xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 27ab1c1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	spin_lock(&dmabuf->name_lock);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	spin_unlock(&dmabuf->name_lock);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static void dma_buf_release(struct dentry *dentry)
58 {
59 	struct dma_buf *dmabuf;
60 
61 	dmabuf = dentry->d_fsdata;
62 	if (unlikely(!dmabuf))
63 		return;
64 
65 	BUG_ON(dmabuf->vmapping_counter);
66 
67 	/*
68 	 * Any fences that a dma-buf poll can wait on should be signaled
69 	 * before releasing dma-buf. This is the responsibility of each
70 	 * driver that uses the reservation objects.
71 	 *
72 	 * If you hit this BUG() it means someone dropped their ref to the
73 	 * dma-buf while still having pending operation to the buffer.
74 	 */
75 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
76 
77 	dmabuf->ops->release(dmabuf);
78 
79 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 		dma_resv_fini(dmabuf->resv);
81 
82 	module_put(dmabuf->owner);
83 	kfree(dmabuf->name);
84 	kfree(dmabuf);
85 }
86 
87 static int dma_buf_file_release(struct inode *inode, struct file *file)
88 {
89 	struct dma_buf *dmabuf;
90 
91 	if (!is_dma_buf_file(file))
92 		return -EINVAL;
93 
94 	dmabuf = file->private_data;
95 
96 	mutex_lock(&db_list.lock);
97 	list_del(&dmabuf->list_node);
98 	mutex_unlock(&db_list.lock);
99 
100 	return 0;
101 }
102 
103 static const struct dentry_operations dma_buf_dentry_ops = {
104 	.d_dname = dmabuffs_dname,
105 	.d_release = dma_buf_release,
106 };
107 
108 static struct vfsmount *dma_buf_mnt;
109 
110 static int dma_buf_fs_init_context(struct fs_context *fc)
111 {
112 	struct pseudo_fs_context *ctx;
113 
114 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
115 	if (!ctx)
116 		return -ENOMEM;
117 	ctx->dops = &dma_buf_dentry_ops;
118 	return 0;
119 }
120 
121 static struct file_system_type dma_buf_fs_type = {
122 	.name = "dmabuf",
123 	.init_fs_context = dma_buf_fs_init_context,
124 	.kill_sb = kill_anon_super,
125 };
126 
127 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
128 {
129 	struct dma_buf *dmabuf;
130 
131 	if (!is_dma_buf_file(file))
132 		return -EINVAL;
133 
134 	dmabuf = file->private_data;
135 
136 	/* check if buffer supports mmap */
137 	if (!dmabuf->ops->mmap)
138 		return -EINVAL;
139 
140 	/* check for overflowing the buffer's size */
141 	if (vma->vm_pgoff + vma_pages(vma) >
142 	    dmabuf->size >> PAGE_SHIFT)
143 		return -EINVAL;
144 
145 	return dmabuf->ops->mmap(dmabuf, vma);
146 }
147 
148 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
149 {
150 	struct dma_buf *dmabuf;
151 	loff_t base;
152 
153 	if (!is_dma_buf_file(file))
154 		return -EBADF;
155 
156 	dmabuf = file->private_data;
157 
158 	/* only support discovering the end of the buffer,
159 	   but also allow SEEK_SET to maintain the idiomatic
160 	   SEEK_END(0), SEEK_CUR(0) pattern */
161 	if (whence == SEEK_END)
162 		base = dmabuf->size;
163 	else if (whence == SEEK_SET)
164 		base = 0;
165 	else
166 		return -EINVAL;
167 
168 	if (offset != 0)
169 		return -EINVAL;
170 
171 	return base + offset;
172 }
173 
174 /**
175  * DOC: implicit fence polling
176  *
177  * To support cross-device and cross-driver synchronization of buffer access
178  * implicit fences (represented internally in the kernel with &struct dma_fence)
179  * can be attached to a &dma_buf. The glue for that and a few related things are
180  * provided in the &dma_resv structure.
181  *
182  * Userspace can query the state of these implicitly tracked fences using poll()
183  * and related system calls:
184  *
185  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
186  *   most recent write or exclusive fence.
187  *
188  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
189  *   all attached fences, shared and exclusive ones.
190  *
191  * Note that this only signals the completion of the respective fences, i.e. the
192  * DMA transfers are complete. Cache flushing and any other necessary
193  * preparations before CPU access can begin still need to happen.
