1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 dma_resv_lock(dmabuf->resv, NULL); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 dma_resv_unlock(dmabuf->resv); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static const struct dentry_operations dma_buf_dentry_ops = { 58 .d_dname = dmabuffs_dname, 59 }; 60 61 static struct vfsmount *dma_buf_mnt; 62 63 static int dma_buf_fs_init_context(struct fs_context *fc) 64 { 65 struct pseudo_fs_context *ctx; 66 67 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 68 if (!ctx) 69 return -ENOMEM; 70 ctx->dops = &dma_buf_dentry_ops; 71 return 0; 72 } 73 74 static struct file_system_type dma_buf_fs_type = { 75 .name = "dmabuf", 76 .init_fs_context = dma_buf_fs_init_context, 77 .kill_sb = kill_anon_super, 78 }; 79 80 static int dma_buf_release(struct inode *inode, struct file *file) 81 { 82 struct dma_buf *dmabuf; 83 84 if (!is_dma_buf_file(file)) 85 return -EINVAL; 86 87 dmabuf = file->private_data; 88 89 BUG_ON(dmabuf->vmapping_counter); 90 91 /* 92 * Any fences that a dma-buf poll can wait on should be signaled 93 * before releasing dma-buf. This is the responsibility of each 94 * driver that uses the reservation objects. 95 * 96 * If you hit this BUG() it means someone dropped their ref to the 97 * dma-buf while still having pending operation to the buffer. 98 */ 99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 100 101 dmabuf->ops->release(dmabuf); 102 103 mutex_lock(&db_list.lock); 104 list_del(&dmabuf->list_node); 105 mutex_unlock(&db_list.lock); 106 107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 108 dma_resv_fini(dmabuf->resv); 109 110 module_put(dmabuf->owner); 111 kfree(dmabuf->name); 112 kfree(dmabuf); 113 return 0; 114 } 115 116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 117 { 118 struct dma_buf *dmabuf; 119 120 if (!is_dma_buf_file(file)) 121 return -EINVAL; 122 123 dmabuf = file->private_data; 124 125 /* check if buffer supports mmap */ 126 if (!dmabuf->ops->mmap) 127 return -EINVAL; 128 129 /* check for overflowing the buffer's size */ 130 if (vma->vm_pgoff + vma_pages(vma) > 131 dmabuf->size >> PAGE_SHIFT) 132 return -EINVAL; 133 134 return dmabuf->ops->mmap(dmabuf, vma); 135 } 136 137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 138 { 139 struct dma_buf *dmabuf; 140 loff_t base; 141 142 if (!is_dma_buf_file(file)) 143 return -EBADF; 144 145 dmabuf = file->private_data; 146 147 /* only support discovering the end of the buffer, 148 but also allow SEEK_SET to maintain the idiomatic 149 SEEK_END(0), SEEK_CUR(0) pattern */ 150 if (whence == SEEK_END) 151 base = dmabuf->size; 152 else if (whence == SEEK_SET) 153 base = 0; 154 else 155 return -EINVAL; 156 157 if (offset != 0) 158 return -EINVAL; 159 160 return base + offset; 161 } 162 163 /** 164 * DOC: fence polling 165 * 166 * To support cross-device and cross-driver synchronization of buffer access 167 * implicit fences (represented internally in the kernel with &struct fence) can 168 * be attached to a &dma_buf. The glue for that and a few related things are 169 * provided in the &dma_resv structure. 170 * 171 * Userspace can query the state of these implicitly tracked fences using poll() 172 * and related system calls: 173 * 174 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 175 * most recent write or exclusive fence. 176 * 177 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 178 * all attached fences, shared and exclusive ones. 179 * 180 * Note that this only signals the completion of the respective fences, i.e. the 181 * DMA transfers are complete. Cache flushing and any other necessary 182 * preparations before CPU access can begin still need to happen. 183 */ 184 185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 186 { 187 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 188 unsigned long flags; 189 190 spin_lock_irqsave(&dcb->poll->lock, flags); 191 wake_up_locked_poll(dcb->poll, dcb->active); 192 dcb->active = 0; 193 spin_unlock_irqrestore(&dcb->poll->lock, flags); 194 } 195 196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 197 { 198 struct dma_buf *dmabuf; 199 struct dma_resv *resv; 200 struct dma_resv_list *fobj; 201 struct dma_fence *fence_excl; 202 __poll_t events; 203 unsigned shared_count, seq; 204 205 dmabuf = file->private_data; 206 if (!dmabuf || !dmabuf->resv) 207 return EPOLLERR; 208 209 resv = dmabuf->resv; 210 211 poll_wait(file, &dmabuf->poll, poll); 212 213 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 214 if (!events) 215 return 0; 216 217 retry: 218 seq = read_seqcount_begin(&resv->seq); 219 rcu_read_lock(); 220 221 fobj = rcu_dereference(resv->fence); 222 if (fobj) 223 shared_count = fobj->shared_count; 224 else 225 shared_count = 0; 226 fence_excl = rcu_dereference(resv->fence_excl); 227 if (read_seqcount_retry(&resv->seq, seq)) { 228 rcu_read_unlock(); 229 goto retry; 230 } 231 232 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 233 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 234 __poll_t pevents = EPOLLIN; 235 236 if (shared_count == 0) 237 pevents |= EPOLLOUT; 238 239 spin_lock_irq(&dmabuf->poll.lock); 240 if (dcb->active) { 241 dcb->active |= pevents; 242 events &= ~pevents; 243 } else 244 dcb->active = pevents; 245 spin_unlock_irq(&dmabuf->poll.lock); 246 247 if (events & pevents) { 248 if (!dma_fence_get_rcu(fence_excl)) { 249 /* force a recheck */ 250 events &= ~pevents; 251 dma_buf_poll_cb(NULL, &dcb->cb); 252 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 253 dma_buf_poll_cb)) { 254 events &= ~pevents; 255 dma_fence_put(fence_excl); 256 } else { 257 /* 258 * No callback queued, wake up any additional 259 * waiters. 260 */ 261 dma_fence_put(fence_excl); 262 dma_buf_poll_cb(NULL, &dcb->cb); 263 } 264 } 265 } 266 267 if ((events & EPOLLOUT) && shared_count > 0) { 268 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 269 int i; 270 271 /* Only queue a new callback if no event has fired yet */ 272 spin_lock_irq(&dmabuf->poll.lock); 273 if (dcb->active) 274 events &= ~EPOLLOUT; 275 else 276 dcb->active = EPOLLOUT; 277 spin_unlock_irq(&dmabuf->poll.lock); 278 279 if (!(events & EPOLLOUT)) 280 goto out; 281 282 for (i = 0; i < shared_count; ++i) { 283 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 284 285 if (!dma_fence_get_rcu(fence)) { 286 /* 287 * fence refcount dropped to zero, this means 288 * that fobj has been freed 289 * 290 * call dma_buf_poll_cb and force a recheck! 291 */ 292 events &= ~EPOLLOUT; 293 dma_buf_poll_cb(NULL, &dcb->cb); 294 break; 295 } 296 if (!dma_fence_add_callback(fence, &dcb->cb, 297 dma_buf_poll_cb)) { 298 dma_fence_put(fence); 299 events &= ~EPOLLOUT; 300 break; 301 } 302 dma_fence_put(fence); 303 } 304 305 /* No callback queued, wake up any additional waiters. */ 306 if (i == shared_count) 307 dma_buf_poll_cb(NULL, &dcb->cb); 308 } 309 310 out: 311 rcu_read_unlock(); 312 return events; 313 } 314 315 /** 316 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 317 * The name of the dma-buf buffer can only be set when the dma-buf is not 318 * attached to any devices. It could theoritically support changing the 319 * name of the dma-buf if the same piece of memory is used for multiple 320 * purpose between different devices. 321 * 322 * @dmabuf [in] dmabuf buffer that will be renamed. 323 * @buf: [in] A piece of userspace memory that contains the name of 324 * the dma-buf. 325 * 326 * Returns 0 on success. If the dma-buf buffer is already attached to 327 * devices, return -EBUSY. 328 * 329 */ 330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 331 { 332 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 333 long ret = 0; 334 335 if (IS_ERR(name)) 336 return PTR_ERR(name); 337 338 dma_resv_lock(dmabuf->resv, NULL); 339 if (!list_empty(&dmabuf->attachments)) { 340 ret = -EBUSY; 341 kfree(name); 342 goto out_unlock; 343 } 344 kfree(dmabuf->name); 345 dmabuf->name = name; 346 347 out_unlock: 348 dma_resv_unlock(dmabuf->resv); 349 return ret; 350 } 351 352 static long dma_buf_ioctl(struct file *file, 353 unsigned int cmd, unsigned long arg) 354 { 355 struct dma_buf *dmabuf; 356 struct dma_buf_sync sync; 357 enum dma_data_direction direction; 358 int ret; 359 360 dmabuf = file->private_data; 361 362 switch (cmd) { 363 case DMA_BUF_IOCTL_SYNC: 364 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 365 return -EFAULT; 366 367 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 368 return -EINVAL; 369 370 switch (sync.flags & DMA_BUF_SYNC_RW) { 371 case DMA_BUF_SYNC_READ: 372 direction = DMA_FROM_DEVICE; 373 break; 374 case DMA_BUF_SYNC_WRITE: 375 direction = DMA_TO_DEVICE; 376 break; 377 case DMA_BUF_SYNC_RW: 378 direction = DMA_BIDIRECTIONAL; 379 break; 380 default: 381 return -EINVAL; 382 } 383 384 if (sync.flags & DMA_BUF_SYNC_END) 385 ret = dma_buf_end_cpu_access(dmabuf, direction); 386 else 387 ret = dma_buf_begin_cpu_access(dmabuf, direction); 388 389 return ret; 390 391 case DMA_BUF_SET_NAME: 392 return dma_buf_set_name(dmabuf, (const char __user *)arg); 393 394 default: 395 return -ENOTTY; 396 } 397 } 398 399 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 400 { 401 struct dma_buf *dmabuf = file->private_data; 402 403 seq_printf(m, "size:\t%zu\n", dmabuf->size); 404 /* Don't count the temporary reference taken inside procfs seq_show */ 405 