabuf = file->private_data;
160 
161 	/* only support discovering the end of the buffer,
162 	   but also allow SEEK_SET to maintain the idiomatic
163 	   SEEK_END(0), SEEK_CUR(0) pattern */
164 	if (whence == SEEK_END)
165 		base = dmabuf->size;
166 	else if (whence == SEEK_SET)
167 		base = 0;
168 	else
169 		return -EINVAL;
170 
171 	if (offset != 0)
172 		return -EINVAL;
173 
174 	return base + offset;
175 }
176 
177 /**
178  * DOC: implicit fence polling
179  *
180  * To support cross-device and cross-driver synchronization of buffer access
181  * implicit fences (represented internally in the kernel with &struct dma_fence)
182  * can be attached to a &dma_buf. The glue for that and a few related things are
183  * provided in the &dma_resv structure.
184  *
185  * Userspace can query the state of these implicitly tracked fences using poll()
186  * and related system calls:
187  *
188  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
189  *   most recent write or exclusive fence.
190  *
191  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
192  *   all attached fences, shared and exclusive ones.
193  *
194  * Note that this only signals the completion of the respective fences, i.e. the
195  * DMA transfers are complete. Cache flushing and any other necessary
196  * preparations before CPU access can begin still need to happen.
197  *
198  * As an alternative to poll(), the set of fences on DMA buffer can be
199  * exported as a &sync_file using &dma_buf_sync_file_export.
200  */
201 
202 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
203 {
204 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
205 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&dcb->poll->lock, flags);
209 	wake_up_locked_poll(dcb->poll, dcb->active);
210 	dcb->active = 0;
211 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
212 	dma_fence_put(fence);
213 	/* Paired with get_file in dma_buf_poll */
214 	fput(dmabuf->file);
215 }
216 
217 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
218 				struct dma_buf_poll_cb_t *dcb)
219 {
220 	struct dma_resv_iter cursor;
221 	struct dma_fence *fence;
222 	int r;
223 
224 	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
225 				fence) {
226 		dma_fence_get(fence);
227 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
228 		if (!r)
229 			return true;
230 		dma_fence_put(fence);
231 	}
232 
233 	return false;
234 }
235 
236 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
237 {
238 	struct dma_buf *dmabuf;
239 	struct dma_resv *resv;
240 	__poll_t events;
241 
242 	dmabuf = file->private_data;
243 	if (!dmabuf || !dmabuf->resv)
244 		return EPOLLERR;
245 
246 	resv = dmabuf->resv;
247 
248 	poll_wait(file, &dmabuf->poll, poll);
249 
250 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
251 	if (!events)
252 		return 0;
253 
254 	dma_resv_lock(resv, NULL);
255 
256 	if (events & EPOLLOUT) {
257 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
258 
259 		/* Check that callback isn't busy */
260 		spin_lock_irq(&dmabuf->poll.lock);
261 		if (dcb->active)
262 			events &= ~EPOLLOUT;
263 		else
264 			dcb->active = EPOLLOUT;
265 		spin_unlock_irq(&dmabuf->poll.lock);
266 
267 		if (events & EPOLLOUT) {
268 			/* Paired with fput in dma_buf_poll_cb */
269 			get_file(dmabuf->file);
270 
271 			if (!dma_buf_poll_add_cb(resv, true, dcb))
272 				/* No callback queued, wake up any other waiters */
273 				dma_buf_poll_cb(NULL, &dcb->cb);
274 			else
275 				events &= ~EPOLLOUT;
276 		}
277 	}
278 
279 	if (events & EPOLLIN) {
280 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
281 
282 		/* Check that callback isn't busy */
283 		spin_lock_irq(&dmabuf->poll.lock);
284 		if (dcb->active)
285 			events &= ~EPOLLIN;
286 		else
287 			dcb->active = EPOLLIN;
288 		spin_unlock_irq(&dmabuf->poll.lock);
289 
290 		if (events & EPOLLIN) {
291 			/* Paired with fput in dma_buf_poll_cb */
292 			get_file(dmabuf->file);
293 
294 			if (!dma_buf_poll_add_cb(resv, false, dcb))
295 				/* No callback queued, wake up any other waiters */
296 				dma_buf_poll_cb(NULL, &dcb->cb);
297 			else
298 				events &= ~EPOLLIN;
299 		}
300 	}
301 
302 	dma_resv_unlock(resv);
303 	return events;
304 }
305 
306 /**
307  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
308  * It could support changing the name of the dma-buf if the same
309  * piece of memory is used for multiple purpose between different devices.
310  *
311  * @dmabuf: [in]     dmabuf buffer that will be renamed.
312  * @buf:    [in]     A piece of userspace memory that contains the name of
313  *                   the dma-buf.
314  *
315  * Returns 0 on success. If the dma-buf buffer is already attached to
316  * devices, return -EBUSY.
