xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 2d68bb26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	dma_resv_lock(dmabuf->resv, NULL);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	dma_resv_unlock(dmabuf->resv);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 	.d_dname = dmabuffs_dname,
59 };
60 
61 static struct vfsmount *dma_buf_mnt;
62 
63 static int dma_buf_fs_init_context(struct fs_context *fc)
64 {
65 	struct pseudo_fs_context *ctx;
66 
67 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 	if (!ctx)
69 		return -ENOMEM;
70 	ctx->dops = &dma_buf_dentry_ops;
71 	return 0;
72 }
73 
74 static struct file_system_type dma_buf_fs_type = {
75 	.name = "dmabuf",
76 	.init_fs_context = dma_buf_fs_init_context,
77 	.kill_sb = kill_anon_super,
78 };
79 
80 static int dma_buf_release(struct inode *inode, struct file *file)
81 {
82 	struct dma_buf *dmabuf;
83 
84 	if (!is_dma_buf_file(file))
85 		return -EINVAL;
86 
87 	dmabuf = file->private_data;
88 
89 	BUG_ON(dmabuf->vmapping_counter);
90 
91 	/*
92 	 * Any fences that a dma-buf poll can wait on should be signaled
93 	 * before releasing dma-buf. This is the responsibility of each
94 	 * driver that uses the reservation objects.
95 	 *
96 	 * If you hit this BUG() it means someone dropped their ref to the
97 	 * dma-buf while still having pending operation to the buffer.
98 	 */
99 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100 
101 	dmabuf->ops->release(dmabuf);
102 
103 	mutex_lock(&db_list.lock);
104 	list_del(&dmabuf->list_node);
105 	mutex_unlock(&db_list.lock);
106 
107 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 		dma_resv_fini(dmabuf->resv);
109 
110 	module_put(dmabuf->owner);
111 	kfree(dmabuf);
112 	return 0;
113 }
114 
115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
116 {
117 	struct dma_buf *dmabuf;
118 
119 	if (!is_dma_buf_file(file))
120 		return -EINVAL;
121 
122 	dmabuf = file->private_data;
123 
124 	/* check if buffer supports mmap */
125 	if (!dmabuf->ops->mmap)
126 		return -EINVAL;
127 
128 	/* check for overflowing the buffer's size */
129 	if (vma->vm_pgoff + vma_pages(vma) >
130 	    dmabuf->size >> PAGE_SHIFT)
131 		return -EINVAL;
132 
133 	return dmabuf->ops->mmap(dmabuf, vma);
134 }
135 
136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
137 {
138 	struct dma_buf *dmabuf;
139 	loff_t base;
140 
141 	if (!is_dma_buf_file(file))
142 		return -EBADF;
143 
144 	dmabuf = file->private_data;
145 
146 	/* only support discovering the end of the buffer,
147 	   but also allow SEEK_SET to maintain the idiomatic
148 	   SEEK_END(0), SEEK_CUR(0) pattern */
149 	if (whence == SEEK_END)
150 		base = dmabuf->size;
151 	else if (whence == SEEK_SET)
152 		base = 0;
153 	else
154 		return -EINVAL;
155 
156 	if (offset != 0)
157 		return -EINVAL;
158 
159 	return base + offset;
160 }
161 
162 /**
163  * DOC: fence polling
164  *
165  * To support cross-device and cross-driver synchronization of buffer access
166  * implicit fences (represented internally in the kernel with &struct fence) can
167  * be attached to a &dma_buf. The glue for that and a few related things are
168  * provided in the &dma_resv structure.
169  *
170  * Userspace can query the state of these implicitly tracked fences using poll()
171  * and related system calls:
172  *
173  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
174  *   most recent write or exclusive fence.
175  *
176  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
177  *   all attached fences, shared and exclusive ones.
178  *
179  * Note that this only signals the completion of the respective fences, i.e. the
180  * DMA transfers are complete. Cache flushing and any other necessary
181  * preparations before CPU access can begin still need to happen.
182  */
183 
184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
185 {
186 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dcb->poll->lock, flags);
190 	wake_up_locked_poll(dcb->poll, dcb->active);
191 	dcb->active = 0;
192 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
193 }
194 
195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
196 {
197 	struct dma_buf *dmabuf;
198 	struct dma_resv *resv;
199 	struct dma_resv_list *fobj;
200 	struct dma_fence *fence_excl;
201 	__poll_t events;
202 	unsigned shared_count, seq;
203 
204 	dmabuf = file->private_data;
205 	if (!dmabuf || !dmabuf->resv)
206 		return EPOLLERR;
207 
208 	resv = dmabuf->resv;
209 
210 	poll_wait(file, &dmabuf->poll, poll);
211 
212 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
213 	if (!events)
214 		return 0;
215 
216 retry:
217 	seq = read_seqcount_begin(&resv->seq);
218 	rcu_read_lock();
219 
220 	fobj = rcu_dereference(resv->fence);
221 	if (fobj)
222 		shared_count = fobj->shared_count;
223 	else
224 		shared_count = 0;
225 	fence_excl = rcu_dereference(resv->fence_excl);
226 	if (read_seqcount_retry(&resv->seq, seq)) {
227 		rcu_read_unlock();
228 		goto retry;
229 	}
230 
231 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
232 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
233 		__poll_t pevents = EPOLLIN;
234 
235 		if (shared_count == 0)
236 			pevents |= EPOLLOUT;
237 
238 		spin_lock_irq(&dmabuf->poll.lock);
239 		if (dcb->active) {
240 			dcb->active |= pevents;
241 			events &= ~pevents;
242 		} else
243 			dcb->active = pevents;
244 		spin_unlock_irq(&dmabuf->poll.lock);
245 
246 		if (events & pevents) {
247 			if (!dma_fence_get_rcu(fence_excl)) {
248 				/* force a recheck */
249 				events &= ~pevents;
250 				dma_buf_poll_cb(NULL, &dcb->cb);
251 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
252 							   dma_buf_poll_cb)) {
253 				events &= ~pevents;
254 				dma_fence_put(fence_excl);
255 			} else {
256 				/*
257 				 * No callback queued, wake up any additional
258 				 * waiters.