194  */
195 
196 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197 {
198 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
199 	unsigned long flags;
200 
201 	spin_lock_irqsave(&dcb->poll->lock, flags);
202 	wake_up_locked_poll(dcb->poll, dcb->active);
203 	dcb->active = 0;
204 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
205 }
206 
207 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
208 {
209 	struct dma_buf *dmabuf;
210 	struct dma_resv *resv;
211 	struct dma_resv_list *fobj;
212 	struct dma_fence *fence_excl;
213 	__poll_t events;
214 	unsigned shared_count, seq;
215 
216 	dmabuf = file->private_data;
217 	if (!dmabuf || !dmabuf->resv)
218 		return EPOLLERR;
219 
220 	resv = dmabuf->resv;
221 
222 	poll_wait(file, &dmabuf->poll, poll);
223 
224 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
225 	if (!events)
226 		return 0;
227 
228 retry:
229 	seq = read_seqcount_begin(&resv->seq);
230 	rcu_read_lock();
231 
232 	fobj = rcu_dereference(resv->fence);
233 	if (fobj)
234 		shared_count = fobj->shared_count;
235 	else
236 		shared_count = 0;
237 	fence_excl = rcu_dereference(resv->fence_excl);
238 	if (read_seqcount_retry(&resv->seq, seq)) {
239 		rcu_read_unlock();
240 		goto retry;
241 	}
242 
243 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
244 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
245 		__poll_t pevents = EPOLLIN;
246 
247 		if (shared_count == 0)
248 			pevents |= EPOLLOUT;
249 
250 		spin_lock_irq(&dmabuf->poll.lock);
251 		if (dcb->active) {
252 			dcb->active |= pevents;
253 			events &= ~pevents;
254 		} else
255 			dcb->active = pevents;
256 		spin_unlock_irq(&dmabuf->poll.lock);
257 
258 		if (events & pevents) {
259 			if (!dma_fence_get_rcu(fence_excl)) {
260 				/* force a recheck */
261 				events &= ~pevents;
262 				dma_buf_poll_cb(NULL, &dcb->cb);
263 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
264 							   dma_buf_poll_cb)) {
265 				events &= ~pevents;
266 				dma_fence_put(fence_excl);
267 			} else {
268 				/*
269 				 * No callback queued, wake up any additional
270 				 * waiters.
271 				 */
272 				dma_fence_put(fence_excl);
273 				dma_buf_poll_cb(NULL, &dcb->cb);
274 			}
275 		}
276 	}
277 
278 	if ((events & EPOLLOUT) && shared_count > 0) {
279 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
280 		int i;
281 
282 		/* Only queue a new callback if no event has fired yet */
283 		spin_lock_irq(&dmabuf->poll.lock);
284 		if (dcb->active)
285 			events &= ~EPOLLOUT;
286 		else
287 			dcb->active = EPOLLOUT;
288 		spin_unlock_irq(&dmabuf->poll.lock);
289 
290 		if (!(events & EPOLLOUT))
291 			goto out;
292 
293 		for (i = 0; i < shared_count; ++i) {
294 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
295 
296 			if (!dma_fence_get_rcu(fence)) {
297 				/*
298 				 * fence refcount dropped to zero, this means
299 				 * that fobj has been freed
300 				 *
301 				 * call dma_buf_poll_cb and force a recheck!
302 				 */
303 				events &= ~EPOLLOUT;
304 				dma_buf_poll_cb(NULL, &dcb->cb);
305 				break;
306 			}
307 			if (!dma_fence_add_callback(fence, &dcb->cb,
308 						    dma_buf_poll_cb)) {
309 				dma_fence_put(fence);
310 				events &= ~EPOLLOUT;
311 				break;
312 			}
313 			dma_fence_put(fence);
314 		}
315 
316 		/* No callback queued, wake up any additional waiters. */
317 		if (i == shared_count)
318 			dma_buf_poll_cb(NULL, &dcb->cb);
319 	}
320 
321 out:
322 	rcu_read_unlock();
323 	return events;
324 }
325 
326 /**
327  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
328  * The name of the dma-buf buffer can only be set when the dma-buf is not
329  * attached to any devices. It could theoritically support changing the
330  * name of the dma-buf if the same piece of memory is used for multiple
331  * purpose between different devices.
332  *
333  * @dmabuf: [in]     dmabuf buffer that will be renamed.
334  * @buf:    [in]     A piece of userspace memory that contains the name of
335  *                   the dma-buf.
336  *
337  * Returns 0 on success. If the dma-buf buffer is already attached to
338  * devices, return -EBUSY.
339  *
340  */
341 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
342 {
343 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
344 	long ret = 0;
345 
346 	if (IS_ERR(name))
347 		return PTR_ERR(name);
348 
349 	dma_resv_lock(dmabuf->resv, NULL);
350 	if (!list_empty(&dmabuf->attachments)) {
351 		ret = -EBUSY;
352 		kfree(name);
353 		goto out_unlock;
354 	}
355 	spin_lock(&dmabuf->name_lock);
356 	kfree(dmabuf->name);
357 	dmabuf->name = name;
358 	spin_unlock(&dmabuf->name_lock);
359 
360 out_unlock:
361 	dma_resv_unlock(dmabuf->resv);
362 	return ret;
363 }
364 
365 static long dma_buf_ioctl(struct file *file,
366 			  unsigned int cmd, unsigned long arg)
367 {
368 	struct dma_buf *dmabuf;
369 	struct dma_buf_sync sync;
370 	enum dma_data_direction direction;
371 	int ret;
372 
373 	dmabuf = file->private_data;
374 
375 	switch (cmd) {
376 	case DMA_BUF_IOCTL_SYNC:
377 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
378 			return -EFAULT;
379 
380 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
381 			return -EINVAL;
382 
383 		switch (sync.flags & DMA_BUF_SYNC_RW) {
384 		case DMA_BUF_SYNC_READ:
385 			direction = DMA_FROM_DEVICE;
386 			break;
387 		case DMA_BUF_SYNC_WRITE:
388 			direction = DMA_TO_DEVICE;
389 			break;
390 		case DMA_BUF_SYNC_RW:
391 			direction = DMA_BIDIRECTIONAL;
392 			break;
393 		default:
394 			return -EINVAL;
395 		}
396 
397 		if (sync.flags & DMA_BUF_SYNC_END)
398 			ret = dma_buf_end_cpu_access(dmabuf, direction);
399 		else
400 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
401 
402 		return ret;
403 
404 	case DMA_BUF_SET_NAME_A:
405 	case DMA_BUF_SET_NAME_B:
406 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
407 
408 	default:
409 		return -ENOTTY;
410 	}
411 }
412 
413 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
414 {
415 	struct dma_buf *dmabuf = file->private_data;
416 
417 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
