1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 spin_lock(&dmabuf->name_lock); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 spin_unlock(&dmabuf->name_lock); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static void dma_buf_release(struct dentry *dentry) 58 { 59 struct dma_buf *dmabuf; 60 61 dmabuf = dentry->d_fsdata; 62 if (unlikely(!dmabuf)) 63 return; 64 65 BUG_ON(dmabuf->vmapping_counter); 66 67 /* 68 * Any fences that a dma-buf poll can wait on should be signaled 69 * before releasing dma-buf. This is the responsibility of each 70 * driver that uses the reservation objects. 71 * 72 * If you hit this BUG() it means someone dropped their ref to the 73 * dma-buf while still having pending operation to the buffer. 74 */ 75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 76 77 dmabuf->ops->release(dmabuf); 78 79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 80 dma_resv_fini(dmabuf->resv); 81 82 module_put(dmabuf->owner); 83 kfree(dmabuf->name); 84 kfree(dmabuf); 85 } 86 87 static int dma_buf_file_release(struct inode *inode, struct file *file) 88 { 89 struct dma_buf *dmabuf; 90 91 if (!is_dma_buf_file(file)) 92 return -EINVAL; 93 94 dmabuf = file->private_data; 95 96 mutex_lock(&db_list.lock); 97 list_del(&dmabuf->list_node); 98 mutex_unlock(&db_list.lock); 99 100 return 0; 101 } 102 103 static const struct dentry_operations dma_buf_dentry_ops = { 104 .d_dname = dmabuffs_dname, 105 .d_release = dma_buf_release, 106 }; 107 108 static struct vfsmount *dma_buf_mnt; 109 110 static int dma_buf_fs_init_context(struct fs_context *fc) 111 { 112 struct pseudo_fs_context *ctx; 113 114 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 115 if (!ctx) 116 return -ENOMEM; 117 ctx->dops = &dma_buf_dentry_ops; 118 return 0; 119 } 120 121 static struct file_system_type dma_buf_fs_type = { 122 .name = "dmabuf", 123 .init_fs_context = dma_buf_fs_init_context, 124 .kill_sb = kill_anon_super, 125 }; 126 127 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 128 { 129 struct dma_buf *dmabuf; 130 131 if (!is_dma_buf_file(file)) 132 return -EINVAL; 133 134 dmabuf = file->private_data; 135 136 /* check if buffer supports mmap */ 137 if (!dmabuf->ops->mmap) 138 return -EINVAL; 139 140 /* check for overflowing the buffer's size */ 141 if (vma->vm_pgoff + vma_pages(vma) > 142 dmabuf->size >> PAGE_SHIFT) 143 return -EINVAL; 144 145 return dmabuf->ops->mmap(dmabuf, vma); 146 } 147 148 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 149 { 150 struct dma_buf *dmabuf; 151 loff_t base; 152 153 if (!is_dma_buf_file(file)) 154 return -EBADF; 155 156 dmabuf = file->private_data; 157 158 /* only support discovering the end of the buffer, 159 but also allow SEEK_SET to maintain the idiomatic 160 SEEK_END(0), SEEK_CUR(0) pattern */ 161 if (whence == SEEK_END) 162 base = dmabuf->size; 163 else if (whence == SEEK_SET) 164 base = 0; 165 else 166 return -EINVAL; 167 168 if (offset != 0) 169 return -EINVAL; 170 171 return base + offset; 172 } 173 174 /** 175 * DOC: implicit fence polling 176 * 177 * To support cross-device and cross-driver synchronization of buffer access 178 * implicit fences (represented internally in the kernel with &struct dma_fence) 179 * can be attached to a &dma_buf. The glue for that and a few related things are 180 * provided in the &dma_resv structure. 181 * 182 * Userspace can query the state of these implicitly tracked fences using poll() 183 * and related system calls: 184 * 185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 186 * most recent write or exclusive fence. 187 * 188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 189 * all attached fences, shared and exclusive ones. 190 * 191 * Note that this only signals the completion of the respective fences, i.e. the 192 * DMA transfers are complete. Cache flushing and any other necessary 193 * preparations before CPU access can begin still need to happen. 194 */ 195 196 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 197 { 198 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 199 unsigned long flags; 200 201 spin_lock_irqsave(&dcb->poll->lock, flags); 202 wake_up_locked_poll(dcb->poll, dcb->active); 203 dcb->active = 0; 204 spin_unlock_irqrestore(&dcb->poll->lock, flags); 205 } 206 207 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 208 { 209 struct dma_buf *dmabuf; 210 struct dma_resv *resv; 211 struct dma_resv_list *fobj; 212 struct dma_fence *fence_excl; 213 __poll_t events; 214 unsigned shared_count, seq; 215 216 dmabuf = file->private_data; 217 if (!dmabuf || !dmabuf->resv) 218 return EPOLLERR; 219 220 resv = dmabuf->resv; 221 222 poll_wait(file, &dmabuf->poll, poll); 223 224 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 225 if (!events) 226 return 0; 227 228 retry: 229 seq = read_seqcount_begin(&resv->seq); 230 rcu_read_lock(); 231 232 fobj = rcu_dereference(resv->fence); 233 if (fobj) 234 shared_count = fobj->shared_count; 235 else 236 shared_count = 0; 237 fence_excl = rcu_dereference(resv->fence_excl); 238 if (read_seqcount_retry(&resv->seq, seq)) { 239 rcu_read_unlock(); 240 goto retry; 241 } 242 243 