259 				 */
260 				dma_fence_put(fence_excl);
261 				dma_buf_poll_cb(NULL, &dcb->cb);
262 			}
263 		}
264 	}
265 
266 	if ((events & EPOLLOUT) && shared_count > 0) {
267 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
268 		int i;
269 
270 		/* Only queue a new callback if no event has fired yet */
271 		spin_lock_irq(&dmabuf->poll.lock);
272 		if (dcb->active)
273 			events &= ~EPOLLOUT;
274 		else
275 			dcb->active = EPOLLOUT;
276 		spin_unlock_irq(&dmabuf->poll.lock);
277 
278 		if (!(events & EPOLLOUT))
279 			goto out;
280 
281 		for (i = 0; i < shared_count; ++i) {
282 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
283 
284 			if (!dma_fence_get_rcu(fence)) {
285 				/*
286 				 * fence refcount dropped to zero, this means
287 				 * that fobj has been freed
288 				 *
289 				 * call dma_buf_poll_cb and force a recheck!
290 				 */
291 				events &= ~EPOLLOUT;
292 				dma_buf_poll_cb(NULL, &dcb->cb);
293 				break;
294 			}
295 			if (!dma_fence_add_callback(fence, &dcb->cb,
296 						    dma_buf_poll_cb)) {
297 				dma_fence_put(fence);
298 				events &= ~EPOLLOUT;
299 				break;
300 			}
301 			dma_fence_put(fence);
302 		}
303 
304 		/* No callback queued, wake up any additional waiters. */
305 		if (i == shared_count)
306 			dma_buf_poll_cb(NULL, &dcb->cb);
307 	}
308 
309 out:
310 	rcu_read_unlock();
311 	return events;
312 }
313 
314 /**
315  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316  * The name of the dma-buf buffer can only be set when the dma-buf is not
317  * attached to any devices. It could theoritically support changing the
318  * name of the dma-buf if the same piece of memory is used for multiple
319  * purpose between different devices.
320  *
321  * @dmabuf [in]     dmabuf buffer that will be renamed.
322  * @buf:   [in]     A piece of userspace memory that contains the name of
323  *                  the dma-buf.
324  *
325  * Returns 0 on success. If the dma-buf buffer is already attached to
326  * devices, return -EBUSY.
327  *
328  */
329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
330 {
331 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
332 	long ret = 0;
333 
334 	if (IS_ERR(name))
335 		return PTR_ERR(name);
336 
337 	dma_resv_lock(dmabuf->resv, NULL);
338 	if (!list_empty(&dmabuf->attachments)) {
339 		ret = -EBUSY;
340 		kfree(name);
341 		goto out_unlock;
342 	}
343 	kfree(dmabuf->name);
344 	dmabuf->name = name;
345 
346 out_unlock:
347 	dma_resv_unlock(dmabuf->resv);
348 	return ret;
349 }
350 
351 static long dma_buf_ioctl(struct file *file,
352 			  unsigned int cmd, unsigned long arg)
353 {
354 	struct dma_buf *dmabuf;
355 	struct dma_buf_sync sync;
356 	enum dma_data_direction direction;
357 	int ret;
358 
359 	dmabuf = file->private_data;
360 
361 	switch (cmd) {
362 	case DMA_BUF_IOCTL_SYNC:
363 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
364 			return -EFAULT;
365 
366 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
367 			return -EINVAL;
368 
369 		switch (sync.flags & DMA_BUF_SYNC_RW) {
370 		case DMA_BUF_SYNC_READ:
371 			direction = DMA_FROM_DEVICE;
372 			break;
373 		case DMA_BUF_SYNC_WRITE:
374 			direction = DMA_TO_DEVICE;
375 			break;
376 		case DMA_BUF_SYNC_RW:
377 			direction = DMA_BIDIRECTIONAL;
378 			break;
379 		default:
380 			return -EINVAL;
381 		}
382 
383 		if (sync.flags & DMA_BUF_SYNC_END)
384 			ret = dma_buf_end_cpu_access(dmabuf, direction);
385 		else
386 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
387 
388 		return ret;
389 
390 	case DMA_BUF_SET_NAME:
391 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
392 
393 	default:
394 		return -ENOTTY;
395 	}
396 }
397 
398 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
399 {
400 	struct dma_buf *dmabuf = file->private_data;
401 
402 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
403 	/* Don't count the temporary reference taken inside procfs seq_show */
404 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
405 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
406 	dma_resv_lock(dmabuf->resv, NULL);
407 	if (dmabuf->name)
408 		seq_printf(m, "name:\t%s\n", dmabuf->name);
409 	dma_resv_unlock(dmabuf->resv);
410 }
411 
412 static const struct file_operations dma_buf_fops = {
413 	.release	= dma_buf_release,
414 	.mmap		= dma_buf_mmap_internal,
415 	.llseek		= dma_buf_llseek,
416 	.poll		= dma_buf_poll,
417 	.unlocked_ioctl	= dma_buf_ioctl,
418 	.compat_ioctl	= compat_ptr_ioctl,
419 	.show_fdinfo	= dma_buf_show_fdinfo,
420 };
421 
422 /*
423  * is_dma_buf_file - Check if struct file* is associated with dma_buf
424  */
425 static inline int is_dma_buf_file(struct file *file)
426 {
427 	return file->f_op == &dma_buf_fops;
428 }
429 
430 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
431 {
432 	struct file *file;
433 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
434 
435 	if (IS_ERR(inode))
436 		return ERR_CAST(inode);