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 406 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 407 dma_resv_lock(dmabuf->resv, NULL); 408 if (dmabuf->name) 409 seq_printf(m, "name:\t%s\n", dmabuf->name); 410 dma_resv_unlock(dmabuf->resv); 411 } 412 413 static const struct file_operations dma_buf_fops = { 414 .release = dma_buf_release, 415 .mmap = dma_buf_mmap_internal, 416 .llseek = dma_buf_llseek, 417 .poll = dma_buf_poll, 418 .unlocked_ioctl = dma_buf_ioctl, 419 .compat_ioctl = compat_ptr_ioctl, 420 .show_fdinfo = dma_buf_show_fdinfo, 421 }; 422 423 /* 424 * is_dma_buf_file - Check if struct file* is associated with dma_buf 425 */ 426 static inline int is_dma_buf_file(struct file *file) 427 { 428 return file->f_op == &dma_buf_fops; 429 } 430 431 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 432 { 433 struct file *file; 434 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 435 436 if (IS_ERR(inode)) 437 return ERR_CAST(inode); 438 439 inode->i_size = dmabuf->size; 440 inode_set_bytes(inode, dmabuf->size); 441 442 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 443 flags, &dma_buf_fops); 444 if (IS_ERR(file)) 445 goto err_alloc_file; 446 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 447 file->private_data = dmabuf; 448 file->f_path.dentry->d_fsdata = dmabuf; 449 450 return file; 451 452 err_alloc_file: 453 iput(inode); 454 return file; 455 } 456 457 /** 458 * DOC: dma buf device access 459 * 460 * For device DMA access to a shared DMA buffer the usual sequence of operations 461 * is fairly simple: 462 * 463 * 1. The exporter defines his exporter instance using 464 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 465 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 466 * as a file descriptor by calling dma_buf_fd(). 467 * 468 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 469 * to share with: First the filedescriptor is converted to a &dma_buf using 470 * dma_buf_get(). Then the buffer is attached to the device using 471 * dma_buf_attach(). 472 * 473 * Up to this stage the exporter is still free to migrate or reallocate the 474 * backing storage. 475 * 476 * 3. Once the buffer is attached to all devices userspace can initiate DMA 477 * access to the shared buffer. In the kernel this is done by calling 478 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 479 * 480 * 4. Once a driver is done with a shared buffer it needs to call 481 * dma_buf_detach() (after cleaning up any mappings) and then release the 482 * reference acquired with dma_buf_get by calling dma_buf_put(). 483 * 484 * For the detailed semantics exporters are expected to implement see 485 * &dma_buf_ops. 486 */ 487 488 /** 489 * dma_buf_export - Creates a new dma_buf, and associates an anon file 490 * with this buffer, so it can be exported. 491 * Also connect the allocator specific data and ops to the buffer. 492 * Additionally, provide a name string for exporter; useful in debugging. 493 * 494 * @exp_info: [in] holds all the export related information provided 495 * by the exporter. see &struct dma_buf_export_info 496 * for further details. 497 * 498 * Returns, on success, a newly created dma_buf object, which wraps the 499 * supplied private data and operations for dma_buf_ops. On either missing 500 * ops, or error in allocating struct dma_buf, will return negative error. 501 * 502 * For most cases the easiest way to create @exp_info is through the 503 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 504 */ 505 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 506 { 507 struct dma_buf *dmabuf; 508 struct dma_resv *resv = exp_info->resv; 509 struct file *file; 510 size_t alloc_size = sizeof(struct dma_buf); 511 int ret; 512 513 if (!exp_info->resv) 514 alloc_size += sizeof(struct dma_resv); 515 else 516 /* prevent &dma_buf[1] == dma_buf->resv */ 517 alloc_size += 1; 518 519 if (WARN_ON(!exp_info->priv 520 || !exp_info->ops 521 || !exp_info->ops->map_dma_buf 522 || !exp_info->ops->unmap_dma_buf 523 || !exp_info->ops->release)) { 524 return ERR_PTR(-EINVAL); 525 } 526 527 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 528 (exp_info->ops->pin || exp_info->ops->unpin))) 529 return ERR_PTR(-EINVAL); 530 531 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 532 return ERR_PTR(-EINVAL); 533 534 if (!try_module_get(exp_info->owner)) 535 return ERR_PTR(-ENOENT); 536 537 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 538 if (!dmabuf) { 539 ret = -ENOMEM; 540 goto err_module; 541 } 542 543 dmabuf->priv = exp_info->priv; 544 dmabuf->ops = exp_info->ops; 545 dmabuf->size = exp_info->size; 546 dmabuf->exp_name = exp_info->exp_name; 547 