317  *
318  */
319 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
320 {
321 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
322 
323 	if (IS_ERR(name))
324 		return PTR_ERR(name);
325 
326 	spin_lock(&dmabuf->name_lock);
327 	kfree(dmabuf->name);
328 	dmabuf->name = name;
329 	spin_unlock(&dmabuf->name_lock);
330 
331 	return 0;
332 }
333 
334 #if IS_ENABLED(CONFIG_SYNC_FILE)
335 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
336 				     void __user *user_data)
337 {
338 	struct dma_buf_export_sync_file arg;
339 	enum dma_resv_usage usage;
340 	struct dma_fence *fence = NULL;
341 	struct sync_file *sync_file;
342 	int fd, ret;
343 
344 	if (copy_from_user(&arg, user_data, sizeof(arg)))
345 		return -EFAULT;
346 
347 	if (arg.flags & ~DMA_BUF_SYNC_RW)
348 		return -EINVAL;
349 
350 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
351 		return -EINVAL;
352 
353 	fd = get_unused_fd_flags(O_CLOEXEC);
354 	if (fd < 0)
355 		return fd;
356 
357 	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
358 	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
359 	if (ret)
360 		goto err_put_fd;
361 
362 	if (!fence)
363 		fence = dma_fence_get_stub();
364 
365 	sync_file = sync_file_create(fence);
366 
367 	dma_fence_put(fence);
368 
369 	if (!sync_file) {
370 		ret = -ENOMEM;
371 		goto err_put_fd;
372 	}
373 
374 	arg.fd = fd;
375 	if (copy_to_user(user_data, &arg, sizeof(arg))) {
376 		ret = -EFAULT;
377 		goto err_put_file;
378 	}
379 
380 	fd_install(fd, sync_file->file);
381 
382 	return 0;
383 
384 err_put_file:
385 	fput(sync_file->file);
386 err_put_fd:
387 	put_unused_fd(fd);
388 	return ret;
389 }
390 
391 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
392 				     const void __user *user_data)
393 {
394 	struct dma_buf_import_sync_file arg;
395 	struct dma_fence *fence, *f;
396 	enum dma_resv_usage usage;
397 	struct dma_fence_unwrap iter;
398 	unsigned int num_fences;
399 	int ret = 0;
400 
401 	if (copy_from_user(&arg, user_data, sizeof(arg)))
402 		return -EFAULT;
403 
404 	if (arg.flags & ~DMA_BUF_SYNC_RW)
405 		return -EINVAL;
406 
407 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
408 		return -EINVAL;
409 
410 	fence = sync_file_get_fence(arg.fd);
411 	if (!fence)
412 		return -EINVAL;
413 
414 	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
415 						   DMA_RESV_USAGE_READ;
416 
417 	num_fences = 0;
418 	dma_fence_unwrap_for_each(f, &iter, fence)
419 		++num_fences;
420 
421 	if (num_fences > 0) {
422 		dma_resv_lock(dmabuf->resv, NULL);
423 
424 		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
425 		if (!ret) {
426 			dma_fence_unwrap_for_each(f, &iter, fence)
427 				dma_resv_add_fence(dmabuf->resv, f, usage);
428 		}
429 
430 		dma_resv_unlock(dmabuf->resv);
431 	}
432 
433 	dma_fence_put(fence);
434 
435 	return ret;
436 }
437 #endif
438 
439 static long dma_buf_ioctl(struct file *file,
440 			  unsigned int cmd, unsigned long arg)
441 {
442 	struct dma_buf *dmabuf;
443 	struct dma_buf_sync sync;
444 	enum dma_data_direction direction;
445 	int ret;
446 
447 	dmabuf = file->private_data;
448 
449 	switch (cmd) {
450 	case DMA_BUF_IOCTL_SYNC:
451 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
452 			return -EFAULT;
453 
454 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
455 			return -EINVAL;
456 
457 		switch (sync.flags & DMA_BUF_SYNC_RW) {
458 		case DMA_BUF_SYNC_READ:
459 			direction = DMA_FROM_DEVICE;
460 			break;
461 		case DMA_BUF_SYNC_WRITE:
462 			direction = DMA_TO_DEVICE;
463 			break;
464 		case DMA_BUF_SYNC_RW:
465 			direction = DMA_BIDIRECTIONAL;
466 			break;
467 		default:
468 			return -EINVAL;
469 		}
470 
471 		if (sync.flags & DMA_BUF_SYNC_END)
472 			ret = dma_buf_end_cpu_access(dmabuf, direction);
473 		else
474 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
475 
476 		return ret;
477 
478 	case DMA_BUF_SET_NAME_A:
479 	case DMA_BUF_SET_NAME_B:
480 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
481 
482 #if IS_ENABLED(CONFIG_SYNC_FILE)
483 	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
484 		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
485 	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
486 		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
487 #endif
488 
489 	default:
490 		return -ENOTTY;
491 	}
492 }
493 
494 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
495 {
496 	struct dma_buf *dmabuf = file->private_data;
497 
498 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
499 	/* Don't count the temporary reference taken inside procfs seq_show */
500 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
501 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
502 	spin_lock(&dmabuf->name_lock);
503 	if (dmabuf->name)
504 		seq_printf(m, "name:\t%s\n", dmabuf->name);
505 	spin_unlock(&dmabuf->name_lock);
506 }
507 
508 static const struct file_operations dma_buf_fops = {
509 	.release	= dma_buf_file_release,
510 	.mmap		= dma_buf_mmap_internal,
511 	.llseek		= dma_buf_llseek,
512 	.poll		= dma_buf_poll,
513 	.unlocked_ioctl	= dma_buf_ioctl,
514 	.compat_ioctl	= compat_ptr_ioctl,
515 	.show_fdinfo	= dma_buf_show_fdinfo,
516 };
517 
518 /*
519  * is_dma_buf_file - Check if struct file* is associated with dma_buf
520  */
521 static inline int is_dma_buf_file(struct file *file)
522 {
523 	return file->f_op == &dma_buf_fops;
524 }
525 
526 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
527 {
528 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
529 	struct file *file;
530 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
531 
532 	if (IS_ERR(inode))
533 		return ERR_CAST(inode);
534 
535 	inode->i_size = dmabuf->size;
536 	inode_set_bytes(inode, dmabuf->size);
537 
538 	/*
539 	 * The ->i_ino acquired from get_next_ino() is not unique thus
540 	 * not suitable for using it as dentry name by dmabuf stats.