437 
438 	inode->i_size = dmabuf->size;
439 	inode_set_bytes(inode, dmabuf->size);
440 
441 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
442 				 flags, &dma_buf_fops);
443 	if (IS_ERR(file))
444 		goto err_alloc_file;
445 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
446 	file->private_data = dmabuf;
447 	file->f_path.dentry->d_fsdata = dmabuf;
448 
449 	return file;
450 
451 err_alloc_file:
452 	iput(inode);
453 	return file;
454 }
455 
456 /**
457  * DOC: dma buf device access
458  *
459  * For device DMA access to a shared DMA buffer the usual sequence of operations
460  * is fairly simple:
461  *
462  * 1. The exporter defines his exporter instance using
463  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
464  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
465  *    as a file descriptor by calling dma_buf_fd().
466  *
467  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
468  *    to share with: First the filedescriptor is converted to a &dma_buf using
469  *    dma_buf_get(). Then the buffer is attached to the device using
470  *    dma_buf_attach().
471  *
472  *    Up to this stage the exporter is still free to migrate or reallocate the
473  *    backing storage.
474  *
475  * 3. Once the buffer is attached to all devices userspace can initiate DMA
476  *    access to the shared buffer. In the kernel this is done by calling
477  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
478  *
479  * 4. Once a driver is done with a shared buffer it needs to call
480  *    dma_buf_detach() (after cleaning up any mappings) and then release the
481  *    reference acquired with dma_buf_get by calling dma_buf_put().
482  *
483  * For the detailed semantics exporters are expected to implement see
484  * &dma_buf_ops.
485  */
486 
487 /**
488  * dma_buf_export - Creates a new dma_buf, and associates an anon file
489  * with this buffer, so it can be exported.
490  * Also connect the allocator specific data and ops to the buffer.
491  * Additionally, provide a name string for exporter; useful in debugging.
492  *
493  * @exp_info:	[in]	holds all the export related information provided
494  *			by the exporter. see &struct dma_buf_export_info
495  *			for further details.
496  *
497  * Returns, on success, a newly created dma_buf object, which wraps the
498  * supplied private data and operations for dma_buf_ops. On either missing
499  * ops, or error in allocating struct dma_buf, will return negative error.
500  *
501  * For most cases the easiest way to create @exp_info is through the
502  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
503  */
504 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
505 {
506 	struct dma_buf *dmabuf;
507 	struct dma_resv *resv = exp_info->resv;
508 	struct file *file;
509 	size_t alloc_size = sizeof(struct dma_buf);
510 	int ret;
511 
512 	if (!exp_info->resv)
513 		alloc_size += sizeof(struct dma_resv);
514 	else
515 		/* prevent &dma_buf[1] == dma_buf->resv */
516 		alloc_size += 1;
517 
518 	if (WARN_ON(!exp_info->priv
519 			  || !exp_info->ops
520 			  || !exp_info->ops->map_dma_buf
521 			  || !exp_info->ops->unmap_dma_buf
522 			  || !exp_info->ops->release)) {
523 		return ERR_PTR(-EINVAL);
524 	}
525 
526 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
527 		    exp_info->ops->dynamic_mapping))
528 		return ERR_PTR(-EINVAL);
529 
530 	if (!try_module_get(exp_info->owner))
531 		return ERR_PTR(-ENOENT);
532 
533 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
534 	if (!dmabuf) {
535 		ret = -ENOMEM;
536 		goto err_module;
537 	}
538 
539 	dmabuf->priv = exp_info->priv;
540 	dmabuf->ops = exp_info->ops;
541 	dmabuf->size = exp_info->size;
542 	dmabuf->exp_name = exp_info->exp_name;
543 	dmabuf->owner = exp_info->owner;
544 	init_waitqueue_head(&dmabuf->poll);
545 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
546 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
547 
548 	if (!resv) {
549 		resv = (struct dma_resv *)&dmabuf[1];
550 		dma_resv_init(resv);
551 	}
552 	dmabuf->resv = resv;
553 
554 	file = dma_buf_getfile(dmabuf, exp_info->flags);
555 	if (IS_ERR(file)) {
556 		ret = PTR_ERR(file);
557 		goto err_dmabuf;
558 	}
559 
560 	file->f_mode |= FMODE_LSEEK;
561 	dmabuf->file = file;
562 
563 	mutex_init(&dmabuf->lock);
564 	INIT_LIST_HEAD(&dmabuf->attachments);
565 
566 	mutex_lock(&db_list.lock);
567 	list_add(&dmabuf->list_node, &db_list.head);
568 	mutex_unlock(&db_list.lock);
569 
570 	return dmabuf;
571 
572 err_dmabuf:
573 	kfree(dmabuf);
574 err_module:
575 	module_put(exp_info->owner);
576 	return ERR_PTR(ret);
577 }
578 EXPORT_SYMBOL_GPL(dma_buf_export);
579 
580 /**
581  * dma_buf_fd - returns a file descriptor for the given dma_buf
582  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
583  * @flags:      [in]    flags to give to fd
584  *
585  * On success, returns an associated 'fd'. Else, returns error.