dmabuf->owner = exp_info->owner; 548 init_waitqueue_head(&dmabuf->poll); 549 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 550 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 551 552 if (!resv) { 553 resv = (struct dma_resv *)&dmabuf[1]; 554 dma_resv_init(resv); 555 } 556 dmabuf->resv = resv; 557 558 file = dma_buf_getfile(dmabuf, exp_info->flags); 559 if (IS_ERR(file)) { 560 ret = PTR_ERR(file); 561 goto err_dmabuf; 562 } 563 564 file->f_mode |= FMODE_LSEEK; 565 dmabuf->file = file; 566 567 mutex_init(&dmabuf->lock); 568 INIT_LIST_HEAD(&dmabuf->attachments); 569 570 mutex_lock(&db_list.lock); 571 list_add(&dmabuf->list_node, &db_list.head); 572 mutex_unlock(&db_list.lock); 573 574 return dmabuf; 575 576 err_dmabuf: 577 kfree(dmabuf); 578 err_module: 579 module_put(exp_info->owner); 580 return ERR_PTR(ret); 581 } 582 EXPORT_SYMBOL_GPL(dma_buf_export); 583 584 /** 585 * dma_buf_fd - returns a file descriptor for the given dma_buf 586 * @dmabuf: [in] pointer to dma_buf for which fd is required. 587 * @flags: [in] flags to give to fd 588 * 589 * On success, returns an associated 'fd'. Else, returns error. 590 */ 591 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 592 { 593 int fd; 594 595 if (!dmabuf || !dmabuf->file) 596 return -EINVAL; 597 598 fd = get_unused_fd_flags(flags); 599 if (fd < 0) 600 return fd; 601 602 fd_install(fd, dmabuf->file); 603 604 return fd; 605 } 606 EXPORT_SYMBOL_GPL(dma_buf_fd); 607 608 /** 609 * dma_buf_get - returns the dma_buf structure related to an fd 610 * @fd: [in] fd associated with the dma_buf to be returned 611 * 612 * On success, returns the dma_buf structure associated with an fd; uses 613 * file's refcounting done by fget to increase refcount. returns ERR_PTR 614 * otherwise. 615 */ 616 struct dma_buf *dma_buf_get(int fd) 617 { 618 struct file *file; 619 620 file = fget(fd); 621 622 if (!file) 623 return ERR_PTR(-EBADF); 624 625 if (!is_dma_buf_file(file)) { 626 fput(file); 627 return ERR_PTR(-EINVAL); 628 } 629 630 return file->private_data; 631 } 632 EXPORT_SYMBOL_GPL(dma_buf_get); 633 634 /** 635 * dma_buf_put - decreases refcount of the buffer 636 * @dmabuf: [in] buffer to reduce refcount of 637 * 638 * Uses file's refcounting done implicitly by fput(). 639 * 640 * If, as a result of this call, the refcount becomes 0, the 'release' file 641 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 642 * in turn, and frees the memory allocated for dmabuf when exported. 643 */ 644 void dma_buf_put(struct dma_buf *dmabuf) 645 { 646 if (WARN_ON(!dmabuf || !dmabuf->file)) 647 return; 648 649 fput(dmabuf->file); 650 } 651 EXPORT_SYMBOL_GPL(dma_buf_put); 652 653 /** 654 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 655 * calls attach() of dma_buf_ops to allow device-specific attach functionality 656 * @dmabuf: [in] buffer to attach device to. 657 * @dev: [in] device to be attached. 658 * @importer_ops [in] importer operations for the attachment 659 * @importer_priv [in] importer private pointer for the attachment 660 * 661 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 662 * must be cleaned up by calling dma_buf_detach(). 663 * 664 * Returns: 665 * 666 * A pointer to newly created &dma_buf_attachment on success, or a negative 667 * error code wrapped into a pointer on failure. 668 * 669 * Note that this can fail if the backing storage of @dmabuf is in a place not 670 * accessible to @dev, and cannot be moved to a more suitable place. This is 671 * indicated with the error code -EBUSY. 672 */ 673 struct dma_buf_attachment * 674 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 675 const struct dma_buf_attach_ops *importer_ops, 676 void *importer_priv) 677 { 678 struct dma_buf_attachment *attach; 679 int ret; 680 681 if (WARN_ON(!dmabuf || !dev)) 682 return ERR_PTR(-EINVAL); 683 684 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 685 return ERR_PTR(-EINVAL); 686 687 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 688 if (!attach) 689 return ERR_PTR(-ENOMEM); 690 691 attach->dev = dev; 692 attach->dmabuf = dmabuf; 693 attach->importer_ops = importer_ops; 694 attach->importer_priv = importer_priv; 695 696 if (dmabuf->ops->attach) { 697 ret = dmabuf->ops->attach(dmabuf, attach); 698 if (ret) 699 goto err_attach; 700 } 701 dma_resv_lock(dmabuf->resv, NULL); 702 list_add(&attach->node, &dmabuf->attachments); 703 dma_resv_unlock(dmabuf->resv); 704 705 /* When either the importer or the exporter can't handle dynamic 706 * mappings we cache the mapping here to avoid issues with the 707 * reservation object lock. 708 */ 709 if (dma_buf_attachment_is_dynamic(attach) != 710 dma_buf_is_dynamic(dmabuf)) { 711 struct