541 	 * Override ->i_ino with the unique and dmabuffs specific
542 	 * value.
543 	 */
544 	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
545 	flags &= O_ACCMODE | O_NONBLOCK;
546 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
547 				 flags, &dma_buf_fops);
548 	if (IS_ERR(file))
549 		goto err_alloc_file;
550 	file->private_data = dmabuf;
551 	file->f_path.dentry->d_fsdata = dmabuf;
552 
553 	return file;
554 
555 err_alloc_file:
556 	iput(inode);
557 	return file;
558 }
559 
560 /**
561  * DOC: dma buf device access
562  *
563  * For device DMA access to a shared DMA buffer the usual sequence of operations
564  * is fairly simple:
565  *
566  * 1. The exporter defines his exporter instance using
567  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
568  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
569  *    as a file descriptor by calling dma_buf_fd().
570  *
571  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
572  *    to share with: First the file descriptor is converted to a &dma_buf using
573  *    dma_buf_get(). Then the buffer is attached to the device using
574  *    dma_buf_attach().
575  *
576  *    Up to this stage the exporter is still free to migrate or reallocate the
577  *    backing storage.
578  *
579  * 3. Once the buffer is attached to all devices userspace can initiate DMA
580  *    access to the shared buffer. In the kernel this is done by calling
581  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
582  *
583  * 4. Once a driver is done with a shared buffer it needs to call
584  *    dma_buf_detach() (after cleaning up any mappings) and then release the
585  *    reference acquired with dma_buf_get() by calling dma_buf_put().
586  *
587  * For the detailed semantics exporters are expected to implement see
588  * &dma_buf_ops.
589  */
590 
591 /**
592  * dma_buf_export - Creates a new dma_buf, and associates an anon file
593  * with this buffer, so it can be exported.
594  * Also connect the allocator specific data and ops to the buffer.
595  * Additionally, provide a name string for exporter; useful in debugging.
596  *
597  * @exp_info:	[in]	holds all the export related information provided
598  *			by the exporter. see &struct dma_buf_export_info
599  *			for further details.
600  *
601  * Returns, on success, a newly created struct dma_buf object, which wraps the
602  * supplied private data and operations for struct dma_buf_ops. On either
603  * missing ops, or error in allocating struct dma_buf, will return negative
604  * error.
605  *
606  * For most cases the easiest way to create @exp_info is through the
607  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
608  */
609 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
610 {
611 	struct dma_buf *dmabuf;
612 	struct dma_resv *resv = exp_info->resv;
613 	struct file *file;
614 	size_t alloc_size = sizeof(struct dma_buf);
615 	int ret;
616 
617 	if (!exp_info->resv)
618 		alloc_size += sizeof(struct dma_resv);
619 	else
620 		/* prevent &dma_buf[1] == dma_buf->resv */
621 		alloc_size += 1;
622 
623 	if (WARN_ON(!exp_info->priv
624 			  || !exp_info->ops
625 			  || !exp_info->ops->map_dma_buf
626 			  || !exp_info->ops->unmap_dma_buf
627 			  || !exp_info->ops->release)) {
628 		return ERR_PTR(-EINVAL);
629 	}
630 
631 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
632 		    (exp_info->ops->pin || exp_info->ops->unpin)))
633 		return ERR_PTR(-EINVAL);
634 
635 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
636 		return ERR_PTR(-EINVAL);
637 
638 	if (!try_module_get(exp_info->owner))
639 		return ERR_PTR(-ENOENT);
640 
641 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
642 	if (!dmabuf) {
643 		ret = -ENOMEM;
644 		goto err_module;
645 	}
646 
647 	dmabuf->priv = exp_info->priv;
648 	dmabuf->ops = exp_info->ops;
649 	dmabuf->size = exp_info->size;
650 	dmabuf->exp_name = exp_info->exp_name;
651 	dmabuf->owner = exp_info->owner;
652 	spin_lock_init(&dmabuf->name_lock);
653 	init_waitqueue_head(&dmabuf->poll);
654 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
655 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
656 
657 	if (!resv) {
658 		resv = (struct dma_resv *)&dmabuf[1];
659 		dma_resv_init(resv);
660 	}
661 	dmabuf->resv = resv;
662 
663 	file = dma_buf_getfile(dmabuf, exp_info->flags);
664 	if (IS_ERR(file)) {
665 		ret = PTR_ERR(file);
666 		goto err_dmabuf;
667 	}
668 
669 	dmabuf->file = file;
670 
671 	mutex_init(&dmabuf->lock);
672 	INIT_LIST_HEAD(&dmabuf->attachments);
673 
674 	mutex_lock(&db_list.lock);
675 	list_add(&dmabuf->list_node, &db_list.head);
676 	mutex_unlock(&db_list.lock);
677 
678 	ret = dma_buf_stats_setup(dmabuf);
679 	if (ret)
680 		goto err_sysfs;
681 
682 	return dmabuf;
683 
684 err_sysfs:
685 	/*
686 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
687 	 * dma_buf_release() gets invoked by dentry_ops, it exits
688 	 * early before calling the release() dma_buf op.
689 	 */
690 	file->f_path.dentry->d_fsdata = NULL;
691 	fput(file);
692 err_dmabuf:
693 	kfree(dmabuf);
694 err_module:
695 	module_put(exp_info->owner);
696 	return ERR_PTR(ret);
697 }
698 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
699 
700 /**
701  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
702  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
703  * @flags:      [in]    flags to give to fd
704  *
705  * On success, returns an associated 'fd'. Else, returns error.