418 	/* Don't count the temporary reference taken inside procfs seq_show */
419 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
420 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
421 	spin_lock(&dmabuf->name_lock);
422 	if (dmabuf->name)
423 		seq_printf(m, "name:\t%s\n", dmabuf->name);
424 	spin_unlock(&dmabuf->name_lock);
425 }
426 
427 static const struct file_operations dma_buf_fops = {
428 	.release	= dma_buf_file_release,
429 	.mmap		= dma_buf_mmap_internal,
430 	.llseek		= dma_buf_llseek,
431 	.poll		= dma_buf_poll,
432 	.unlocked_ioctl	= dma_buf_ioctl,
433 	.compat_ioctl	= compat_ptr_ioctl,
434 	.show_fdinfo	= dma_buf_show_fdinfo,
435 };
436 
437 /*
438  * is_dma_buf_file - Check if struct file* is associated with dma_buf
439  */
440 static inline int is_dma_buf_file(struct file *file)
441 {
442 	return file->f_op == &dma_buf_fops;
443 }
444 
445 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
446 {
447 	struct file *file;
448 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
449 
450 	if (IS_ERR(inode))
451 		return ERR_CAST(inode);
452 
453 	inode->i_size = dmabuf->size;
454 	inode_set_bytes(inode, dmabuf->size);
455 
456 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
457 				 flags, &dma_buf_fops);
458 	if (IS_ERR(file))
459 		goto err_alloc_file;
460 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
461 	file->private_data = dmabuf;
462 	file->f_path.dentry->d_fsdata = dmabuf;
463 
464 	return file;
465 
466 err_alloc_file:
467 	iput(inode);
468 	return file;
469 }
470 
471 /**
472  * DOC: dma buf device access
473  *
474  * For device DMA access to a shared DMA buffer the usual sequence of operations
475  * is fairly simple:
476  *
477  * 1. The exporter defines his exporter instance using
478  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
479  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
480  *    as a file descriptor by calling dma_buf_fd().
481  *
482  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
483  *    to share with: First the filedescriptor is converted to a &dma_buf using
484  *    dma_buf_get(). Then the buffer is attached to the device using
485  *    dma_buf_attach().
486  *
487  *    Up to this stage the exporter is still free to migrate or reallocate the
488  *    backing storage.
489  *
490  * 3. Once the buffer is attached to all devices userspace can initiate DMA
491  *    access to the shared buffer. In the kernel this is done by calling
492  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
493  *
494  * 4. Once a driver is done with a shared buffer it needs to call
495  *    dma_buf_detach() (after cleaning up any mappings) and then release the
496  *    reference acquired with dma_buf_get by calling dma_buf_put().
497  *
498  * For the detailed semantics exporters are expected to implement see
499  * &dma_buf_ops.
500  */
501 
502 /**
503  * dma_buf_export - Creates a new dma_buf, and associates an anon file
504  * with this buffer, so it can be exported.
505  * Also connect the allocator specific data and ops to the buffer.
506  * Additionally, provide a name string for exporter; useful in debugging.
507  *
508  * @exp_info:	[in]	holds all the export related information provided
509  *			by the exporter. see &struct dma_buf_export_info
510  *			for further details.
511  *
512  * Returns, on success, a newly created dma_buf object, which wraps the
513  * supplied private data and operations for dma_buf_ops. On either missing
514  * ops, or error in allocating struct dma_buf, will return negative error.
515  *
516  * For most cases the easiest way to create @exp_info is through the
517  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
518  */
519 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
520 {
521 	struct dma_buf *dmabuf;
522 	struct dma_resv *resv = exp_info->resv;
523 	struct file *file;
524 	size_t alloc_size = sizeof(struct dma_buf);
525 	int ret;
526 
527 	if (!exp_info->resv)
528 		alloc_size += sizeof(struct dma_resv);
529 	else
530 		/* prevent &dma_buf[1] == dma_buf->resv */
531 		alloc_size += 1;
532 
533 	if (WARN_ON(!exp_info->priv
534 			  || !exp_info->ops
535 			  || !exp_info->ops->map_dma_buf
536 			  || !exp_info->ops->unmap_dma_buf
537 			  || !exp_info->ops->release)) {
538 		return ERR_PTR(-EINVAL);
539 	}
540 
541 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
542 		    (exp_info->ops->pin || exp_info->ops->unpin)))
543 		return ERR_PTR(-EINVAL);
544 
545 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
546 		return ERR_PTR(-EINVAL);
547 
548 	if (!try_module_get(exp_info->owner))
549 		return ERR_PTR(-ENOENT);
550 
551 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
552 	if (!dmabuf) {
553 		ret = -ENOMEM;
554 		goto err_module;
555 	}
556 
557 	dmabuf->priv = exp_info->priv;
558 	dmabuf->ops = exp_info->ops;
559 	dmabuf->size = exp_info->size;
560 	dmabuf->exp_name = exp_info->exp_name;
561 	dmabuf->owner = exp_info->owner;
562 	spin_lock_init(&dmabuf->name_lock);
563 	init_waitqueue_head(&dmabuf->poll);
564 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
565 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
566 
567 	if (!resv) {
568 		resv = (struct dma_resv *)&dmabuf[1];
569 		dma_resv_init(resv);
570 	}
571 	dmabuf->resv = resv;
572 
573 	file = dma_buf_getfile(dmabuf, exp_info->flags);
574 	if (IS_ERR(file)) {
575 		ret = PTR_ERR(file);
576 		goto err_dmabuf;
577 	}
578 
579 	file->f_mode |= FMODE_LSEEK;
580 	dmabuf->file = file;
581 
582 	mutex_init(&dmabuf->lock);
583 	INIT_LIST_HEAD(&dmabuf->attachments);
584 
585 	mutex_lock(&db_list.lock);
586 	list_add(&dmabuf->list_node, &db_list.head);
587 	mutex_unlock(&db_list.lock);
588 
589 	return dmabuf;
590 
591 err_dmabuf:
592 	kfree(dmabuf);
593 err_module:
594 	module_put(exp_info->owner);
595 	return ERR_PTR(ret);
596 }
597 EXPORT_SYMBOL_GPL(dma_buf_export);
598 
599 /**
600  * dma_buf_fd - returns a file descriptor for the given dma_buf
601  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
602  * @flags:      [in]    flags to give to fd
603  *
604  * On success, returns an associated 'fd'. Else, returns error.