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 244 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 245 __poll_t pevents = EPOLLIN; 246 247 if (shared_count == 0) 248 pevents |= EPOLLOUT; 249 250 spin_lock_irq(&dmabuf->poll.lock); 251 if (dcb->active) { 252 dcb->active |= pevents; 253 events &= ~pevents; 254 } else 255 dcb->active = pevents; 256 spin_unlock_irq(&dmabuf->poll.lock); 257 258 if (events & pevents) { 259 if (!dma_fence_get_rcu(fence_excl)) { 260 /* force a recheck */ 261 events &= ~pevents; 262 dma_buf_poll_cb(NULL, &dcb->cb); 263 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 264 dma_buf_poll_cb)) { 265 events &= ~pevents; 266 dma_fence_put(fence_excl); 267 } else { 268 /* 269 * No callback queued, wake up any additional 270 * waiters. 271 */ 272 dma_fence_put(fence_excl); 273 dma_buf_poll_cb(NULL, &dcb->cb); 274 } 275 } 276 } 277 278 if ((events & EPOLLOUT) && shared_count > 0) { 279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 280 int i; 281 282 /* Only queue a new callback if no event has fired yet */ 283 spin_lock_irq(&dmabuf->poll.lock); 284 if (dcb->active) 285 events &= ~EPOLLOUT; 286 else 287 dcb->active = EPOLLOUT; 288 spin_unlock_irq(&dmabuf->poll.lock); 289 290 if (!(events & EPOLLOUT)) 291 goto out; 292 293 for (i = 0; i < shared_count; ++i) { 294 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 295 296 if (!dma_fence_get_rcu(fence)) { 297 /* 298 * fence refcount dropped to zero, this means 299 * that fobj has been freed 300 * 301 * call dma_buf_poll_cb and force a recheck! 302 */ 303 events &= ~EPOLLOUT; 304 dma_buf_poll_cb(NULL, &dcb->cb); 305 break; 306 } 307 if (!dma_fence_add_callback(fence, &dcb->cb, 308 dma_buf_poll_cb)) { 309 dma_fence_put(fence); 310 events &= ~EPOLLOUT; 311 break; 312 } 313 dma_fence_put(fence); 314 } 315 316 /* No callback queued, wake up any additional waiters. */ 317 if (i == shared_count) 318 dma_buf_poll_cb(NULL, &dcb->cb); 319 } 320 321 out: 322 rcu_read_unlock(); 323 return events; 324 } 325 326 /** 327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 328 * The name of the dma-buf buffer can only be set when the dma-buf is not 329 * attached to any devices. It could theoritically support changing the 330 * name of the dma-buf if the same piece of memory is used for multiple 331 * purpose between different devices. 332 * 333 * @dmabuf: [in] dmabuf buffer that will be renamed. 334 * @buf: [in] A piece of userspace memory that contains the name of 335 * the dma-buf. 336 * 337 * Returns 0 on success. If the dma-buf buffer is already attached to 338 * devices, return -EBUSY. 339 * 340 */ 341 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 342 { 343 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 344 long ret = 0; 345 346 if (IS_ERR(name)) 347 return PTR_ERR(name); 348 349 dma_resv_lock(dmabuf->resv, NULL); 350 if (!list_empty(&dmabuf->attachments)) { 351 ret = -EBUSY; 352 kfree(name); 353 goto out_unlock; 354 } 355 spin_lock(&dmabuf->name_lock); 356 kfree(dmabuf->name); 357 dmabuf->name = name; 358 spin_unlock(&dmabuf->name_lock); 359 360 out_unlock: 361 dma_resv_unlock(dmabuf->resv); 362 return ret; 363 } 364 365 static long dma_buf_ioctl(struct file *file, 366 unsigned int cmd, unsigned long arg) 367 { 368 struct dma_buf *dmabuf; 369 struct dma_buf_sync sync; 370 enum dma_data_direction direction; 371 int ret; 372 373 dmabuf = file->private_data; 374 375 switch (cmd) { 376 case DMA_BUF_IOCTL_SYNC: 377 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 378 return -EFAULT; 379 380 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 381 return -EINVAL; 382 383 switch (sync.flags & DMA_BUF_SYNC_RW) { 384 case DMA_BUF_SYNC_READ: 385 direction = DMA_FROM_DEVICE; 386 break; 387 case DMA_BUF_SYNC_WRITE: 388 direction = DMA_TO_DEVICE; 389 break; 390 case DMA_BUF_SYNC_RW: 391 direction = DMA_BIDIRECTIONAL; 392 break; 393 default: 394 return -EINVAL; 395 } 396 397 if (sync.flags & DMA_BUF_SYNC_END) 398 ret = dma_buf_end_cpu_access(dmabuf, direction); 399 else 400 ret = dma_buf_begin_cpu_access(dmabuf, direction); 401 402 return ret; 403 404 case DMA_BUF_SET_NAME_A: 405 case DMA_BUF_SET_NAME_B: 406 return dma_buf_set_name(dmabuf, (const char __user *)arg); 407 408 default: 409 return -ENOTTY; 410 } 411 } 412 413 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 414 { 415 struct dma_buf *dmabuf = file->private_data; 416 417 seq_printf(m, "size:\t%zu\n", dmabuf->size); 418 /* Don't count the temporary reference taken inside procfs seq_show */ 419 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 420 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 421 spin_lock(&dmabuf->name_lock); 422 if (dmabuf->name) 423 seq_printf(m, "name:\t%s\n", dmabuf->name); 424 spin_unlock(&dmabuf->name_lock); 425 } 426 427 static const struct file_operations dma_buf_fops = { 428 .release = dma_buf_file_release, 429 .mmap = dma_buf_mmap_internal, 430 .llseek = dma_buf_llseek, 431 .poll = dma_buf_poll, 432 .unlocked_ioctl = dma_buf_ioctl, 433 .compat_ioctl = compat_ptr_ioctl, 434 .show_fdinfo = dma_buf_show_fdinfo, 435 }; 436 437 /* 438 * is_dma_buf_file - Check if struct file* is associated with dma_buf 439 */ 440 static inline int is_dma_buf_file(struct file *file) 441 { 442 return file->f_op == &dma_buf_fops; 443 } 444 445 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 446 { 447 struct file *file; 448 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 449 450 if (IS_ERR(inode)) 451 return ERR_CAST(inode); 452 453 inode->i_size = dmabuf->size; 454 inode_set_bytes(inode, dmabuf->size); 455 456 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 457 flags, &dma_buf_fops); 458 if (IS_ERR(file)) 459 goto err_alloc_file; 460 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 461 file->private_data = dmabuf; 462 file->f_path.dentry->d_fsdata = dmabuf; 463 464 return file; 465 466 err_alloc_file: 467 iput(inode); 468 return file; 469 } 470 471 /** 472 * DOC: dma buf device access 473 * 474 * For device DMA access to a shared DMA buffer the usual sequence of operations 475 * is fairly simple: 476 * 477 * 1. The exporter defines his exporter instance using 478 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 479 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 480 * as a file descriptor by calling dma_buf_fd(). 481 * 482 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 483 * to share with: First the filedescriptor is converted to a &dma_buf using 484 * dma_buf_get(). Then the buffer is attached to the device using 485 * dma_buf_attach(). 486 * 487 * Up to this stage the exporter is still free to migrate or reallocate the 488 * backing storage. 489 * 490 * 3. Once the buffer is attached to all devices userspace can initiate DMA 491 * access to the shared buffer. In the kernel this is done by calling 492 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 493 * 494 * 4. Once a driver is done with a shared buffer it needs to call 495 * dma_buf_detach() (after cleaning up any mappings) and then release the 496 * reference acquired with dma_buf_get by calling dma_buf_put(). 497 * 498 * For the detailed semantics exporters are expected to implement see 499 * &dma_buf_ops. 500 */ 501 502 /** 503 * dma_buf_export - Creates a new dma_buf, and associates an anon file 504 * with this buffer, so it can be exported. 505 * Also connect the allocator specific data and ops to the buffer. 506 * Additionally, provide a name string for exporter; useful in debugging. 507 * 508 * @exp_info: [in] holds all the export related information provided 509 * by the exporter. see &struct dma_buf_export_info 510 * for further details. 511 * 512 * Returns, on success, a newly created dma_buf object, which wraps the 513 * supplied private data and operations for dma_buf_ops. On either missing 514 * ops, or error in allocating struct dma_buf, will return negative error. 515 * 516 * For most cases the easiest way to create @exp_info is through the 517 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 518 */ 519 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 520 { 521 struct dma_buf *dmabuf; 522 struct dma_resv *resv = exp_info->resv; 523 struct file *file; 524 size_t alloc_size = sizeof(struct dma_buf); 525 int ret; 526 527 if (!exp_info->resv) 528 alloc_size += sizeof(struct dma_resv); 529 else 530 /* prevent &dma_buf[1] == dma_buf->resv */ 531 alloc_size += 1; 532 533 if (WARN_ON(!exp_info->priv 534 || !exp_info->ops 535 || !exp_info->ops->map_dma_buf 536 || !exp_info->ops->unmap_dma_buf 537 || !exp_info->ops->release)) { 538 return ERR_PTR(-EINVAL); 539 } 540 541 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 542 (exp_info->ops->pin || exp_info->ops->unpin))) 543 return ERR_PTR(-EINVAL); 544 545 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 546 return ERR_PTR(-EINVAL); 547 548 if (!try_module_get(exp_info->owner)) 549 return ERR_PTR(-ENOENT); 550 551 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 552 if (!dmabuf) { 553 ret = -ENOMEM; 554 goto err_module; 555 } 556 557 dmabuf->priv = exp_info->priv; 558 dmabuf->ops = exp_info->ops; 559 dmabuf->size = exp_info->size; 560 dmabuf->exp_name = exp_info->exp_name; 561 dmabuf->owner = exp_info->owner; 562 spin_lock_init(&dmabuf->name_lock); 563 init_waitqueue_head(&dmabuf->poll); 564 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 565 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 566 567 if (!resv) { 568 resv = (struct dma_resv *)&dmabuf[1]; 569 dma_resv_init(resv); 570 } 571 dmabuf->resv = resv; 572 573 file = dma_buf_getfile(dmabuf, exp_info->flags); 574 if (IS_ERR(file)) { 575 ret = PTR_ERR(file); 576 goto err_dmabuf; 577 } 578 579 file->f_mode |= FMODE_LSEEK; 580 dmabuf->file = file; 581 582 mutex_init(&dmabuf->lock); 583 INIT_LIST_HEAD(&dmabuf->attachments); 584 585 mutex_lock(&db_list.lock); 586 list_add(&dmabuf->list_node, &db_list.head); 587 mutex_unlock(&db_list.lock); 588 589 return dmabuf; 590 591 err_dmabuf: 592 kfree(dmabuf); 593 err_module: 594 module_put(exp_info->owner); 595 return ERR_PTR(ret); 596 } 597 EXPORT_SYMBOL_GPL(dma_buf_export); 598 599 /** 600 * dma_buf_fd - returns a file descriptor for the given dma_buf 601 * @dmabuf: [in] pointer to dma_buf for which fd is required. 