706  */
707 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
708 {
709 	int fd;
710 
711 	if (!dmabuf || !dmabuf->file)
712 		return -EINVAL;
713 
714 	fd = get_unused_fd_flags(flags);
715 	if (fd < 0)
716 		return fd;
717 
718 	fd_install(fd, dmabuf->file);
719 
720 	return fd;
721 }
722 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
723 
724 /**
725  * dma_buf_get - returns the struct dma_buf related to an fd
726  * @fd:	[in]	fd associated with the struct dma_buf to be returned
727  *
728  * On success, returns the struct dma_buf associated with an fd; uses
729  * file's refcounting done by fget to increase refcount. returns ERR_PTR
730  * otherwise.
731  */
732 struct dma_buf *dma_buf_get(int fd)
733 {
734 	struct file *file;
735 
736 	file = fget(fd);
737 
738 	if (!file)
739 		return ERR_PTR(-EBADF);
740 
741 	if (!is_dma_buf_file(file)) {
742 		fput(file);
743 		return ERR_PTR(-EINVAL);
744 	}
745 
746 	return file->private_data;
747 }
748 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
749 
750 /**
751  * dma_buf_put - decreases refcount of the buffer
752  * @dmabuf:	[in]	buffer to reduce refcount of
753  *
754  * Uses file's refcounting done implicitly by fput().
755  *
756  * If, as a result of this call, the refcount becomes 0, the 'release' file
757  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
758  * in turn, and frees the memory allocated for dmabuf when exported.
759  */
760 void dma_buf_put(struct dma_buf *dmabuf)
761 {
762 	if (WARN_ON(!dmabuf || !dmabuf->file))
763 		return;
764 
765 	fput(dmabuf->file);
766 }
767 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
768 
769 static void mangle_sg_table(struct sg_table *sg_table)
770 {
771 #ifdef CONFIG_DMABUF_DEBUG
772 	int i;
773 	struct scatterlist *sg;
774 
775 	/* To catch abuse of the underlying struct page by importers mix
776 	 * up the bits, but take care to preserve the low SG_ bits to
777 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
778 	 * before passing the sgt back to the exporter. */
779 	for_each_sgtable_sg(sg_table, sg, i)
780 		sg->page_link ^= ~0xffUL;
781 #endif
782 
783 }
784 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
785 				       enum dma_data_direction direction)
786 {
787 	struct sg_table *sg_table;
788 	signed long ret;
789 
790 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
791 	if (IS_ERR_OR_NULL(sg_table))
792 		return sg_table;
793 
794 	if (!dma_buf_attachment_is_dynamic(attach)) {
795 		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
796 					    DMA_RESV_USAGE_KERNEL, true,
797 					    MAX_SCHEDULE_TIMEOUT);
798 		if (ret < 0) {
799 			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
800 							   direction);
801 			return ERR_PTR(ret);
802 		}
803 	}
804 
805 	mangle_sg_table(sg_table);
806 	return sg_table;
807 }
808 
809 /**
810  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
811  * @dmabuf:		[in]	buffer to attach device to.
812  * @dev:		[in]	device to be attached.
813  * @importer_ops:	[in]	importer operations for the attachment
814  * @importer_priv:	[in]	importer private pointer for the attachment
815  *
816  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
817  * must be cleaned up by calling dma_buf_detach().
818  *
819  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
820  * functionality.
821  *
822  * Returns:
823  *
824  * A pointer to newly created &dma_buf_attachment on success, or a negative
825  * error code wrapped into a pointer on failure.
826  *
827  * Note that this can fail if the backing storage of @dmabuf is in a place not
828  * accessible to @dev, and cannot be moved to a more suitable place. This is
829  * indicated with the error code -EBUSY.
830  */
831 struct dma_buf_attachment *
832 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
833 		       const struct dma_buf_attach_ops *importer_ops,
834 		       void *importer_priv)
835 {
836 	struct dma_buf_attachment *attach;
837 	int ret;
838 
839 	if (WARN_ON(!dmabuf || !dev))
840 		return ERR_PTR(-EINVAL);
841 
842 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
843 		return ERR_PTR(-EINVAL);
844 
845 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
846 	if (!attach)
847 		return ERR_PTR(-ENOMEM);
848 
849 	attach->dev = dev;
850 	attach->dmabuf = dmabuf;
851 	if (importer_ops)
852 		attach->peer2peer = importer_ops->allow_peer2peer;
853 	attach->importer_ops = importer_ops;
854 	attach->importer_priv = importer_priv;
855 
856 	if (dmabuf->ops->attach) {
857 		ret = dmabuf->ops->attach(dmabuf, attach);
858 		if (ret)
859 			goto err_attach;
860 	}
861 	dma_resv_lock(dmabuf->resv, NULL);
862 	list_add(&attach->node, &dmabuf->attachments);
863 	dma_resv_unlock(dmabuf->resv);
864 
865 	/* When either the importer or the exporter can't handle dynamic
866 	 * mappings we cache the mapping here to avoid issues with the
867 	 * reservation object lock.