605  */
606 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
607 {
608 	int fd;
609 
610 	if (!dmabuf || !dmabuf->file)
611 		return -EINVAL;
612 
613 	fd = get_unused_fd_flags(flags);
614 	if (fd < 0)
615 		return fd;
616 
617 	fd_install(fd, dmabuf->file);
618 
619 	return fd;
620 }
621 EXPORT_SYMBOL_GPL(dma_buf_fd);
622 
623 /**
624  * dma_buf_get - returns the dma_buf structure related to an fd
625  * @fd:	[in]	fd associated with the dma_buf to be returned
626  *
627  * On success, returns the dma_buf structure associated with an fd; uses
628  * file's refcounting done by fget to increase refcount. returns ERR_PTR
629  * otherwise.
630  */
631 struct dma_buf *dma_buf_get(int fd)
632 {
633 	struct file *file;
634 
635 	file = fget(fd);
636 
637 	if (!file)
638 		return ERR_PTR(-EBADF);
639 
640 	if (!is_dma_buf_file(file)) {
641 		fput(file);
642 		return ERR_PTR(-EINVAL);
643 	}
644 
645 	return file->private_data;
646 }
647 EXPORT_SYMBOL_GPL(dma_buf_get);
648 
649 /**
650  * dma_buf_put - decreases refcount of the buffer
651  * @dmabuf:	[in]	buffer to reduce refcount of
652  *
653  * Uses file's refcounting done implicitly by fput().
654  *
655  * If, as a result of this call, the refcount becomes 0, the 'release' file
656  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
657  * in turn, and frees the memory allocated for dmabuf when exported.
658  */
659 void dma_buf_put(struct dma_buf *dmabuf)
660 {
661 	if (WARN_ON(!dmabuf || !dmabuf->file))
662 		return;
663 
664 	fput(dmabuf->file);
665 }
666 EXPORT_SYMBOL_GPL(dma_buf_put);
667 
668 /**
669  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
670  * calls attach() of dma_buf_ops to allow device-specific attach functionality
671  * @dmabuf:		[in]	buffer to attach device to.
672  * @dev:		[in]	device to be attached.
673  * @importer_ops:	[in]	importer operations for the attachment
674  * @importer_priv:	[in]	importer private pointer for the attachment
675  *
676  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
677  * must be cleaned up by calling dma_buf_detach().
678  *
679  * Returns:
680  *
681  * A pointer to newly created &dma_buf_attachment on success, or a negative
682  * error code wrapped into a pointer on failure.
683  *
684  * Note that this can fail if the backing storage of @dmabuf is in a place not
685  * accessible to @dev, and cannot be moved to a more suitable place. This is
686  * indicated with the error code -EBUSY.
687  */
688 struct dma_buf_attachment *
689 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
690 		       const struct dma_buf_attach_ops *importer_ops,
691 		       void *importer_priv)
692 {
693 	struct dma_buf_attachment *attach;
694 	int ret;
695 
696 	if (WARN_ON(!dmabuf || !dev))
697 		return ERR_PTR(-EINVAL);
698 
699 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
700 		return ERR_PTR(-EINVAL);
701 
702 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
703 	if (!attach)
704 		return ERR_PTR(-ENOMEM);
705 
706 	attach->dev = dev;
707 	attach->dmabuf = dmabuf;
708 	if (importer_ops)
709 		attach->peer2peer = importer_ops->allow_peer2peer;
710 	attach->importer_ops = importer_ops;
711 	attach->importer_priv = importer_priv;
712 
713 	if (dmabuf->ops->attach) {
714 		ret = dmabuf->ops->attach(dmabuf, attach);
715 		if (ret)
716 			goto err_attach;
717 	}
718 	dma_resv_lock(dmabuf->resv, NULL);
719 	list_add(&attach->node, &dmabuf->attachments);
720 	dma_resv_unlock(dmabuf->resv);
721 
722 	/* When either the importer or the exporter can't handle dynamic
723 	 * mappings we cache the mapping here to avoid issues with the
724 	 * reservation object lock.