602 * @flags: [in] flags to give to fd 603 * 604 * On success, returns an associated 'fd'. Else, returns error. 605 */ 606 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 607 { 608 int fd; 609 610 if (!dmabuf || !dmabuf->file) 611 return -EINVAL; 612 613 fd = get_unused_fd_flags(flags); 614 if (fd < 0) 615 return fd; 616 617 fd_install(fd, dmabuf->file); 618 619 return fd; 620 } 621 EXPORT_SYMBOL_GPL(dma_buf_fd); 622 623 /** 624 * dma_buf_get - returns the dma_buf structure related to an fd 625 * @fd: [in] fd associated with the dma_buf to be returned 626 * 627 * On success, returns the dma_buf structure associated with an fd; uses 628 * file's refcounting done by fget to increase refcount. returns ERR_PTR 629 * otherwise. 630 */ 631 struct dma_buf *dma_buf_get(int fd) 632 { 633 struct file *file; 634 635 file = fget(fd); 636 637 if (!file) 638 return ERR_PTR(-EBADF); 639 640 if (!is_dma_buf_file(file)) { 641 fput(file); 642 return ERR_PTR(-EINVAL); 643 } 644 645 return file->private_data; 646 } 647 EXPORT_SYMBOL_GPL(dma_buf_get); 648 649 /** 650 * dma_buf_put - decreases refcount of the buffer 651 * @dmabuf: [in] buffer to reduce refcount of 652 * 653 * Uses file's refcounting done implicitly by fput(). 654 * 655 * If, as a result of this call, the refcount becomes 0, the 'release' file 656 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 657 * in turn, and frees the memory allocated for dmabuf when exported. 658 */ 659 void dma_buf_put(struct dma_buf *dmabuf) 660 { 661 if (WARN_ON(!dmabuf || !dmabuf->file)) 662 return; 663 664 fput(dmabuf->file); 665 } 666 EXPORT_SYMBOL_GPL(dma_buf_put); 667 668 /** 669 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 670 * calls attach() of dma_buf_ops to allow device-specific attach functionality 671 * @dmabuf: [in] buffer to attach device to. 672 * @dev: [in] device to be attached. 673 * @importer_ops: [in] importer operations for the attachment 674 * @importer_priv: [in] importer private pointer for the attachment 675 * 676 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 677 * must be cleaned up by calling dma_buf_detach(). 678 * 679 * Returns: 680 * 681 * A pointer to newly created &dma_buf_attachment on success, or a negative 682 * error code wrapped into a pointer on failure. 683 * 684 * Note that this can fail if the backing storage of @dmabuf is in a place not 685 * accessible to @dev, and cannot be moved to a more suitable place. This is 686 * indicated with the error code -EBUSY. 687 */ 688 struct dma_buf_attachment * 689 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 690 const struct dma_buf_attach_ops *importer_ops, 691 void *importer_priv) 692 { 693 struct dma_buf_attachment *attach; 694 int ret; 695 696 if (WARN_ON(!dmabuf || !dev)) 697 return ERR_PTR(-EINVAL); 698 699 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 700 return ERR_PTR(-EINVAL); 701 702 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 703 if (!attach) 704 return ERR_PTR(-ENOMEM); 705 706 attach->dev = dev; 707 attach->dmabuf = dmabuf; 708 if (importer_ops) 709 attach->peer2peer = importer_ops->allow_peer2peer; 710 attach->importer_ops = importer_ops; 711 attach->importer_priv = importer_priv; 712 713 if (dmabuf->ops->attach) { 714 ret = dmabuf->ops->attach(dmabuf, attach); 715 if (ret) 716 goto err_attach; 717 } 718 dma_resv_lock(dmabuf->resv, NULL); 719 list_add(&attach->node, &dmabuf->attachments); 720 dma_resv_unlock(dmabuf->resv); 721 722 /* When either the importer or the exporter can't handle dynamic 723 * mappings we cache the mapping here to avoid issues with the 724 * reservation object lock. 725 */ 726 if (dma_buf_attachment_is_dynamic(attach) != 727 dma_buf_is_dynamic(dmabuf)) { 728 struct sg_table *sgt; 729 730 if (dma_buf_is_dynamic(attach->dmabuf)) { 731 dma_resv_lock(attach->dmabuf->resv, NULL); 732 ret = dma_buf_pin(attach); 733 if (ret) 734 goto err_unlock; 735 } 736 737 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 738 if (!sgt) 739 sgt = ERR_PTR(-ENOMEM); 740 if (IS_ERR(sgt)) { 741 ret = PTR_ERR(sgt); 742 goto err_unpin; 743 } 744 if (dma_buf_is_dynamic(attach->dmabuf)) 745 dma_resv_unlock(attach->dmabuf->resv); 746 attach->sgt = sgt; 747 attach->dir = DMA_BIDIRECTIONAL; 748 } 749 750 return attach; 751 752 err_attach: 753 kfree(attach); 754 return ERR_PTR(ret); 755 756 err_unpin: 757 if (dma_buf_is_dynamic(attach->dmabuf)) 758 dma_buf_unpin(attach); 759 760 err_unlock: 761 if (dma_buf_is_dynamic(attach->dmabuf)) 762 dma_resv_unlock(attach->dmabuf->resv); 763 764 dma_buf_detach(dmabuf, attach); 765 return ERR_PTR(ret); 766 } 767 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 768 769 /** 770 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 771 * @dmabuf: [in] buffer to attach device to. 772 * @dev: [in] device to be attached. 773 * 774 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 775 * mapping. 