sg_table *sgt; 712 713 if (dma_buf_is_dynamic(attach->dmabuf)) { 714 dma_resv_lock(attach->dmabuf->resv, NULL); 715 ret = dma_buf_pin(attach); 716 if (ret) 717 goto err_unlock; 718 } 719 720 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 721 if (!sgt) 722 sgt = ERR_PTR(-ENOMEM); 723 if (IS_ERR(sgt)) { 724 ret = PTR_ERR(sgt); 725 goto err_unpin; 726 } 727 if (dma_buf_is_dynamic(attach->dmabuf)) 728 dma_resv_unlock(attach->dmabuf->resv); 729 attach->sgt = sgt; 730 attach->dir = DMA_BIDIRECTIONAL; 731 } 732 733 return attach; 734 735 err_attach: 736 kfree(attach); 737 return ERR_PTR(ret); 738 739 err_unpin: 740 if (dma_buf_is_dynamic(attach->dmabuf)) 741 dma_buf_unpin(attach); 742 743 err_unlock: 744 if (dma_buf_is_dynamic(attach->dmabuf)) 745 dma_resv_unlock(attach->dmabuf->resv); 746 747 dma_buf_detach(dmabuf, attach); 748 return ERR_PTR(ret); 749 } 750 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 751 752 /** 753 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 754 * @dmabuf: [in] buffer to attach device to. 755 * @dev: [in] device to be attached. 756 * 757 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 758 * mapping. 759 */ 760 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 761 struct device *dev) 762 { 763 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 764 } 765 EXPORT_SYMBOL_GPL(dma_buf_attach); 766 767 /** 768 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 769 * optionally calls detach() of dma_buf_ops for device-specific detach 770 * @dmabuf: [in] buffer to detach from. 771 * @attach: [in] attachment to be detached; is free'd after this call. 772 * 773 * Clean up a device attachment obtained by calling dma_buf_attach(). 774 */ 775 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 776 { 777 if (WARN_ON(!dmabuf || !attach)) 778 return; 779 780 if (attach->sgt) { 781 if (dma_buf_is_dynamic(attach->dmabuf)) 782 dma_resv_lock(attach->dmabuf->resv, NULL); 783 784 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 785 786 if (dma_buf_is_dynamic(attach->dmabuf)) { 787 dma_buf_unpin(attach); 788 dma_resv_unlock(attach->dmabuf->resv); 789 } 790 } 791 792 dma_resv_lock(dmabuf->resv, NULL); 793 list_del(&attach->node); 794 dma_resv_unlock(dmabuf->resv); 795 if (dmabuf->ops->detach) 796 dmabuf->ops->detach(dmabuf, attach); 797 798 kfree(attach); 799 } 800 EXPORT_SYMBOL_GPL(dma_buf_detach); 801 802 /** 803 * dma_buf_pin - Lock down the DMA-buf 804 * 805 * @attach: [in] attachment which should be pinned 806 * 807 * Returns: 808 * 0 on success, negative error code on failure. 809 */ 810 int dma_buf_pin(struct dma_buf_attachment *attach) 811 { 812 struct dma_buf *dmabuf = attach->dmabuf; 813 int ret = 0; 814 815 dma_resv_assert_held(dmabuf->resv); 816 817 if (dmabuf->ops->pin) 818 ret = dmabuf->ops->pin(attach); 819 820 return ret; 821 } 822 EXPORT_SYMBOL_GPL(dma_buf_pin); 823 824 /** 825 * dma_buf_unpin - Remove lock from DMA-buf 826 * 827 * @attach: [in] attachment which should be unpinned 828 */ 829 void dma_buf_unpin(struct dma_buf_attachment *attach) 830 { 831 struct dma_buf *dmabuf = attach->dmabuf; 832 833 dma_resv_assert_held(dmabuf->resv); 834 835 if (dmabuf->ops->unpin) 836 dmabuf->ops->unpin(attach); 837 } 838 EXPORT_SYMBOL_GPL(dma_buf_unpin); 839 840 /** 841 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 842 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 843 * dma_buf_ops. 844 * @attach: [in] attachment whose scatterlist is to be returned 845 * @direction: [in] direction of DMA transfer 846 * 847 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 848 * on error. May return -EINTR if it is interrupted by a signal. 849 * 850 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 851 * the underlying backing storage is pinned for as long as a mapping exists, 852 * therefore users/importers should not hold onto a mapping for undue amounts of 853 * time. 854 */ 855 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 856 enum dma_data_direction direction) 857 { 858 struct sg_table *sg_table; 859 int r; 860 861 might_sleep(); 862 863 if (WARN_ON(!attach || !attach->dmabuf)) 864 return ERR_PTR(-EINVAL); 865 866 if (dma_buf_attachment_is_dynamic(attach)) 867 dma_resv_assert_held(attach->dmabuf->resv); 868 869 if (attach->sgt) { 870 /* 871 * Two mappings with different directions for the same 872 * attachment are not allowed. 