725 	 */
726 	if (dma_buf_attachment_is_dynamic(attach) !=
727 	    dma_buf_is_dynamic(dmabuf)) {
728 		struct sg_table *sgt;
729 
730 		if (dma_buf_is_dynamic(attach->dmabuf)) {
731 			dma_resv_lock(attach->dmabuf->resv, NULL);
732 			ret = dma_buf_pin(attach);
733 			if (ret)
734 				goto err_unlock;
735 		}
736 
737 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
738 		if (!sgt)
739 			sgt = ERR_PTR(-ENOMEM);
740 		if (IS_ERR(sgt)) {
741 			ret = PTR_ERR(sgt);
742 			goto err_unpin;
743 		}
744 		if (dma_buf_is_dynamic(attach->dmabuf))
745 			dma_resv_unlock(attach->dmabuf->resv);
746 		attach->sgt = sgt;
747 		attach->dir = DMA_BIDIRECTIONAL;
748 	}
749 
750 	return attach;
751 
752 err_attach:
753 	kfree(attach);
754 	return ERR_PTR(ret);
755 
756 err_unpin:
757 	if (dma_buf_is_dynamic(attach->dmabuf))
758 		dma_buf_unpin(attach);
759 
760 err_unlock:
761 	if (dma_buf_is_dynamic(attach->dmabuf))
762 		dma_resv_unlock(attach->dmabuf->resv);
763 
764 	dma_buf_detach(dmabuf, attach);
765 	return ERR_PTR(ret);
766 }
767 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
768 
769 /**
770  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
771  * @dmabuf:	[in]	buffer to attach device to.
772  * @dev:	[in]	device to be attached.
773  *
774  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
775  * mapping.
776  */
777 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
778 					  struct device *dev)
779 {
780 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
781 }
782 EXPORT_SYMBOL_GPL(dma_buf_attach);
783 
784 /**
785  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
786  * optionally calls detach() of dma_buf_ops for device-specific detach
787  * @dmabuf:	[in]	buffer to detach from.
788  * @attach:	[in]	attachment to be detached; is free'd after this call.
789  *
790  * Clean up a device attachment obtained by calling dma_buf_attach().
791  */
792 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
793 {
794 	if (WARN_ON(!dmabuf || !attach))
795 		return;
796 
797 	if (attach->sgt) {
798 		if (dma_buf_is_dynamic(attach->dmabuf))
799 			dma_resv_lock(attach->dmabuf->resv, NULL);
800 
801 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
802 
803 		if (dma_buf_is_dynamic(attach->dmabuf)) {
804 			dma_buf_unpin(attach);
805 			dma_resv_unlock(attach->dmabuf->resv);
806 		}
807 	}
808 
809 	dma_resv_lock(dmabuf->resv, NULL);
810 	list_del(&attach->node);
811 	dma_resv_unlock(dmabuf->resv);
812 	if (dmabuf->ops->detach)
813 		dmabuf->ops->detach(dmabuf, attach);
814 
815 	kfree(attach);
816 }
817 EXPORT_SYMBOL_GPL(dma_buf_detach);
818 
819 /**
820  * dma_buf_pin - Lock down the DMA-buf
821  *
822  * @attach:	[in]	attachment which should be pinned
823  *
824  * Returns:
825  * 0 on success, negative error code on failure.
826  */
827 int dma_buf_pin(struct dma_buf_attachment *attach)
828 {
829 	struct dma_buf *dmabuf = attach->dmabuf;
830 	int ret = 0;
831 
832 	dma_resv_assert_held(dmabuf->resv);
833 
834 	if (dmabuf->ops->pin)
835 		ret = dmabuf->ops->pin(attach);
836 
837 	return ret;
838 }
839 EXPORT_SYMBOL_GPL(dma_buf_pin);
840 
841 /**
842  * dma_buf_unpin - Remove lock from DMA-buf
843  *
844  * @attach:	[in]	attachment which should be unpinned
845  */
846 void dma_buf_unpin(struct dma_buf_attachment *attach)
847 {
848 	struct dma_buf *dmabuf = attach->dmabuf;
849 
850 	dma_resv_assert_held(dmabuf->resv);
851 
852 	if (dmabuf->ops->unpin)
853 		dmabuf->ops->unpin(attach);
854 }
855 EXPORT_SYMBOL_GPL(dma_buf_unpin);
856 
857 /**
858  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
859  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
860  * dma_buf_ops.
861  * @attach:	[in]	attachment whose scatterlist is to be returned
862  * @direction:	[in]	direction of DMA transfer
863  *
864  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
865  * on error. May return -EINTR if it is interrupted by a signal.
866  *
867  * On success, the DMA addresses and lengths in the returned scatterlist are
868  * PAGE_SIZE aligned.
869  *
870  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
871  * the underlying backing storage is pinned for as long as a mapping exists,
872  * therefore users/importers should not hold onto a mapping for undue amounts of
873  * time.
874  */
875 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
876 					enum dma_data_direction direction)
877 {
878 	struct sg_table *sg_table;
879 	int r;
880 
881 	might_sleep();
882 
883 	if (WARN_ON(!attach || !attach->dmabuf))
884 		return ERR_PTR(-EINVAL);
885 
886 	if (dma_buf_attachment_is_dynamic(attach))
887 		dma_resv_assert_held(attach->dmabuf->resv);
888 
889 	if (attach->sgt) {
890 		/*
891 		 * Two mappings with different directions for the same
892 		 * attachment are not allowed.