776 */ 777 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 778 struct device *dev) 779 { 780 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 781 } 782 EXPORT_SYMBOL_GPL(dma_buf_attach); 783 784 /** 785 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 786 * optionally calls detach() of dma_buf_ops for device-specific detach 787 * @dmabuf: [in] buffer to detach from. 788 * @attach: [in] attachment to be detached; is free'd after this call. 789 * 790 * Clean up a device attachment obtained by calling dma_buf_attach(). 791 */ 792 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 793 { 794 if (WARN_ON(!dmabuf || !attach)) 795 return; 796 797 if (attach->sgt) { 798 if (dma_buf_is_dynamic(attach->dmabuf)) 799 dma_resv_lock(attach->dmabuf->resv, NULL); 800 801 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 802 803 if (dma_buf_is_dynamic(attach->dmabuf)) { 804 dma_buf_unpin(attach); 805 dma_resv_unlock(attach->dmabuf->resv); 806 } 807 } 808 809 dma_resv_lock(dmabuf->resv, NULL); 810 list_del(&attach->node); 811 dma_resv_unlock(dmabuf->resv); 812 if (dmabuf->ops->detach) 813 dmabuf->ops->detach(dmabuf, attach); 814 815 kfree(attach); 816 } 817 EXPORT_SYMBOL_GPL(dma_buf_detach); 818 819 /** 820 * dma_buf_pin - Lock down the DMA-buf 821 * 822 * @attach: [in] attachment which should be pinned 823 * 824 * Returns: 825 * 0 on success, negative error code on failure. 826 */ 827 int dma_buf_pin(struct dma_buf_attachment *attach) 828 { 829 struct dma_buf *dmabuf = attach->dmabuf; 830 int ret = 0; 831 832 dma_resv_assert_held(dmabuf->resv); 833 834 if (dmabuf->ops->pin) 835 ret = dmabuf->ops->pin(attach); 836 837 return ret; 838 } 839 EXPORT_SYMBOL_GPL(dma_buf_pin); 840 841 /** 842 * dma_buf_unpin - Remove lock from DMA-buf 843 * 844 * @attach: [in] attachment which should be unpinned 845 */ 846 void dma_buf_unpin(struct dma_buf_attachment *attach) 847 { 848 struct dma_buf *dmabuf = attach->dmabuf; 849 850 dma_resv_assert_held(dmabuf->resv); 851 852 if (dmabuf->ops->unpin) 853 dmabuf->ops->unpin(attach); 854 } 855 EXPORT_SYMBOL_GPL(dma_buf_unpin); 856 857 /** 858 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 859 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 860 * dma_buf_ops. 861 * @attach: [in] attachment whose scatterlist is to be returned 862 * @direction: [in] direction of DMA transfer 863 * 864 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 865 * on error. May return -EINTR if it is interrupted by a signal. 866 * 867 * On success, the DMA addresses and lengths in the returned scatterlist are 868 * PAGE_SIZE aligned. 869 * 870 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 871 * the underlying backing storage is pinned for as long as a mapping exists, 872 * therefore users/importers should not hold onto a mapping for undue amounts of 873 * time. 874 */ 875 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 876 enum dma_data_direction direction) 877 { 878 struct sg_table *sg_table; 879 int r; 880 881 might_sleep(); 882 883 if (WARN_ON(!attach || !attach->dmabuf)) 884 return ERR_PTR(-EINVAL); 885 886 if (dma_buf_attachment_is_dynamic(attach)) 887 dma_resv_assert_held(attach->dmabuf->resv); 888 889 if (attach->sgt) { 890 /* 891 * Two mappings with different directions for the same 892 * attachment are not allowed. 893 */ 894 if (attach->dir != direction && 895 attach->dir != DMA_BIDIRECTIONAL) 896 return ERR_PTR(-EBUSY); 897 898 return attach->sgt; 899 } 900 901 if (dma_buf_is_dynamic(attach->dmabuf)) { 902 dma_resv_assert_held(attach->dmabuf->resv); 903 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 904 r = dma_buf_pin(attach); 905 if (r) 906 return ERR_PTR(r); 907 } 908 } 909 910 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 911 if (!sg_table) 912 sg_table = ERR_PTR(-ENOMEM); 913 914 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 915 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 916 dma_buf_unpin(attach); 917 918 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 919 attach->sgt = sg_table; 920 attach->dir = direction; 921 } 922 923 #ifdef CONFIG_DMA_API_DEBUG 924 if (!IS_ERR(sg_table)) { 925 struct scatterlist *sg; 926 u64 addr; 927 int len; 928 int i; 929 930 for_each_sgtable_dma_sg(sg_table, sg, i) { 931 addr = sg_dma_address(sg); 932 len = sg_dma_len(sg); 933 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 934 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 935 __func__, addr, len); 936 } 937 } 938 } 939 #endif /* CONFIG_DMA_API_DEBUG */ 940 941 return sg_table; 942 } 943 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 944 945 /** 946 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 947 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 948 * dma_buf_ops. 949 * @attach: [in] attachment to unmap buffer from 950 * @sg_table: [in] scatterlist info of the buffer to unmap 951 * @direction: [in] direction of DMA transfer 952 * 953 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 954 */ 955 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 956 struct sg_table *sg_table, 957 enum dma_data_direction direction) 958 { 959 might_sleep(); 960 961 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 962 return; 963 964 if (dma_buf_attachment_is_dynamic(attach)) 965 dma_resv_assert_held(attach->dmabuf->resv); 966 967 if (attach->sgt == sg_table) 968 return; 969 970 if (dma_buf_is_dynamic(attach->dmabuf)) 971 dma_resv_assert_held(attach->dmabuf->resv); 972 973 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 974 975 if (dma_buf_is_dynamic(attach->dmabuf) && 976 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 977 dma_buf_unpin(attach); 978 } 979 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 980 981 /** 982 * dma_buf_move_notify - notify attachments that DMA-buf is moving 983 * 984 * @dmabuf: [in] buffer which is moving 985 * 986 * Informs all attachmenst that they need to destroy and recreated all their 987 * mappings. 