868 	 */
869 	if (dma_buf_attachment_is_dynamic(attach) !=
870 	    dma_buf_is_dynamic(dmabuf)) {
871 		struct sg_table *sgt;
872 
873 		if (dma_buf_is_dynamic(attach->dmabuf)) {
874 			dma_resv_lock(attach->dmabuf->resv, NULL);
875 			ret = dmabuf->ops->pin(attach);
876 			if (ret)
877 				goto err_unlock;
878 		}
879 
880 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
881 		if (!sgt)
882 			sgt = ERR_PTR(-ENOMEM);
883 		if (IS_ERR(sgt)) {
884 			ret = PTR_ERR(sgt);
885 			goto err_unpin;
886 		}
887 		if (dma_buf_is_dynamic(attach->dmabuf))
888 			dma_resv_unlock(attach->dmabuf->resv);
889 		attach->sgt = sgt;
890 		attach->dir = DMA_BIDIRECTIONAL;
891 	}
892 
893 	return attach;
894 
895 err_attach:
896 	kfree(attach);
897 	return ERR_PTR(ret);
898 
899 err_unpin:
900 	if (dma_buf_is_dynamic(attach->dmabuf))
901 		dmabuf->ops->unpin(attach);
902 
903 err_unlock:
904 	if (dma_buf_is_dynamic(attach->dmabuf))
905 		dma_resv_unlock(attach->dmabuf->resv);
906 
907 	dma_buf_detach(dmabuf, attach);
908 	return ERR_PTR(ret);
909 }
910 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
911 
912 /**
913  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
914  * @dmabuf:	[in]	buffer to attach device to.
915  * @dev:	[in]	device to be attached.
916  *
917  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
918  * mapping.
919  */
920 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
921 					  struct device *dev)
922 {
923 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
924 }
925 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
926 
927 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
928 			    struct sg_table *sg_table,
929 			    enum dma_data_direction direction)
930 {
931 	/* uses XOR, hence this unmangles */
932 	mangle_sg_table(sg_table);
933 
934 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
935 }
936 
937 /**
938  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
939  * @dmabuf:	[in]	buffer to detach from.
940  * @attach:	[in]	attachment to be detached; is free'd after this call.
941  *
942  * Clean up a device attachment obtained by calling dma_buf_attach().
943  *
944  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
945  */
946 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
947 {
948 	if (WARN_ON(!dmabuf || !attach))
949 		return;
950 
951 	if (attach->sgt) {
952 		if (dma_buf_is_dynamic(attach->dmabuf))
953 			dma_resv_lock(attach->dmabuf->resv, NULL);
954 
955 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
956 
957 		if (dma_buf_is_dynamic(attach->dmabuf)) {
958 			dmabuf->ops->unpin(attach);
959 			dma_resv_unlock(attach->dmabuf->resv);
960 		}
961 	}
962 
963 	dma_resv_lock(dmabuf->resv, NULL);
964 	list_del(&attach->node);
965 	dma_resv_unlock(dmabuf->resv);
966 	if (dmabuf->ops->detach)
967 		dmabuf->ops->detach(dmabuf, attach);
968 
969 	kfree(attach);
970 }
971 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
972 
973 /**
974  * dma_buf_pin - Lock down the DMA-buf
975  * @attach:	[in]	attachment which should be pinned
976  *
977  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
978  * call this, and only for limited use cases like scanout and not for temporary
979  * pin operations. It is not permitted to allow userspace to pin arbitrary
980  * amounts of buffers through this interface.
981  *
982  * Buffers must be unpinned by calling dma_buf_unpin().
983  *
984  * Returns:
985  * 0 on success, negative error code on failure.
986  */
987 int dma_buf_pin(struct dma_buf_attachment *attach)
988 {
989 	struct dma_buf *dmabuf = attach->dmabuf;
990 	int ret = 0;
991 
992 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
993 
994 	dma_resv_assert_held(dmabuf->resv);
995 
996 	if (dmabuf->ops->pin)
997 		ret = dmabuf->ops->pin(attach);
998 
999 	return ret;
1000 }
1001 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1002 
1003 /**
1004  * dma_buf_unpin - Unpin a DMA-buf
1005  * @attach:	[in]	attachment which should be unpinned
1006  *
1007  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1008  * any mapping of @attach again and inform the importer through
1009  * &dma_buf_attach_ops.move_notify.
1010  */
1011 void dma_buf_unpin(struct dma_buf_attachment *attach)
1012 {
1013 	struct dma_buf *dmabuf = attach->dmabuf;
1014 
1015 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1016 
1017 	dma_resv_assert_held(dmabuf->resv);
1018 
1019 	if (dmabuf->ops->unpin)
1020 		dmabuf->ops->unpin(attach);
1021 }
1022 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1023 
1024 /**
1025  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1026  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1027  * dma_buf_ops.
1028  * @attach:	[in]	attachment whose scatterlist is to be returned
1029  * @direction:	[in]	direction of DMA transfer
1030  *
1031  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1032  * on error. May return -EINTR if it is interrupted by a signal.
1033  *
1034  * On success, the DMA addresses and lengths in the returned scatterlist are
1035  * PAGE_SIZE aligned.
1036  *
1037  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1038  * the underlying backing storage is pinned for as long as a mapping exists,
1039  * therefore users/importers should not hold onto a mapping for undue amounts of
1040  * time.
1041  *
1042  * Important: Dynamic importers must wait for the exclusive fence of the struct
1043  * dma_resv attached to the DMA-BUF first.
1044  */
1045 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1046 					enum dma_data_direction direction)
1047 {
1048 	struct sg_table *sg_table;
1049 	int r;
1050 
1051 	might_sleep();
1052 
1053 	if (WARN_ON(!attach || !attach->dmabuf))
1054 		return ERR_PTR(-EINVAL);
1055 
1056 	if (dma_buf_attachment_is_dynamic(attach))
1057 		dma_resv_assert_held(attach->dmabuf->resv);
1058 
1059 	if (attach->sgt) {
1060 		/*
1061 		 * Two mappings with different directions for the same
1062 		 * attachment are not allowed.