893 		 */
894 		if (attach->dir != direction &&
895 		    attach->dir != DMA_BIDIRECTIONAL)
896 			return ERR_PTR(-EBUSY);
897 
898 		return attach->sgt;
899 	}
900 
901 	if (dma_buf_is_dynamic(attach->dmabuf)) {
902 		dma_resv_assert_held(attach->dmabuf->resv);
903 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
904 			r = dma_buf_pin(attach);
905 			if (r)
906 				return ERR_PTR(r);
907 		}
908 	}
909 
910 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
911 	if (!sg_table)
912 		sg_table = ERR_PTR(-ENOMEM);
913 
914 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
915 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
916 		dma_buf_unpin(attach);
917 
918 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
919 		attach->sgt = sg_table;
920 		attach->dir = direction;
921 	}
922 
923 #ifdef CONFIG_DMA_API_DEBUG
924 	if (!IS_ERR(sg_table)) {
925 		struct scatterlist *sg;
926 		u64 addr;
927 		int len;
928 		int i;
929 
930 		for_each_sgtable_dma_sg(sg_table, sg, i) {
931 			addr = sg_dma_address(sg);
932 			len = sg_dma_len(sg);
933 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
934 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
935 					 __func__, addr, len);
936 			}
937 		}
938 	}
939 #endif /* CONFIG_DMA_API_DEBUG */
940 
941 	return sg_table;
942 }
943 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
944 
945 /**
946  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
947  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
948  * dma_buf_ops.
949  * @attach:	[in]	attachment to unmap buffer from
950  * @sg_table:	[in]	scatterlist info of the buffer to unmap
951  * @direction:  [in]    direction of DMA transfer
952  *
953  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
954  */
955 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
956 				struct sg_table *sg_table,
957 				enum dma_data_direction direction)
958 {
959 	might_sleep();
960 
961 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
962 		return;
963 
964 	if (dma_buf_attachment_is_dynamic(attach))
965 		dma_resv_assert_held(attach->dmabuf->resv);
966 
967 	if (attach->sgt == sg_table)
968 		return;
969 
970 	if (dma_buf_is_dynamic(attach->dmabuf))
971 		dma_resv_assert_held(attach->dmabuf->resv);
972 
973 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
974 
975 	if (dma_buf_is_dynamic(attach->dmabuf) &&
976 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
977 		dma_buf_unpin(attach);
978 }
979 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
980 
981 /**
982  * dma_buf_move_notify - notify attachments that DMA-buf is moving
983  *
984  * @dmabuf:	[in]	buffer which is moving
985  *
986  * Informs all attachmenst that they need to destroy and recreated all their
987  * mappings.
988  */
989 void dma_buf_move_notify(struct dma_buf *dmabuf)
990 {
991 	struct dma_buf_attachment *attach;
992 
993 	dma_resv_assert_held(dmabuf->resv);
994 
995 	list_for_each_entry(attach, &dmabuf->attachments, node)
996 		if (attach->importer_ops)
997 			attach->importer_ops->move_notify(attach);
998 }
999 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1000 
1001 /**
1002  * DOC: cpu access
1003  *
1004  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1005  *
1006  * - Fallback operations in the kernel, for example when a device is connected
1007  *   over USB and the kernel needs to shuffle the data around first before
1008  *   sending it away. Cache coherency is handled by braketing any transactions
1009  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1010  *   access.
1011  *
1012  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1013  *   vmap interface is introduced. Note that on very old 32-bit architectures
1014  *   vmalloc space might be limited and result in vmap calls failing.
1015  *
1016  *   Interfaces::
1017  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1018  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1019  *
1020  *   The vmap call can fail if there is no vmap support in the exporter, or if
1021  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1022  *   that the dma-buf layer keeps a reference count for all vmap access and
1023  *   calls down into the exporter's vmap function only when no vmapping exists,
1024  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1025  *   provided by taking the dma_buf->lock mutex.
1026  *
1027  * - For full compatibility on the importer side with existing userspace
1028  *   interfaces, which might already support mmap'ing buffers. This is needed in
1029  *   many processing pipelines (e.g. feeding a software rendered image into a
1030  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1031  *   framework already supported this and for DMA buffer file descriptors to
1032  *   replace ION buffers mmap support was needed.
1033  *
1034  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1035  *   fd. But like for CPU access there's a need to braket the actual access,
1036  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1037  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1038  *   be restarted.
1039  *
1040  *   Some systems might need some sort of cache coherency management e.g. when
1041  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1042  *   To circumvent this problem there are begin/end coherency markers, that
1043  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1044  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1045  *   sequence would be used like following:
1046  *
1047  *     - mmap dma-buf fd
1048  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1049  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1050  *       want (with the new data being consumed by say the GPU or the scanout
1051  *       device)
1052  *     - munmap once you don't need the buffer any more
1053  *
1054  *    For correctness and optimal performance, it is always required to use
1055  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1056  *    mapped address. Userspace cannot rely on coherent access, even when there
1057  *    are systems where it just works without calling these ioctls.
1058  *
1059  * - And as a CPU fallback in userspace processing pipelines.
1060  *
1061  *   Similar to the motivation for kernel cpu access it is again important that
1062  *   the userspace code of a given importing subsystem can use the same
1063  *   interfaces with a imported dma-buf buffer object as with a native buffer
1064  *   object. This is especially important for drm where the userspace part of
1065  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1066  *   use a different way to mmap a buffer rather invasive.
1067  *
1068  *   The assumption in the current dma-buf interfaces is that redirecting the
1069  *   initial mmap is all that's needed. A survey of some of the existing
1070  *   subsystems shows that no driver seems to do any nefarious thing like
1071  *   syncing up with outstanding asynchronous processing on the device or
1072  *   allocating special resources at fault time. So hopefully this is good
1073  *   enough, since adding interfaces to intercept pagefaults and allow pte
1074  *   shootdowns would increase the complexity quite a bit.