988 */ 989 void dma_buf_move_notify(struct dma_buf *dmabuf) 990 { 991 struct dma_buf_attachment *attach; 992 993 dma_resv_assert_held(dmabuf->resv); 994 995 list_for_each_entry(attach, &dmabuf->attachments, node) 996 if (attach->importer_ops) 997 attach->importer_ops->move_notify(attach); 998 } 999 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 1000 1001 /** 1002 * DOC: cpu access 1003 * 1004 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1005 * 1006 * - Fallback operations in the kernel, for example when a device is connected 1007 * over USB and the kernel needs to shuffle the data around first before 1008 * sending it away. Cache coherency is handled by braketing any transactions 1009 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1010 * access. 1011 * 1012 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1013 * vmap interface is introduced. Note that on very old 32-bit architectures 1014 * vmalloc space might be limited and result in vmap calls failing. 1015 * 1016 * Interfaces:: 1017 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 1018 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 1019 * 1020 * The vmap call can fail if there is no vmap support in the exporter, or if 1021 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 1022 * that the dma-buf layer keeps a reference count for all vmap access and 1023 * calls down into the exporter's vmap function only when no vmapping exists, 1024 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 1025 * provided by taking the dma_buf->lock mutex. 1026 * 1027 * - For full compatibility on the importer side with existing userspace 1028 * interfaces, which might already support mmap'ing buffers. This is needed in 1029 * many processing pipelines (e.g. feeding a software rendered image into a 1030 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1031 * framework already supported this and for DMA buffer file descriptors to 1032 * replace ION buffers mmap support was needed. 1033 * 1034 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1035 * fd. But like for CPU access there's a need to braket the actual access, 1036 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1037 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1038 * be restarted. 1039 * 1040 * Some systems might need some sort of cache coherency management e.g. when 1041 * CPU and GPU domains are being accessed through dma-buf at the same time. 1042 * To circumvent this problem there are begin/end coherency markers, that 1043 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1044 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1045 * sequence would be used like following: 1046 * 1047 * - mmap dma-buf fd 1048 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1049 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1050 * want (with the new data being consumed by say the GPU or the scanout 1051 * device) 1052 * - munmap once you don't need the buffer any more 1053 * 1054 * For correctness and optimal performance, it is always required to use 1055 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1056 * mapped address. Userspace cannot rely on coherent access, even when there 1057 * are systems where it just works without calling these ioctls. 1058 * 1059 * - And as a CPU fallback in userspace processing pipelines. 1060 * 1061 * Similar to the motivation for kernel cpu access it is again important that 1062 * the userspace code of a given importing subsystem can use the same 1063 * interfaces with a imported dma-buf buffer object as with a native buffer 1064 * object. This is especially important for drm where the userspace part of 1065 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1066 * use a different way to mmap a buffer rather invasive. 1067 * 1068 * The assumption in the current dma-buf interfaces is that redirecting the 1069 * initial mmap is all that's needed. A survey of some of the existing 1070 * subsystems shows that no driver seems to do any nefarious thing like 1071 * syncing up with outstanding asynchronous processing on the device or 1072 * allocating special resources at fault time. So hopefully this is good 1073 * enough, since adding interfaces to intercept pagefaults and allow pte 1074 * shootdowns would increase the complexity quite a bit. 1075 * 1076 * Interface:: 1077 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1078 * unsigned long); 1079 * 1080 * If the importing subsystem simply provides a special-purpose mmap call to 1081 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 1082 * equally achieve that for a dma-buf object. 