1063 		 */
1064 		if (attach->dir != direction &&
1065 		    attach->dir != DMA_BIDIRECTIONAL)
1066 			return ERR_PTR(-EBUSY);
1067 
1068 		return attach->sgt;
1069 	}
1070 
1071 	if (dma_buf_is_dynamic(attach->dmabuf)) {
1072 		dma_resv_assert_held(attach->dmabuf->resv);
1073 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1074 			r = attach->dmabuf->ops->pin(attach);
1075 			if (r)
1076 				return ERR_PTR(r);
1077 		}
1078 	}
1079 
1080 	sg_table = __map_dma_buf(attach, direction);
1081 	if (!sg_table)
1082 		sg_table = ERR_PTR(-ENOMEM);
1083 
1084 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1085 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1086 		attach->dmabuf->ops->unpin(attach);
1087 
1088 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1089 		attach->sgt = sg_table;
1090 		attach->dir = direction;
1091 	}
1092 
1093 #ifdef CONFIG_DMA_API_DEBUG
1094 	if (!IS_ERR(sg_table)) {
1095 		struct scatterlist *sg;
1096 		u64 addr;
1097 		int len;
1098 		int i;
1099 
1100 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1101 			addr = sg_dma_address(sg);
1102 			len = sg_dma_len(sg);
1103 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1104 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1105 					 __func__, addr, len);
1106 			}
1107 		}
1108 	}
1109 #endif /* CONFIG_DMA_API_DEBUG */
1110 	return sg_table;
1111 }
1112 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1113 
1114 /**
1115  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1116  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1117  * dma_buf_ops.
1118  * @attach:	[in]	attachment to unmap buffer from
1119  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1120  * @direction:  [in]    direction of DMA transfer
1121  *
1122  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1123  */
1124 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1125 				struct sg_table *sg_table,
1126 				enum dma_data_direction direction)
1127 {
1128 	might_sleep();
1129 
1130 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1131 		return;
1132 
1133 	if (dma_buf_attachment_is_dynamic(attach))
1134 		dma_resv_assert_held(attach->dmabuf->resv);
1135 
1136 	if (attach->sgt == sg_table)
1137 		return;
1138 
1139 	if (dma_buf_is_dynamic(attach->dmabuf))
1140 		dma_resv_assert_held(attach->dmabuf->resv);
1141 
1142 	__unmap_dma_buf(attach, sg_table, direction);
1143 
1144 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1145 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1146 		dma_buf_unpin(attach);
1147 }
1148 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1149 
1150 /**
1151  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1152  *
1153  * @dmabuf:	[in]	buffer which is moving
1154  *
1155  * Informs all attachmenst that they need to destroy and recreated all their
1156  * mappings.
1157  */
1158 void dma_buf_move_notify(struct dma_buf *dmabuf)
1159 {
1160 	struct dma_buf_attachment *attach;
1161 
1162 	dma_resv_assert_held(dmabuf->resv);
1163 
1164 	list_for_each_entry(attach, &dmabuf->attachments, node)
1165 		if (attach->importer_ops)
1166 			attach->importer_ops->move_notify(attach);
1167 }
1168 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1169 
1170 /**
1171  * DOC: cpu access
1172  *
1173  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1174  *
1175  * - Fallback operations in the kernel, for example when a device is connected
1176  *   over USB and the kernel needs to shuffle the data around first before
1177  *   sending it away. Cache coherency is handled by braketing any transactions
1178  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1179  *   access.
1180  *
1181  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1182  *   vmap interface is introduced. Note that on very old 32-bit architectures
1183  *   vmalloc space might be limited and result in vmap calls failing.
1184  *
1185  *   Interfaces::
1186  *
1187  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1188  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1189  *
1190  *   The vmap call can fail if there is no vmap support in the exporter, or if
1191  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1192  *   count for all vmap access and calls down into the exporter's vmap function
1193  *   only when no vmapping exists, and only unmaps it once. Protection against
1194  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1195  *
1196  * - For full compatibility on the importer side with existing userspace
1197  *   interfaces, which might already support mmap'ing buffers. This is needed in
1198  *   many processing pipelines (e.g. feeding a software rendered image into a
1199  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1200  *   framework already supported this and for DMA buffer file descriptors to
1201  *   replace ION buffers mmap support was needed.
1202  *
1203  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1204  *   fd. But like for CPU access there's a need to braket the actual access,
1205  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1206  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1207  *   be restarted.
1208  *
1209  *   Some systems might need some sort of cache coherency management e.g. when
1210  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1211  *   To circumvent this problem there are begin/end coherency markers, that
1212  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1213  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1214  *   sequence would be used like following:
1215  *
1216  *     - mmap dma-buf fd
1217  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1218  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1219  *       want (with the new data being consumed by say the GPU or the scanout
1220  *       device)
1221  *     - munmap once you don't need the buffer any more
1222  *
1223  *    For correctness and optimal performance, it is always required to use
1224  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1225  *    mapped address. Userspace cannot rely on coherent access, even when there
1226  *    are systems where it just works without calling these ioctls.
1227  *
1228  * - And as a CPU fallback in userspace processing pipelines.