1075  *
1076  *   Interface::
1077  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1078  *		       unsigned long);
1079  *
1080  *   If the importing subsystem simply provides a special-purpose mmap call to
1081  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1082  *   equally achieve that for a dma-buf object.
1083  */
1084 
1085 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1086 				      enum dma_data_direction direction)
1087 {
1088 	bool write = (direction == DMA_BIDIRECTIONAL ||
1089 		      direction == DMA_TO_DEVICE);
1090 	struct dma_resv *resv = dmabuf->resv;
1091 	long ret;
1092 
1093 	/* Wait on any implicit rendering fences */
1094 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
1095 						  MAX_SCHEDULE_TIMEOUT);
1096 	if (ret < 0)
1097 		return ret;
1098 
1099 	return 0;
1100 }
1101 
1102 /**
1103  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1104  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1105  * preparations. Coherency is only guaranteed in the specified range for the
1106  * specified access direction.
1107  * @dmabuf:	[in]	buffer to prepare cpu access for.
1108  * @direction:	[in]	length of range for cpu access.
1109  *
1110  * After the cpu access is complete the caller should call
1111  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1112  * it guaranteed to be coherent with other DMA access.
1113  *
1114  * Can return negative error values, returns 0 on success.
1115  */
1116 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1117 			     enum dma_data_direction direction)
1118 {
1119 	int ret = 0;
1120 
1121 	if (WARN_ON(!dmabuf))
1122 		return -EINVAL;
1123 
1124 	if (dmabuf->ops->begin_cpu_access)
1125 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1126 
1127 	/* Ensure that all fences are waited upon - but we first allow
1128 	 * the native handler the chance to do so more efficiently if it
1129 	 * chooses. A double invocation here will be reasonably cheap no-op.
1130 	 */
1131 	if (ret == 0)
1132 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1133 
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1137 
1138 /**
1139  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1140  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1141  * actions. Coherency is only guaranteed in the specified range for the
1142  * specified access direction.
1143  * @dmabuf:	[in]	buffer to complete cpu access for.
1144  * @direction:	[in]	length of range for cpu access.
1145  *
1146  * This terminates CPU access started with dma_buf_begin_cpu_access().
1147  *
1148  * Can return negative error values, returns 0 on success.
1149  */
1150 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1151 			   enum dma_data_direction direction)
1152 {
1153 	int ret = 0;
1154 
1155 	WARN_ON(!dmabuf);
1156 
1157 	if (dmabuf->ops->end_cpu_access)
1158 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1159 
1160 	return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1163 
1164 
1165 /**
1166  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1167  * @dmabuf:	[in]	buffer that should back the vma
1168  * @vma:	[in]	vma for the mmap
1169  * @pgoff:	[in]	offset in pages where this mmap should start within the
1170  *			dma-buf buffer.
1171  *
1172  * This function adjusts the passed in vma so that it points at the file of the
1173  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1174  * checking on the size of the vma. Then it calls the exporters mmap function to
1175  * set up the mapping.
1176  *
1177  * Can return negative error values, returns 0 on success.
1178  */
1179 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1180 		 unsigned long pgoff)
1181 {
1182 	if (WARN_ON(!dmabuf || !vma))
1183 		return -EINVAL;
1184 
1185 	/* check if buffer supports mmap */
1186 	if (!dmabuf->ops->mmap)
1187 		return -EINVAL;
1188 
1189 	/* check for offset overflow */
1190 	if (pgoff + vma_pages(vma) < pgoff)
1191 		return -EOVERFLOW;
1192 
1193 	/* check for overflowing the buffer's size */
1194 	if (pgoff + vma_pages(vma) >
1195 	    dmabuf->size >> PAGE_SHIFT)
1196 		return -EINVAL;
1197 
1198 	/* readjust the vma */
1199 	vma_set_file(vma, dmabuf->file);
1200 	vma->vm_pgoff = pgoff;
1201 
1202 	return dmabuf->ops->mmap(dmabuf, vma);
1203 }
1204 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1205 
1206 /**
1207  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1208  * address space. Same restrictions as for vmap and friends apply.
1209  * @dmabuf:	[in]	buffer to vmap
1210  * @map:	[out]	returns the vmap pointer
1211  *
1212  * This call may fail due to lack of virtual mapping address space.
1213  * These calls are optional in drivers. The intended use for them
1214  * is for mapping objects linear in kernel space for high use objects.
1215  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1216  *
1217  * Returns 0 on success, or a negative errno code otherwise.