1083 */ 1084 1085 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1086 enum dma_data_direction direction) 1087 { 1088 bool write = (direction == DMA_BIDIRECTIONAL || 1089 direction == DMA_TO_DEVICE); 1090 struct dma_resv *resv = dmabuf->resv; 1091 long ret; 1092 1093 /* Wait on any implicit rendering fences */ 1094 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1095 MAX_SCHEDULE_TIMEOUT); 1096 if (ret < 0) 1097 return ret; 1098 1099 return 0; 1100 } 1101 1102 /** 1103 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1104 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1105 * preparations. Coherency is only guaranteed in the specified range for the 1106 * specified access direction. 1107 * @dmabuf: [in] buffer to prepare cpu access for. 1108 * @direction: [in] length of range for cpu access. 1109 * 1110 * After the cpu access is complete the caller should call 1111 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1112 * it guaranteed to be coherent with other DMA access. 1113 * 1114 * Can return negative error values, returns 0 on success. 1115 */ 1116 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1117 enum dma_data_direction direction) 1118 { 1119 int ret = 0; 1120 1121 if (WARN_ON(!dmabuf)) 1122 return -EINVAL; 1123 1124 if (dmabuf->ops->begin_cpu_access) 1125 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1126 1127 /* Ensure that all fences are waited upon - but we first allow 1128 * the native handler the chance to do so more efficiently if it 1129 * chooses. A double invocation here will be reasonably cheap no-op. 1130 */ 1131 if (ret == 0) 1132 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1133 1134 return ret; 1135 } 1136 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1137 1138 /** 1139 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1140 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1141 * actions. Coherency is only guaranteed in the specified range for the 1142 * specified access direction. 1143 * @dmabuf: [in] buffer to complete cpu access for. 1144 * @direction: [in] length of range for cpu access. 1145 * 1146 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1147 * 1148 * Can return negative error values, returns 0 on success. 1149 */ 1150 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1151 enum dma_data_direction direction) 1152 { 1153 int ret = 0; 1154 1155 WARN_ON(!dmabuf); 1156 1157 if (dmabuf->ops->end_cpu_access) 1158 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1159 1160 return ret; 1161 } 1162 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1163 1164 1165 /** 1166 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1167 * @dmabuf: [in] buffer that should back the vma 1168 * @vma: [in] vma for the mmap 1169 * @pgoff: [in] offset in pages where this mmap should start within the 1170 * dma-buf buffer. 1171 * 1172 * This function adjusts the passed in vma so that it points at the file of the 1173 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1174 * checking on the size of the vma. Then it calls the exporters mmap function to 1175 * set up the mapping. 1176 * 1177 * Can return negative error values, returns 0 on success. 1178 */ 1179 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1180 unsigned long pgoff) 1181 { 1182 if (WARN_ON(!dmabuf || !vma)) 1183 return -EINVAL; 1184 1185 /* check if buffer supports mmap */ 1186 if (!dmabuf->ops->mmap) 1187 return -EINVAL; 1188 1189 /* check for offset overflow */ 1190 if (pgoff + vma_pages(vma) < pgoff) 1191 return -EOVERFLOW; 1192 1193 /* check for overflowing the buffer's size */ 1194 if (pgoff + vma_pages(vma) > 1195 dmabuf->size >> PAGE_SHIFT) 1196 return -EINVAL; 1197 1198 /* readjust the vma */ 1199 vma_set_file(vma, dmabuf->file); 1200 vma->vm_pgoff = pgoff; 1201 1202 return dmabuf->ops->mmap(dmabuf, vma); 1203 } 1204 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1205 1206 /** 1207 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1208 * address space. Same restrictions as for vmap and friends apply. 1209 * @dmabuf: [in] buffer to vmap 1210 * @map: [out] returns the vmap pointer 1211 * 1212 * This call may fail due to lack of virtual mapping address space. 1213 * These calls are optional in drivers. The intended use for them 1214 * is for mapping objects linear in kernel space for high use objects. 1215 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1216 * 1217 * Returns 0 on success, or a negative errno code otherwise. 