586  */
587 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
588 {
589 	int fd;
590 
591 	if (!dmabuf || !dmabuf->file)
592 		return -EINVAL;
593 
594 	fd = get_unused_fd_flags(flags);
595 	if (fd < 0)
596 		return fd;
597 
598 	fd_install(fd, dmabuf->file);
599 
600 	return fd;
601 }
602 EXPORT_SYMBOL_GPL(dma_buf_fd);
603 
604 /**
605  * dma_buf_get - returns the dma_buf structure related to an fd
606  * @fd:	[in]	fd associated with the dma_buf to be returned
607  *
608  * On success, returns the dma_buf structure associated with an fd; uses
609  * file's refcounting done by fget to increase refcount. returns ERR_PTR
610  * otherwise.
611  */
612 struct dma_buf *dma_buf_get(int fd)
613 {
614 	struct file *file;
615 
616 	file = fget(fd);
617 
618 	if (!file)
619 		return ERR_PTR(-EBADF);
620 
621 	if (!is_dma_buf_file(file)) {
622 		fput(file);
623 		return ERR_PTR(-EINVAL);
624 	}
625 
626 	return file->private_data;
627 }
628 EXPORT_SYMBOL_GPL(dma_buf_get);
629 
630 /**
631  * dma_buf_put - decreases refcount of the buffer
632  * @dmabuf:	[in]	buffer to reduce refcount of
633  *
634  * Uses file's refcounting done implicitly by fput().
635  *
636  * If, as a result of this call, the refcount becomes 0, the 'release' file
637  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
638  * in turn, and frees the memory allocated for dmabuf when exported.
639  */
640 void dma_buf_put(struct dma_buf *dmabuf)
641 {
642 	if (WARN_ON(!dmabuf || !dmabuf->file))
643 		return;
644 
645 	fput(dmabuf->file);
646 }
647 EXPORT_SYMBOL_GPL(dma_buf_put);
648 
649 /**
650  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
651  * calls attach() of dma_buf_ops to allow device-specific attach functionality
652  * @dmabuf:		[in]	buffer to attach device to.
653  * @dev:		[in]	device to be attached.
654  * @dynamic_mapping:	[in]	calling convention for map/unmap
655  *
656  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
657  * must be cleaned up by calling dma_buf_detach().
658  *
659  * Returns:
660  *
661  * A pointer to newly created &dma_buf_attachment on success, or a negative
662  * error code wrapped into a pointer on failure.
663  *
664  * Note that this can fail if the backing storage of @dmabuf is in a place not
665  * accessible to @dev, and cannot be moved to a more suitable place. This is
666  * indicated with the error code -EBUSY.
667  */
668 struct dma_buf_attachment *
669 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
670 		       bool dynamic_mapping)
671 {
672 	struct dma_buf_attachment *attach;
673 	int ret;
674 
675 	if (WARN_ON(!dmabuf || !dev))
676 		return ERR_PTR(-EINVAL);
677 
678 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
679 	if (!attach)
680 		return ERR_PTR(-ENOMEM);
681 
682 	attach->dev = dev;
683 	attach->dmabuf = dmabuf;
684 	attach->dynamic_mapping = dynamic_mapping;
685 
686 	if (dmabuf->ops->attach) {
687 		ret = dmabuf->ops->attach(dmabuf, attach);
688 		if (ret)
689 			goto err_attach;
690 	}
691 	dma_resv_lock(dmabuf->resv, NULL);
692 	list_add(&attach->node, &dmabuf->attachments);
693 	dma_resv_unlock(dmabuf->resv);
694 
695 	/* When either the importer or the exporter can't handle dynamic
696 	 * mappings we cache the mapping here to avoid issues with the
697 	 * reservation object lock.