873 */ 874 if (attach->dir != direction && 875 attach->dir != DMA_BIDIRECTIONAL) 876 return ERR_PTR(-EBUSY); 877 878 return attach->sgt; 879 } 880 881 if (dma_buf_is_dynamic(attach->dmabuf)) { 882 dma_resv_assert_held(attach->dmabuf->resv); 883 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 884 r = dma_buf_pin(attach); 885 if (r) 886 return ERR_PTR(r); 887 } 888 } 889 890 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 891 if (!sg_table) 892 sg_table = ERR_PTR(-ENOMEM); 893 894 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 895 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 896 dma_buf_unpin(attach); 897 898 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 899 attach->sgt = sg_table; 900 attach->dir = direction; 901 } 902 903 return sg_table; 904 } 905 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 906 907 /** 908 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 909 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 910 * dma_buf_ops. 911 * @attach: [in] attachment to unmap buffer from 912 * @sg_table: [in] scatterlist info of the buffer to unmap 913 * @direction: [in] direction of DMA transfer 914 * 915 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 916 */ 917 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 918 struct sg_table *sg_table, 919 enum dma_data_direction direction) 920 { 921 might_sleep(); 922 923 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 924 return; 925 926 if (dma_buf_attachment_is_dynamic(attach)) 927 dma_resv_assert_held(attach->dmabuf->resv); 928 929 if (attach->sgt == sg_table) 930 return; 931 932 if (dma_buf_is_dynamic(attach->dmabuf)) 933 dma_resv_assert_held(attach->dmabuf->resv); 934 935 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 936 937 if (dma_buf_is_dynamic(attach->dmabuf) && 938 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 939 dma_buf_unpin(attach); 940 } 941 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 942 943 /** 944 * dma_buf_move_notify - notify attachments that DMA-buf is moving 945 * 946 * @dmabuf: [in] buffer which is moving 947 * 948 * Informs all attachmenst that they need to destroy and recreated all their 949 * mappings. 950 */ 951 void dma_buf_move_notify(struct dma_buf *dmabuf) 952 { 953 struct dma_buf_attachment *attach; 954 955 dma_resv_assert_held(dmabuf->resv); 956 957 list_for_each_entry(attach, &dmabuf->attachments, node) 958 if (attach->importer_ops) 959 attach->importer_ops->move_notify(attach); 960 } 961 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 962 963 /** 964 * DOC: cpu access 965 * 966 * There are mutliple reasons for supporting CPU access to a dma buffer object: 967 * 968 * - Fallback operations in the kernel, for example when a device is connected 969 * over USB and the kernel needs to shuffle the data around first before 970 * sending it away. Cache coherency is handled by braketing any transactions 971 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 972 * access. 973 * 974 * Since for most kernel internal dma-buf accesses need the entire buffer, a 975 * vmap interface is introduced. Note that on very old 32-bit architectures 976 * vmalloc space might be limited and result in vmap calls failing. 977 * 978 * Interfaces:: 979 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 980 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 981 * 982 * The vmap call can fail if there is no vmap support in the exporter, or if 983 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 984 * that the dma-buf layer keeps a reference count for all vmap access and 985 * calls down into the exporter's vmap function only when no vmapping exists, 986 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 987 * provided by taking the dma_buf->lock mutex. 988 * 989 * - For full compatibility on the importer side with existing userspace 990 * interfaces, which might already support mmap'ing buffers. This is needed in 991 * many processing pipelines (e.g. feeding a software rendered image into a 992 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 993 * framework already supported this and for DMA buffer file descriptors to 994 * replace ION buffers mmap support was needed. 995 * 996 * There is no special interfaces, userspace simply calls mmap on the dma-buf 997 * fd. But like for CPU access there's a need to braket the actual access, 998 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 999 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1000 * be restarted. 