1218  */
1219 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1220 {
1221 	struct dma_buf_map ptr;
1222 	int ret = 0;
1223 
1224 	dma_buf_map_clear(map);
1225 
1226 	if (WARN_ON(!dmabuf))
1227 		return -EINVAL;
1228 
1229 	if (!dmabuf->ops->vmap)
1230 		return -EINVAL;
1231 
1232 	mutex_lock(&dmabuf->lock);
1233 	if (dmabuf->vmapping_counter) {
1234 		dmabuf->vmapping_counter++;
1235 		BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1236 		*map = dmabuf->vmap_ptr;
1237 		goto out_unlock;
1238 	}
1239 
1240 	BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1241 
1242 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1243 	if (WARN_ON_ONCE(ret))
1244 		goto out_unlock;
1245 
1246 	dmabuf->vmap_ptr = ptr;
1247 	dmabuf->vmapping_counter = 1;
1248 
1249 	*map = dmabuf->vmap_ptr;
1250 
1251 out_unlock:
1252 	mutex_unlock(&dmabuf->lock);
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1256 
1257 /**
1258  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1259  * @dmabuf:	[in]	buffer to vunmap
1260  * @map:	[in]	vmap pointer to vunmap
1261  */
1262 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1263 {
1264 	if (WARN_ON(!dmabuf))
1265 		return;
1266 
1267 	BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1268 	BUG_ON(dmabuf->vmapping_counter == 0);
1269 	BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1270 
1271 	mutex_lock(&dmabuf->lock);
1272 	if (--dmabuf->vmapping_counter == 0) {
1273 		if (dmabuf->ops->vunmap)
1274 			dmabuf->ops->vunmap(dmabuf, map);
1275 		dma_buf_map_clear(&dmabuf->vmap_ptr);
1276 	}
1277 	mutex_unlock(&dmabuf->lock);
1278 }
1279 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1280 
1281 #ifdef CONFIG_DEBUG_FS
1282 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1283 {
1284 	int ret;
1285 	struct dma_buf *buf_obj;
1286 	struct dma_buf_attachment *attach_obj;
1287 	struct dma_resv *robj;
1288 	struct dma_resv_list *fobj;
1289 	struct dma_fence *fence;
1290 	unsigned seq;
1291 	int count = 0, attach_count, shared_count, i;
1292 	size_t size = 0;
1293 
1294 	ret = mutex_lock_interruptible(&db_list.lock);
1295 
1296 	if (ret)
1297 		return ret;
1298 
1299 	seq_puts(s, "\nDma-buf Objects:\n");
1300 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1301 		   "size", "flags", "mode", "count", "ino");
1302 
1303 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1304 
1305 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1306 		if (ret)
1307 			goto error_unlock;
1308 
1309 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1310 				buf_obj->size,
1311 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1312 				file_count(buf_obj->file),
1313 				buf_obj->exp_name,
1314 				file_inode(buf_obj->file)->i_ino,
1315 				buf_obj->name ?: "");
1316 
1317 		robj = buf_obj->resv;
1318 		while (true) {
1319 			seq = read_seqcount_begin(&robj->seq);
1320 			rcu_read_lock();
1321 			fobj = rcu_dereference(robj->fence);
1322 			shared_count = fobj ? fobj->shared_count : 0;
1323 			fence = rcu_dereference(robj->fence_excl);
1324 			if (!read_seqcount_retry(&robj->seq, seq))
1325 				break;
1326 			rcu_read_unlock();
1327 		}
1328 
1329 		if (fence)
1330 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1331 				   fence->ops->get_driver_name(fence),
1332 				   fence->ops->get_timeline_name(fence),
1333 				   dma_fence_is_signaled(fence) ? "" : "un");
1334 		for (i = 0; i < shared_count; i++) {
1335 			fence = rcu_dereference(fobj->shared[i]);
1336 			if (!dma_fence_get_rcu(fence))
1337 				continue;
1338 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1339 				   fence->ops->get_driver_name(fence),
1340 				   fence->ops->get_timeline_name(fence),
1341 				   dma_fence_is_signaled(fence) ? "" : "un");
1342 			dma_fence_put(fence);
1343 		}
1344 		rcu_read_unlock();
1345 
1346 		seq_puts(s, "\tAttached Devices:\n");
1347 		attach_count = 0;
1348 
1349 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1350 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1351 			attach_count++;
1352 		}
1353 		dma_resv_unlock(buf_obj->resv);
1354 
1355 		seq_printf(s, "Total %d devices attached\n\n",
1356 				attach_count);
1357 
1358 		count++;
1359 		size += buf_obj->size;
1360 	}
1361 
1362 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1363 
1364 	mutex_unlock(&db_list.lock);
1365 	return 0;
1366 
1367 error_unlock:
1368 	mutex_unlock(&db_list.lock);
1369 	return ret;
1370 }
1371 
1372 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1373 
1374 static struct dentry *dma_buf_debugfs_dir;
1375 
1376 static int dma_buf_init_debugfs(void)
1377 {
1378 	struct dentry *d;
1379 	int err = 0;
1380 
1381 	d = debugfs_create_dir("dma_buf", NULL);
1382 	if (IS_ERR(d))
1383 		return PTR_ERR(d);
1384 
1385 	dma_buf_debugfs_dir = d;
1386 
1387 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1388 				NULL, &dma_buf_debug_fops);
1389 	if (IS_ERR(d)) {
1390 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1391 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1392 		dma_buf_debugfs_dir = NULL;
1393 		err = PTR_ERR(d);
1394 	}
1395 
1396 	return err;
1397 }
1398 
1399 static void dma_buf_uninit_debugfs(void)
1400 {
1401 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1402 }
1403 #else
1404 static inline int dma_buf_init_debugfs(void)
1405 {
1406 	return 0;
1407 }
1408 static inline void dma_buf_uninit_debugfs(void)
1409 {
1410 }
1411 #endif
1412 
1413 static int __init dma_buf_init(void)
1414 {
1415 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1416 	if (IS_ERR(dma_buf_mnt))
1417 		return PTR_ERR(dma_buf_mnt);
1418 
1419 	mutex_init(&db_list.lock);
1420 	INIT_LIST_HEAD(&db_list.head);
1421 	dma_buf_init_debugfs();
1422 	return 0;
1423 }
1424 subsys_initcall(dma_buf_init);
1425 
1426 static void __exit dma_buf_deinit(void)
1427 {
1428 	dma_buf_uninit_debugfs();
1429 	kern_unmount(dma_buf_mnt);
1430 }
1431 __exitcall(dma_buf_deinit);
1432