698 	 */
699 	if (dma_buf_attachment_is_dynamic(attach) !=
700 	    dma_buf_is_dynamic(dmabuf)) {
701 		struct sg_table *sgt;
702 
703 		if (dma_buf_is_dynamic(attach->dmabuf))
704 			dma_resv_lock(attach->dmabuf->resv, NULL);
705 
706 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
707 		if (!sgt)
708 			sgt = ERR_PTR(-ENOMEM);
709 		if (IS_ERR(sgt)) {
710 			ret = PTR_ERR(sgt);
711 			goto err_unlock;
712 		}
713 		if (dma_buf_is_dynamic(attach->dmabuf))
714 			dma_resv_unlock(attach->dmabuf->resv);
715 		attach->sgt = sgt;
716 		attach->dir = DMA_BIDIRECTIONAL;
717 	}
718 
719 	return attach;
720 
721 err_attach:
722 	kfree(attach);
723 	return ERR_PTR(ret);
724 
725 err_unlock:
726 	if (dma_buf_is_dynamic(attach->dmabuf))
727 		dma_resv_unlock(attach->dmabuf->resv);
728 
729 	dma_buf_detach(dmabuf, attach);
730 	return ERR_PTR(ret);
731 }
732 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
733 
734 /**
735  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
736  * @dmabuf:	[in]	buffer to attach device to.
737  * @dev:	[in]	device to be attached.
738  *
739  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
740  * mapping.
741  */
742 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
743 					  struct device *dev)
744 {
745 	return dma_buf_dynamic_attach(dmabuf, dev, false);
746 }
747 EXPORT_SYMBOL_GPL(dma_buf_attach);
748 
749 /**
750  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
751  * optionally calls detach() of dma_buf_ops for device-specific detach
752  * @dmabuf:	[in]	buffer to detach from.
753  * @attach:	[in]	attachment to be detached; is free'd after this call.
754  *
755  * Clean up a device attachment obtained by calling dma_buf_attach().
756  */
757 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
758 {
759 	if (WARN_ON(!dmabuf || !attach))
760 		return;
761 
762 	if (attach->sgt) {
763 		if (dma_buf_is_dynamic(attach->dmabuf))
764 			dma_resv_lock(attach->dmabuf->resv, NULL);
765 
766 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
767 
768 		if (dma_buf_is_dynamic(attach->dmabuf))
769 			dma_resv_unlock(attach->dmabuf->resv);
770 	}
771 
772 	dma_resv_lock(dmabuf->resv, NULL);
773 	list_del(&attach->node);
774 	dma_resv_unlock(dmabuf->resv);
775 	if (dmabuf->ops->detach)
776 		dmabuf->ops->detach(dmabuf, attach);
777 
778 	kfree(attach);
779 }
780 EXPORT_SYMBOL_GPL(dma_buf_detach);
781 
782 /**
783  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
784  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
785  * dma_buf_ops.
786  * @attach:	[in]	attachment whose scatterlist is to be returned
787  * @direction:	[in]	direction of DMA transfer
788  *
789  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
790  * on error. May return -EINTR if it is interrupted by a signal.
791  *
792  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
793  * the underlying backing storage is pinned for as long as a mapping exists,
794  * therefore users/importers should not hold onto a mapping for undue amounts of
795  * time.
796  */
797 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
798 					enum dma_data_direction direction)
799 {
800 	struct sg_table *sg_table;
801 
802 	might_sleep();
803 
804 	if (WARN_ON(!attach || !attach->dmabuf))
805 		return ERR_PTR(-EINVAL);
806 
807 	if (dma_buf_attachment_is_dynamic(attach))
808 		dma_resv_assert_held(attach->dmabuf->resv);
809 
810 	if (attach->sgt) {
811 		/*
812 		 * Two mappings with different directions for the same
813 		 * attachment are not allowed.
814 		 */
815 		if (attach->dir != direction &&
816 		    attach->dir != DMA_BIDIRECTIONAL)
817 			return ERR_PTR(-EBUSY);
818 
819 		return attach->sgt;
820 	}
821 
822 	if (dma_buf_is_dynamic(attach->dmabuf))
823 		dma_resv_assert_held(attach->dmabuf->resv);
824 
825 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
826 	if (!sg_table)
827 		sg_table = ERR_PTR(-ENOMEM);
828 
829 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
830 		attach->sgt = sg_table;
831 		attach->dir = direction;
832 	}
833 
834 	return sg_table;
835 }
836 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
837 
838 /**
839  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
840  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
841  * dma_buf_ops.
842  * @attach:	[in]	attachment to unmap buffer from
843  * @sg_table:	[in]	scatterlist info of the buffer to unmap
844  * @direction:  [in]    direction of DMA transfer
845  *
846  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
847  */
848 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
849 				struct sg_table *sg_table,
850 				enum dma_data_direction direction)
851 {
852 	might_sleep();
853 
854 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
855 		return;
856 
857 	if (dma_buf_attachment_is_dynamic(attach))
858 		dma_resv_assert_held(attach->dmabuf->resv);
859 
860 	if (attach->sgt == sg_table)
861 		return;
862 
863 	if (dma_buf_is_dynamic(attach->dmabuf))
864 		dma_resv_assert_held(attach->dmabuf->resv);
865 
866 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
867 }
868 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
869 
870 /**
871  * DOC: cpu access
872  *
873  * There are mutliple reasons for supporting CPU access to a dma buffer object:
874  *
875  * - Fallback operations in the kernel, for example when a device is connected
876  *   over USB and the kernel needs to shuffle the data around first before
877  *   sending it away. Cache coherency is handled by braketing any transactions
878  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
879  *   access.