1229  *
1230  *   Similar to the motivation for kernel cpu access it is again important that
1231  *   the userspace code of a given importing subsystem can use the same
1232  *   interfaces with a imported dma-buf buffer object as with a native buffer
1233  *   object. This is especially important for drm where the userspace part of
1234  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1235  *   use a different way to mmap a buffer rather invasive.
1236  *
1237  *   The assumption in the current dma-buf interfaces is that redirecting the
1238  *   initial mmap is all that's needed. A survey of some of the existing
1239  *   subsystems shows that no driver seems to do any nefarious thing like
1240  *   syncing up with outstanding asynchronous processing on the device or
1241  *   allocating special resources at fault time. So hopefully this is good
1242  *   enough, since adding interfaces to intercept pagefaults and allow pte
1243  *   shootdowns would increase the complexity quite a bit.
1244  *
1245  *   Interface::
1246  *
1247  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1248  *		       unsigned long);
1249  *
1250  *   If the importing subsystem simply provides a special-purpose mmap call to
1251  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1252  *   equally achieve that for a dma-buf object.
1253  */
1254 
1255 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1256 				      enum dma_data_direction direction)
1257 {
1258 	bool write = (direction == DMA_BIDIRECTIONAL ||
1259 		      direction == DMA_TO_DEVICE);
1260 	struct dma_resv *resv = dmabuf->resv;
1261 	long ret;
1262 
1263 	/* Wait on any implicit rendering fences */
1264 	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1265 				    true, MAX_SCHEDULE_TIMEOUT);
1266 	if (ret < 0)
1267 		return ret;
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1274  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1275  * preparations. Coherency is only guaranteed in the specified range for the
1276  * specified access direction.
1277  * @dmabuf:	[in]	buffer to prepare cpu access for.
1278  * @direction:	[in]	length of range for cpu access.
1279  *
1280  * After the cpu access is complete the caller should call
1281  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1282  * it guaranteed to be coherent with other DMA access.
1283  *
1284  * This function will also wait for any DMA transactions tracked through
1285  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1286  * synchronization this function will only ensure cache coherency, callers must
1287  * ensure synchronization with such DMA transactions on their own.
1288  *
1289  * Can return negative error values, returns 0 on success.
1290  */
1291 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1292 			     enum dma_data_direction direction)
1293 {
1294 	int ret = 0;
1295 
1296 	if (WARN_ON(!dmabuf))
1297 		return -EINVAL;
1298 
1299 	might_lock(&dmabuf->resv->lock.base);
1300 
1301 	if (dmabuf->ops->begin_cpu_access)
1302 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1303 
1304 	/* Ensure that all fences are waited upon - but we first allow
1305 	 * the native handler the chance to do so more efficiently if it
1306 	 * chooses. A double invocation here will be reasonably cheap no-op.
1307 	 */
1308 	if (ret == 0)
1309 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1314 
1315 /**
1316  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1317  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1318  * actions. Coherency is only guaranteed in the specified range for the
1319  * specified access direction.
1320  * @dmabuf:	[in]	buffer to complete cpu access for.
1321  * @direction:	[in]	length of range for cpu access.
1322  *
1323  * This terminates CPU access started with dma_buf_begin_cpu_access().
1324  *
1325  * Can return negative error values, returns 0 on success.
1326  */
1327 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1328 			   enum dma_data_direction direction)
1329 {
1330 	int ret = 0;
1331 
1332 	WARN_ON(!dmabuf);
1333 
1334 	might_lock(&dmabuf->resv->lock.base);
1335 
1336 	if (dmabuf->ops->end_cpu_access)
1337 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1338 
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1342 
1343 
1344 /**
1345  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1346  * @dmabuf:	[in]	buffer that should back the vma
1347  * @vma:	[in]	vma for the mmap
1348  * @pgoff:	[in]	offset in pages where this mmap should start within the
1349  *			dma-buf buffer.
1350  *
1351  * This function adjusts the passed in vma so that it points at the file of the
1352  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1353  * checking on the size of the vma. Then it calls the exporters mmap function to
1354  * set up the mapping.
1355  *
1356  * Can return negative error values, returns 0 on success.
1357  */
1358 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1359 		 unsigned long pgoff)
1360 {
1361 	if (WARN_ON(!dmabuf || !vma))
1362 		return -EINVAL;
1363 
1364 	/* check if buffer supports mmap */
1365 	if (!dmabuf->ops->mmap)
1366 		return -EINVAL;
1367 
1368 	/* check for offset overflow */
1369 	if (pgoff + vma_pages(vma) < pgoff)
1370 		return -EOVERFLOW;
1371 
1372 	/* check for overflowing the buffer's size */
1373 	if (pgoff + vma_pages(vma) >
1374 	    dmabuf->size >> PAGE_SHIFT)
1375 		return -EINVAL;
1376 
1377 	/* readjust the vma */
1378 	vma_set_file(vma, dmabuf->file);
1379 	vma->vm_pgoff = pgoff;
1380 
1381 	return dmabuf->ops->mmap(dmabuf, vma);
1382 }
1383 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1384 
1385 /**
1386  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1387  * address space. Same restrictions as for vmap and friends apply.
1388  * @dmabuf:	[in]	buffer to vmap
1389  * @map:	[out]	returns the vmap pointer
1390  *
1391  * This call may fail due to lack of virtual mapping address space.
1392  * These calls are optional in drivers. The intended use for them
1393  * is for mapping objects linear in kernel space for high use objects.
1394  *
1395  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1396  * dma_buf_end_cpu_access() around any cpu access performed through this
1397  * mapping.
1398  *
1399  * Returns 0 on success, or a negative errno code otherwise.