1218 */ 1219 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1220 { 1221 struct dma_buf_map ptr; 1222 int ret = 0; 1223 1224 dma_buf_map_clear(map); 1225 1226 if (WARN_ON(!dmabuf)) 1227 return -EINVAL; 1228 1229 if (!dmabuf->ops->vmap) 1230 return -EINVAL; 1231 1232 mutex_lock(&dmabuf->lock); 1233 if (dmabuf->vmapping_counter) { 1234 dmabuf->vmapping_counter++; 1235 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1236 *map = dmabuf->vmap_ptr; 1237 goto out_unlock; 1238 } 1239 1240 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr)); 1241 1242 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1243 if (WARN_ON_ONCE(ret)) 1244 goto out_unlock; 1245 1246 dmabuf->vmap_ptr = ptr; 1247 dmabuf->vmapping_counter = 1; 1248 1249 *map = dmabuf->vmap_ptr; 1250 1251 out_unlock: 1252 mutex_unlock(&dmabuf->lock); 1253 return ret; 1254 } 1255 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1256 1257 /** 1258 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1259 * @dmabuf: [in] buffer to vunmap 1260 * @map: [in] vmap pointer to vunmap 1261 */ 1262 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map) 1263 { 1264 if (WARN_ON(!dmabuf)) 1265 return; 1266 1267 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr)); 1268 BUG_ON(dmabuf->vmapping_counter == 0); 1269 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map)); 1270 1271 mutex_lock(&dmabuf->lock); 1272 if (--dmabuf->vmapping_counter == 0) { 1273 if (dmabuf->ops->vunmap) 1274 dmabuf->ops->vunmap(dmabuf, map); 1275 dma_buf_map_clear(&dmabuf->vmap_ptr); 1276 } 1277 mutex_unlock(&dmabuf->lock); 1278 } 1279 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1280 1281 #ifdef CONFIG_DEBUG_FS 1282 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1283 { 1284 int ret; 1285 struct dma_buf *buf_obj; 1286 struct dma_buf_attachment *attach_obj; 1287 struct dma_resv *robj; 1288 struct dma_resv_list *fobj; 1289 struct dma_fence *fence; 1290 unsigned seq; 1291 int count = 0, attach_count, shared_count, i; 1292 size_t size = 0; 1293 1294 ret = mutex_lock_interruptible(&db_list.lock); 1295 1296 if (ret) 1297 return ret; 1298 1299 seq_puts(s, "\nDma-buf Objects:\n"); 1300 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1301 "size", "flags", "mode", "count", "ino"); 1302 1303 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1304 1305 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1306 if (ret) 1307 goto error_unlock; 1308 1309 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1310 buf_obj->size, 1311 buf_obj->file->f_flags, buf_obj->file->f_mode, 1312 file_count(buf_obj->file), 1313 buf_obj->exp_name, 1314 file_inode(buf_obj->file)->i_ino, 1315 buf_obj->name ?: ""); 1316 1317 robj = buf_obj->resv; 1318 while (true) { 1319 seq = read_seqcount_begin(&robj->seq); 1320 rcu_read_lock(); 1321 fobj = rcu_dereference(robj->fence); 1322 shared_count = fobj ? fobj->shared_count : 0; 1323 fence = rcu_dereference(robj->fence_excl); 1324 if (!read_seqcount_retry(&robj->seq, seq)) 1325 break; 1326 rcu_read_unlock(); 1327 } 1328 1329 if (fence) 1330 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1331 fence->ops->get_driver_name(fence), 1332 fence->ops->get_timeline_name(fence), 1333 dma_fence_is_signaled(fence) ? "" : "un"); 1334 for (i = 0; i < shared_count; i++) { 1335 fence = rcu_dereference(fobj->shared[i]); 1336 if (!dma_fence_get_rcu(fence)) 1337 continue; 1338 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1339 fence->ops->get_driver_name(fence), 1340 fence->ops->get_timeline_name(fence), 1341 dma_fence_is_signaled(fence) ? "" : "un"); 1342 dma_fence_put(fence); 1343 } 1344 rcu_read_unlock(); 1345 1346 seq_puts(s, "\tAttached Devices:\n"); 1347 attach_count = 0; 1348 1349 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1350 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1351 attach_count++; 1352 } 1353 dma_resv_unlock(buf_obj->resv); 1354 1355 seq_printf(s, "Total %d devices attached\n\n", 1356 attach_count); 1357 1358 count++; 1359 size += buf_obj->size; 1360 } 1361 1362 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1363 1364 mutex_unlock(&db_list.lock); 1365 return 0; 1366 1367 error_unlock: 1368 mutex_unlock(&db_list.lock); 1369 return ret; 1370 } 1371 1372 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1373 1374 static struct dentry *dma_buf_debugfs_dir; 1375 1376 static int dma_buf_init_debugfs(void) 1377 { 1378 struct dentry *d; 1379 int err = 0; 1380 1381 d = debugfs_create_dir("dma_buf", NULL); 1382 if (IS_ERR(d)) 1383 return PTR_ERR(d); 1384 1385 dma_buf_debugfs_dir = d; 1386 1387 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1388 NULL, &dma_buf_debug_fops); 1389 if (IS_ERR(d)) { 1390 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1391 debugfs_remove_recursive(dma_buf_debugfs_dir); 1392 dma_buf_debugfs_dir = NULL; 1393 err = PTR_ERR(d); 1394 } 1395 1396 return err; 1397 } 1398 1399 static void dma_buf_uninit_debugfs(void) 1400 { 1401 debugfs_remove_recursive(dma_buf_debugfs_dir); 1402 } 1403 #else 1404 static inline int dma_buf_init_debugfs(void) 1405 { 1406 return 0; 1407 } 1408 static inline void dma_buf_uninit_debugfs(void) 1409 { 1410 } 1411 #endif 1412 1413 static int __init dma_buf_init(void) 1414 { 1415 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1416 if (IS_ERR(dma_buf_mnt)) 1417 return PTR_ERR(dma_buf_mnt); 1418 1419 mutex_init(&db_list.lock); 1420 INIT_LIST_HEAD(&db_list.head); 1421 dma_buf_init_debugfs(); 1422 return 0; 1423 } 1424 subsys_initcall(dma_buf_init); 1425 1426 static void __exit dma_buf_deinit(void) 1427 { 1428 dma_buf_uninit_debugfs(); 1429 kern_unmount(dma_buf_mnt); 1430 } 1431 __exitcall(dma_buf_deinit); 1432