880  *
881  *   To support dma_buf objects residing in highmem cpu access is page-based
882  *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
883  *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
884  *   returns a pointer in kernel virtual address space. Afterwards the chunk
885  *   needs to be unmapped again. There is no limit on how often a given chunk
886  *   can be mapped and unmapped, i.e. the importer does not need to call
887  *   begin_cpu_access again before mapping the same chunk again.
888  *
889  *   Interfaces::
890  *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
891  *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
892  *
893  *   Implementing the functions is optional for exporters and for importers all
894  *   the restrictions of using kmap apply.
895  *
896  *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
897  *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
898  *   the partial chunks at the beginning and end but may return stale or bogus
899  *   data outside of the range (in these partial chunks).
900  *
901  *   For some cases the overhead of kmap can be too high, a vmap interface
902  *   is introduced. This interface should be used very carefully, as vmalloc
903  *   space is a limited resources on many architectures.
904  *
905  *   Interfaces::
906  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
907  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
908  *
909  *   The vmap call can fail if there is no vmap support in the exporter, or if
910  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
911  *   that the dma-buf layer keeps a reference count for all vmap access and
912  *   calls down into the exporter's vmap function only when no vmapping exists,
913  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
914  *   provided by taking the dma_buf->lock mutex.
915  *
916  * - For full compatibility on the importer side with existing userspace
917  *   interfaces, which might already support mmap'ing buffers. This is needed in
918  *   many processing pipelines (e.g. feeding a software rendered image into a
919  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
920  *   framework already supported this and for DMA buffer file descriptors to
921  *   replace ION buffers mmap support was needed.
922  *
923  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
924  *   fd. But like for CPU access there's a need to braket the actual access,
925  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
926  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
927  *   be restarted.
928  *
929  *   Some systems might need some sort of cache coherency management e.g. when
930  *   CPU and GPU domains are being accessed through dma-buf at the same time.
931  *   To circumvent this problem there are begin/end coherency markers, that
932  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
933  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
934  *   sequence would be used like following:
935  *
936  *     - mmap dma-buf fd
937  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
938  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
939  *       want (with the new data being consumed by say the GPU or the scanout
940  *       device)
941  *     - munmap once you don't need the buffer any more
942  *
943  *    For correctness and optimal performance, it is always required to use
944  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
945  *    mapped address. Userspace cannot rely on coherent access, even when there
946  *    are systems where it just works without calling these ioctls.
947  *
948  * - And as a CPU fallback in userspace processing pipelines.
949  *
950  *   Similar to the motivation for kernel cpu access it is again important that
951  *   the userspace code of a given importing subsystem can use the same
952  *   interfaces with a imported dma-buf buffer object as with a native buffer
953  *   object. This is especially important for drm where the userspace part of
954  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
955  *   use a different way to mmap a buffer rather invasive.
956  *
957  *   The assumption in the current dma-buf interfaces is that redirecting the
958  *   initial mmap is all that's needed. A survey of some of the existing
959  *   subsystems shows that no driver seems to do any nefarious thing like
960  *   syncing up with outstanding asynchronous processing on the device or
961  *   allocating special resources at fault time. So hopefully this is good
962  *   enough, since adding interfaces to intercept pagefaults and allow pte
963  *   shootdowns would increase the complexity quite a bit.
964  *
965  *   Interface::
966  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
967  *		       unsigned long);
968  *
969  *   If the importing subsystem simply provides a special-purpose mmap call to
970  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
971  *   equally achieve that for a dma-buf object.
972  */
973 
974 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
975 				      enum dma_data_direction direction)
976 {
977 	bool write = (direction == DMA_BIDIRECTIONAL ||
978 		      direction == DMA_TO_DEVICE);
979 	struct dma_resv *resv = dmabuf->resv;
980 	long ret;
981 
982 	/* Wait on any implicit rendering fences */
983 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
984 						  MAX_SCHEDULE_TIMEOUT);
985 	if (ret < 0)
986 		return ret;
987 
988 	return 0;
989 }
990 
991 /**
992  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
993  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
994  * preparations. Coherency is only guaranteed in the specified range for the
995  * specified access direction.
996  * @dmabuf:	[in]	buffer to prepare cpu access for.
997  * @direction:	[in]	length of range for cpu access.
998  *
999  * After the cpu access is complete the caller should call
1000  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1001  * it guaranteed to be coherent with other DMA access.
1002  *
1003  * Can return negative error values, returns 0 on success.
1004  */
1005 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1006 			     enum dma_data_direction direction)
1007 {
1008 	int ret = 0;
1009 
1010 	if (WARN_ON(!dmabuf))
1011 		return -EINVAL;
1012 
1013 	if (dmabuf->ops->begin_cpu_access)
1014 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1015 
1016 	/* Ensure that all fences are waited upon - but we first allow
1017 	 * the native handler the chance to do so more efficiently if it
1018 	 * chooses. A double invocation here will be reasonably cheap no-op.
1019 	 */
1020 	if (ret == 0)
1021 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1022 
1023 	return ret;
1024 }
1025 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1026 
1027 /**
1028  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1029  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1030  * actions. Coherency is only guaranteed in the specified range for the
1031  * specified access direction.
1032  * @dmabuf:	[in]	buffer to complete cpu access for.
1033  * @direction:	[in]	length of range for cpu access.
1034  *
1035  * This terminates CPU access started with dma_buf_begin_cpu_access().