1400  */
1401 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1402 {
1403 	struct iosys_map ptr;
1404 	int ret = 0;
1405 
1406 	iosys_map_clear(map);
1407 
1408 	if (WARN_ON(!dmabuf))
1409 		return -EINVAL;
1410 
1411 	if (!dmabuf->ops->vmap)
1412 		return -EINVAL;
1413 
1414 	mutex_lock(&dmabuf->lock);
1415 	if (dmabuf->vmapping_counter) {
1416 		dmabuf->vmapping_counter++;
1417 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1418 		*map = dmabuf->vmap_ptr;
1419 		goto out_unlock;
1420 	}
1421 
1422 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1423 
1424 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1425 	if (WARN_ON_ONCE(ret))
1426 		goto out_unlock;
1427 
1428 	dmabuf->vmap_ptr = ptr;
1429 	dmabuf->vmapping_counter = 1;
1430 
1431 	*map = dmabuf->vmap_ptr;
1432 
1433 out_unlock:
1434 	mutex_unlock(&dmabuf->lock);
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1438 
1439 /**
1440  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1441  * @dmabuf:	[in]	buffer to vunmap
1442  * @map:	[in]	vmap pointer to vunmap
1443  */
1444 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1445 {
1446 	if (WARN_ON(!dmabuf))
1447 		return;
1448 
1449 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1450 	BUG_ON(dmabuf->vmapping_counter == 0);
1451 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1452 
1453 	mutex_lock(&dmabuf->lock);
1454 	if (--dmabuf->vmapping_counter == 0) {
1455 		if (dmabuf->ops->vunmap)
1456 			dmabuf->ops->vunmap(dmabuf, map);
1457 		iosys_map_clear(&dmabuf->vmap_ptr);
1458 	}
1459 	mutex_unlock(&dmabuf->lock);
1460 }
1461 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1462 
1463 #ifdef CONFIG_DEBUG_FS
1464 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1465 {
1466 	struct dma_buf *buf_obj;
1467 	struct dma_buf_attachment *attach_obj;
1468 	int count = 0, attach_count;
1469 	size_t size = 0;
1470 	int ret;
1471 
1472 	ret = mutex_lock_interruptible(&db_list.lock);
1473 
1474 	if (ret)
1475 		return ret;
1476 
1477 	seq_puts(s, "\nDma-buf Objects:\n");
1478 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1479 		   "size", "flags", "mode", "count", "ino");
1480 
1481 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1482 
1483 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1484 		if (ret)
1485 			goto error_unlock;
1486 
1487 
1488 		spin_lock(&buf_obj->name_lock);
1489 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1490 				buf_obj->size,
1491 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1492 				file_count(buf_obj->file),
1493 				buf_obj->exp_name,
1494 				file_inode(buf_obj->file)->i_ino,
1495 				buf_obj->name ?: "<none>");
1496 		spin_unlock(&buf_obj->name_lock);
1497 
1498 		dma_resv_describe(buf_obj->resv, s);
1499 
1500 		seq_puts(s, "\tAttached Devices:\n");
1501 		attach_count = 0;
1502 
1503 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1504 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1505 			attach_count++;
1506 		}
1507 		dma_resv_unlock(buf_obj->resv);
1508 
1509 		seq_printf(s, "Total %d devices attached\n\n",
1510 				attach_count);
1511 
1512 		count++;
1513 		size += buf_obj->size;
1514 	}
1515 
1516 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1517 
1518 	mutex_unlock(&db_list.lock);
1519 	return 0;
1520 
1521 error_unlock:
1522 	mutex_unlock(&db_list.lock);
1523 	return ret;
1524 }
1525 
1526 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1527 
1528 static struct dentry *dma_buf_debugfs_dir;
1529 
1530 static int dma_buf_init_debugfs(void)
1531 {
1532 	struct dentry *d;
1533 	int err = 0;
1534 
1535 	d = debugfs_create_dir("dma_buf", NULL);
1536 	if (IS_ERR(d))
1537 		return PTR_ERR(d);
1538 
1539 	dma_buf_debugfs_dir = d;
1540 
1541 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1542 				NULL, &dma_buf_debug_fops);
1543 	if (IS_ERR(d)) {
1544 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1545 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1546 		dma_buf_debugfs_dir = NULL;
1547 		err = PTR_ERR(d);
1548 	}
1549 
1550 	return err;
1551 }
1552 
1553 static void dma_buf_uninit_debugfs(void)
1554 {
1555 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1556 }
1557 #else
1558 static inline int dma_buf_init_debugfs(void)
1559 {
1560 	return 0;
1561 }
1562 static inline void dma_buf_uninit_debugfs(void)
1563 {
1564 }
1565 #endif
1566 
1567 static int __init dma_buf_init(void)
1568 {
1569 	int ret;
1570 
1571 	ret = dma_buf_init_sysfs_statistics();
1572 	if (ret)
1573 		return ret;
1574 
1575 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1576 	if (IS_ERR(dma_buf_mnt))
1577 		return PTR_ERR(dma_buf_mnt);
1578 
1579 	mutex_init(&db_list.lock);
1580 	INIT_LIST_HEAD(&db_list.head);
1581 	dma_buf_init_debugfs();
1582 	return 0;
1583 }
1584 subsys_initcall(dma_buf_init);
1585 
1586 static void __exit dma_buf_deinit(void)
1587 {
1588 	dma_buf_uninit_debugfs();
1589 	kern_unmount(dma_buf_mnt);
1590 	dma_buf_uninit_sysfs_statistics();
1591 }
1592 __exitcall(dma_buf_deinit);
1593