1001 * 1002 * Some systems might need some sort of cache coherency management e.g. when 1003 * CPU and GPU domains are being accessed through dma-buf at the same time. 1004 * To circumvent this problem there are begin/end coherency markers, that 1005 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1006 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1007 * sequence would be used like following: 1008 * 1009 * - mmap dma-buf fd 1010 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1011 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1012 * want (with the new data being consumed by say the GPU or the scanout 1013 * device) 1014 * - munmap once you don't need the buffer any more 1015 * 1016 * For correctness and optimal performance, it is always required to use 1017 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1018 * mapped address. Userspace cannot rely on coherent access, even when there 1019 * are systems where it just works without calling these ioctls. 1020 * 1021 * - And as a CPU fallback in userspace processing pipelines. 1022 * 1023 * Similar to the motivation for kernel cpu access it is again important that 1024 * the userspace code of a given importing subsystem can use the same 1025 * interfaces with a imported dma-buf buffer object as with a native buffer 1026 * object. This is especially important for drm where the userspace part of 1027 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1028 * use a different way to mmap a buffer rather invasive. 1029 * 1030 * The assumption in the current dma-buf interfaces is that redirecting the 1031 * initial mmap is all that's needed. A survey of some of the existing 1032 * subsystems shows that no driver seems to do any nefarious thing like 1033 * syncing up with outstanding asynchronous processing on the device or 1034 * allocating special resources at fault time. So hopefully this is good 1035 * enough, since adding interfaces to intercept pagefaults and allow pte 1036 * shootdowns would increase the complexity quite a bit. 1037 * 1038 * Interface:: 1039 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1040 * unsigned long); 1041 * 1042 * If the importing subsystem simply provides a special-purpose mmap call to 1043 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 1044 * equally achieve that for a dma-buf object. 1045 */ 1046 1047 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1048 enum dma_data_direction direction) 1049 { 1050 bool write = (direction == DMA_BIDIRECTIONAL || 1051 direction == DMA_TO_DEVICE); 1052 struct dma_resv *resv = dmabuf->resv; 1053 long ret; 1054 1055 /* Wait on any implicit rendering fences */ 1056 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1057 MAX_SCHEDULE_TIMEOUT); 1058 if (ret < 0) 1059 return ret; 1060 1061 return 0; 1062 } 1063 1064 /** 1065 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1066 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1067 * preparations. Coherency is only guaranteed in the specified range for the 1068 * specified access direction. 1069 * @dmabuf: [in] buffer to prepare cpu access for. 1070 * @direction: [in] length of range for cpu access. 1071 * 1072 * After the cpu access is complete the caller should call 1073 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1074 * it guaranteed to be coherent with other DMA access. 1075 * 1076 * Can return negative error values, returns 0 on success. 1077 */ 1078 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1079 enum dma_data_direction direction) 1080 { 1081 int ret = 0; 1082 1083 if (WARN_ON(!dmabuf)) 1084 return -EINVAL; 1085 1086 if (dmabuf->ops->begin_cpu_access) 1087 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1088 1089 /* Ensure that all fences are waited upon - but we first allow 1090 * the native handler the chance to do so more efficiently if it 1091 * chooses. A double invocation here will be reasonably cheap no-op. 1092 */ 1093 if (ret == 0) 1094 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1095 1096 return ret; 1097 } 1098 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1099 1100 /** 1101 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1102 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1103 * actions. Coherency is only guaranteed in the specified range for the 1104 * specified access direction. 1105 * @dmabuf: [in] buffer to complete cpu access for. 1106 * @direction: [in] length of range for cpu access. 1107 * 1108 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1109 * 1110 * Can return negative error values, returns 0 on success. 1111 */ 1112 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1113 enum dma_data_direction direction) 1114 { 1115 int ret = 0; 1116 1117 WARN_ON(!dmabuf); 1118 1119 if (dmabuf->ops->end_cpu_access) 1120 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1121 1122 return ret; 1123 } 1124 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1125 1126 1127 /** 1128 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1129 * @dmabuf: [in] buffer that should back the vma 1130 * @vma: [in] vma for the mmap 1131 * @pgoff: [in] offset in pages where this mmap should start within the 1132 * dma-buf buffer. 