1036  *
1037  * Can return negative error values, returns 0 on success.
1038  */
1039 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1040 			   enum dma_data_direction direction)
1041 {
1042 	int ret = 0;
1043 
1044 	WARN_ON(!dmabuf);
1045 
1046 	if (dmabuf->ops->end_cpu_access)
1047 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1048 
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1052 
1053 /**
1054  * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
1055  * same restrictions as for kmap and friends apply.
1056  * @dmabuf:	[in]	buffer to map page from.
1057  * @page_num:	[in]	page in PAGE_SIZE units to map.
1058  *
1059  * This call must always succeed, any necessary preparations that might fail
1060  * need to be done in begin_cpu_access.
1061  */
1062 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
1063 {
1064 	WARN_ON(!dmabuf);
1065 
1066 	if (!dmabuf->ops->map)
1067 		return NULL;
1068 	return dmabuf->ops->map(dmabuf, page_num);
1069 }
1070 EXPORT_SYMBOL_GPL(dma_buf_kmap);
1071 
1072 /**
1073  * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1074  * @dmabuf:	[in]	buffer to unmap page from.
1075  * @page_num:	[in]	page in PAGE_SIZE units to unmap.
1076  * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
1077  *
1078  * This call must always succeed.
1079  */
1080 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1081 		    void *vaddr)
1082 {
1083 	WARN_ON(!dmabuf);
1084 
1085 	if (dmabuf->ops->unmap)
1086 		dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1087 }
1088 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1089 
1090 
1091 /**
1092  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1093  * @dmabuf:	[in]	buffer that should back the vma
1094  * @vma:	[in]	vma for the mmap
1095  * @pgoff:	[in]	offset in pages where this mmap should start within the
1096  *			dma-buf buffer.
1097  *
1098  * This function adjusts the passed in vma so that it points at the file of the
1099  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1100  * checking on the size of the vma. Then it calls the exporters mmap function to
1101  * set up the mapping.
1102  *
1103  * Can return negative error values, returns 0 on success.
1104  */
1105 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1106 		 unsigned long pgoff)
1107 {
1108 	struct file *oldfile;
1109 	int ret;
1110 
1111 	if (WARN_ON(!dmabuf || !vma))
1112 		return -EINVAL;
1113 
1114 	/* check if buffer supports mmap */
1115 	if (!dmabuf->ops->mmap)
1116 		return -EINVAL;
1117 
1118 	/* check for offset overflow */
1119 	if (pgoff + vma_pages(vma) < pgoff)
1120 		return -EOVERFLOW;
1121 
1122 	/* check for overflowing the buffer's size */
1123 	if (pgoff + vma_pages(vma) >
1124 	    dmabuf->size >> PAGE_SHIFT)
1125 		return -EINVAL;
1126 
1127 	/* readjust the vma */
1128 	get_file(dmabuf->file);
1129 	oldfile = vma->vm_file;
1130 	vma->vm_file = dmabuf->file;
1131 	vma->vm_pgoff = pgoff;
1132 
1133 	ret = dmabuf->ops->mmap(dmabuf, vma);
1134 	if (ret) {
1135 		/* restore old parameters on failure */
1136 		vma->vm_file = oldfile;
1137 		fput(dmabuf->file);
1138 	} else {
1139 		if (oldfile)
1140 			fput(oldfile);
1141 	}
1142 	return ret;
1143 
1144 }
1145 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1146 
1147 /**
1148  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1149  * address space. Same restrictions as for vmap and friends apply.
1150  * @dmabuf:	[in]	buffer to vmap
1151  *
1152  * This call may fail due to lack of virtual mapping address space.
1153  * These calls are optional in drivers. The intended use for them
1154  * is for mapping objects linear in kernel space for high use objects.
1155  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1156  *
1157  * Returns NULL on error.
1158  */
1159 void *dma_buf_vmap(struct dma_buf *dmabuf)
1160 {
1161 	void *ptr;
1162 
1163 	if (WARN_ON(!dmabuf))
1164 		return NULL;
1165 
1166 	if (!dmabuf->ops->vmap)
1167 		return NULL;
1168 
1169 	mutex_lock(&dmabuf->lock);
1170 	if (dmabuf->vmapping_counter) {
1171 		dmabuf->vmapping_counter++;
1172 		BUG_ON(!dmabuf->vmap_ptr);
1173 		ptr = dmabuf->vmap_ptr;
1174 		goto out_unlock;
1175 	}
1176 
1177 	BUG_ON(dmabuf->vmap_ptr);
1178 
1179 	ptr = dmabuf->ops->vmap(dmabuf);
1180 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1181 		ptr = NULL;
1182 	if (!ptr)
1183 		goto out_unlock;
1184 
1185 	dmabuf->vmap_ptr = ptr;
1186 	dmabuf->vmapping_counter = 1;
1187 
1188 out_unlock:
1189 	mutex_unlock(&dmabuf->lock);
1190 	return ptr;
1191 }
1192 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1193 
1194 /**
1195  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1196  * @dmabuf:	[in]	buffer to vunmap
1197  * @vaddr:	[in]	vmap to vunmap
1198  */
1199 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1200 {
1201 	if (WARN_ON(!dmabuf))
1202 		return;
1203 
1204 	BUG_ON(!dmabuf->vmap_ptr);
1205 	BUG_ON(dmabuf->vmapping_counter == 0);
1206 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1207 
1208 	mutex_lock(&dmabuf->lock);
1209 	if (--dmabuf->vmapping_counter == 0) {
1210 		if (dmabuf->ops->vunmap)
1211 			dmabuf->ops->vunmap(dmabuf, vaddr);
1212 		dmabuf->vmap_ptr = NULL;
1213 	}
1214 	mutex_unlock(&dmabuf->lock);
1215 }
1216 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1217 
1218 #ifdef CONFIG_DEBUG_FS
1219 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1220 {
1221 	int ret;
1222 	struct dma_buf *buf_obj;
1223 	struct dma_buf_attachment *attach_obj;
1224 	struct dma_resv *robj;
1225 	struct dma_resv_list *fobj;
1226 	struct dma_fence *fence;
1227 	unsigned seq;
1228 	int count = 0, attach_count, shared_count, i;
1229 	size_t size = 0;
1230 
1231 	ret = mutex_lock_interruptible(&db_list.lock);
1232 
1233 	if (ret)
1234 		return ret;
1235 
1236 	seq_puts(s, "\nDma-buf Objects:\n");
1237 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1238 		   "size", "flags", "mode", "count", "ino");
1239 
1240 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1241 
1242 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1243 		if (ret)
1244 			goto error_unlock;
1245 
1246 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1247 				buf_obj->size,
1248 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1249 				file_count(buf_obj->file),
1250 				buf_obj->exp_name,
1251 				file_inode(buf_obj->file)->i_ino,
1252 				buf_obj->name ?: "");
1253 
1254 		robj = buf_obj->resv;
1255 		while (true) {
1256 			seq = read_seqcount_begin(&robj->seq);
1257 			rcu_read_lock();
1258 			fobj = rcu_dereference(robj->fence);
1259 			shared_count = fobj ? fobj->shared_count : 0;
1260 			fence = rcu_dereference(robj->fence_excl);
1261 			if (!read_seqcount_retry(&robj->seq, seq))
1262 				break;
1263 			rcu_read_unlock();
1264 		}
1265 
1266 		if (fence)
1267 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1268 				   fence->ops->get_driver_name(fence),
1269 				   fence->ops->get_timeline_name(fence),
1270 				   dma_fence_is_signaled(fence) ? "" : "un");
1271 		for (i = 0; i < shared_count; i++) {
1272 			fence = rcu_dereference(fobj->shared[i]);
1273 			if (!dma_fence_get_rcu(fence))
1274 				continue;
1275 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1276 				   fence->ops->get_driver_name(fence),
1277 				   fence->ops->get_timeline_name(fence),
1278 				   dma_fence_is_signaled(fence) ? "" : "un");
1279 			dma_fence_put(fence);
1280 		}
1281 		rcu_read_unlock();
1282 
1283 		seq_puts(s, "\tAttached Devices:\n");
1284 		attach_count = 0;
1285 
1286 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1287 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1288 			attach_count++;
1289 		}
1290 		dma_resv_unlock(buf_obj->resv);
1291 
1292 		seq_printf(s, "Total %d devices attached\n\n",
1293 				attach_count);
1294 
1295 		count++;
1296 		size += buf_obj->size;
1297 	}
1298 
1299 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1300 
1301 	mutex_unlock(&db_list.lock);
1302 	return 0;
1303 
1304 error_unlock:
1305 	mutex_unlock(&db_list.lock);
1306 	return ret;
1307 }
1308 
1309 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1310 
1311 static struct dentry *dma_buf_debugfs_dir;
1312 
1313 static int dma_buf_init_debugfs(void)
1314 {
1315 	struct dentry *d;
1316 	int err = 0;
1317 
1318 	d = debugfs_create_dir("dma_buf", NULL);
1319 	if (IS_ERR(d))
1320 		return PTR_ERR(d);
1321 
1322 	dma_buf_debugfs_dir = d;
1323 
1324 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1325 				NULL, &dma_buf_debug_fops);
1326 	if (IS_ERR(d)) {
1327 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1328 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1329 		dma_buf_debugfs_dir = NULL;
1330 		err = PTR_ERR(d);
1331 	}
1332 
1333 	return err;
1334 }
1335 
1336 static void dma_buf_uninit_debugfs(void)
1337 {
1338 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1339 }
1340 #else
1341 static inline int dma_buf_init_debugfs(void)
1342 {
1343 	return 0;
1344 }
1345 static inline void dma_buf_uninit_debugfs(void)
1346 {
1347 }
1348 #endif
1349 
1350 static int __init dma_buf_init(void)
1351 {
1352 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1353 	if (IS_ERR(dma_buf_mnt))
1354 		return PTR_ERR(dma_buf_mnt);
1355 
1356 	mutex_init(&db_list.lock);
1357 	INIT_LIST_HEAD(&db_list.head);
1358 	dma_buf_init_debugfs();
1359 	return 0;
1360 }
1361 subsys_initcall(dma_buf_init);
1362 
1363 static void __exit dma_buf_deinit(void)
1364 {
1365 	dma_buf_uninit_debugfs();
1366 	kern_unmount(dma_buf_mnt);
1367 }
1368 __exitcall(dma_buf_deinit);
1369