1133 * 1134 * This function adjusts the passed in vma so that it points at the file of the 1135 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1136 * checking on the size of the vma. Then it calls the exporters mmap function to 1137 * set up the mapping. 1138 * 1139 * Can return negative error values, returns 0 on success. 1140 */ 1141 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1142 unsigned long pgoff) 1143 { 1144 struct file *oldfile; 1145 int ret; 1146 1147 if (WARN_ON(!dmabuf || !vma)) 1148 return -EINVAL; 1149 1150 /* check if buffer supports mmap */ 1151 if (!dmabuf->ops->mmap) 1152 return -EINVAL; 1153 1154 /* check for offset overflow */ 1155 if (pgoff + vma_pages(vma) < pgoff) 1156 return -EOVERFLOW; 1157 1158 /* check for overflowing the buffer's size */ 1159 if (pgoff + vma_pages(vma) > 1160 dmabuf->size >> PAGE_SHIFT) 1161 return -EINVAL; 1162 1163 /* readjust the vma */ 1164 get_file(dmabuf->file); 1165 oldfile = vma->vm_file; 1166 vma->vm_file = dmabuf->file; 1167 vma->vm_pgoff = pgoff; 1168 1169 ret = dmabuf->ops->mmap(dmabuf, vma); 1170 if (ret) { 1171 /* restore old parameters on failure */ 1172 vma->vm_file = oldfile; 1173 fput(dmabuf->file); 1174 } else { 1175 if (oldfile) 1176 fput(oldfile); 1177 } 1178 return ret; 1179 1180 } 1181 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1182 1183 /** 1184 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1185 * address space. Same restrictions as for vmap and friends apply. 1186 * @dmabuf: [in] buffer to vmap 1187 * 1188 * This call may fail due to lack of virtual mapping address space. 1189 * These calls are optional in drivers. The intended use for them 1190 * is for mapping objects linear in kernel space for high use objects. 1191 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1192 * 1193 * Returns NULL on error. 1194 */ 1195 void *dma_buf_vmap(struct dma_buf *dmabuf) 1196 { 1197 void *ptr; 1198 1199 if (WARN_ON(!dmabuf)) 1200 return NULL; 1201 1202 if (!dmabuf->ops->vmap) 1203 return NULL; 1204 1205 mutex_lock(&dmabuf->lock); 1206 if (dmabuf->vmapping_counter) { 1207 dmabuf->vmapping_counter++; 1208 BUG_ON(!dmabuf->vmap_ptr); 1209 ptr = dmabuf->vmap_ptr; 1210 goto out_unlock; 1211 } 1212 1213 BUG_ON(dmabuf->vmap_ptr); 1214 1215 ptr = dmabuf->ops->vmap(dmabuf); 1216 if (WARN_ON_ONCE(IS_ERR(ptr))) 1217 ptr = NULL; 1218 if (!ptr) 1219 goto out_unlock; 1220 1221 dmabuf->vmap_ptr = ptr; 1222 dmabuf->vmapping_counter = 1; 1223 1224 out_unlock: 1225 mutex_unlock(&dmabuf->lock); 1226 return ptr; 1227 } 1228 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1229 1230 /** 1231 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1232 * @dmabuf: [in] buffer to vunmap 1233 * @vaddr: [in] vmap to vunmap 1234 */ 1235 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1236 { 1237 if (WARN_ON(!dmabuf)) 1238 return; 1239 1240 BUG_ON(!dmabuf->vmap_ptr); 1241 BUG_ON(dmabuf->vmapping_counter == 0); 1242 BUG_ON(dmabuf->vmap_ptr != vaddr); 1243 1244 mutex_lock(&dmabuf->lock); 1245 if (--dmabuf->vmapping_counter == 0) { 1246 if (dmabuf->ops->vunmap) 1247 dmabuf->ops->vunmap(dmabuf, vaddr); 1248 dmabuf->vmap_ptr = NULL; 1249 } 1250 mutex_unlock(&dmabuf->lock); 1251 } 1252 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1253 1254 #ifdef CONFIG_DEBUG_FS 1255 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1256 { 1257 int ret; 1258 struct dma_buf *buf_obj; 1259 struct dma_buf_attachment *attach_obj; 1260 struct dma_resv *robj; 1261 struct dma_resv_list *fobj; 1262 struct dma_fence *fence; 1263 unsigned seq; 1264 int count = 0, attach_count, shared_count, i; 1265 size_t size = 0; 1266 1267 ret = mutex_lock_interruptible(&db_list.lock); 1268 1269 if (ret) 1270 return ret; 1271 1272 seq_puts(s, "\nDma-buf Objects:\n"); 1273 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1274 "size", "flags", "mode", "count", "ino"); 1275 1276 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1277 1278 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1279 if (ret) 1280 goto error_unlock; 1281 1282 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1283 buf_obj->size, 1284 buf_obj->file->f_flags, buf_obj->file->f_mode, 1285 file_count(buf_obj->file), 1286 buf_obj->exp_name, 1287 file_inode(buf_obj->file)->i_ino, 1288 buf_obj->name ?: ""); 1289 1290 robj = buf_obj->resv; 1291 while (true) { 1292 seq = read_seqcount_begin(&robj->seq); 1293 rcu_read_lock(); 1294 fobj = rcu_dereference(robj->fence); 1295 shared_count = fobj ? fobj->shared_count : 0; 1296 fence = rcu_dereference(robj->fence_excl); 1297 if (!read_seqcount_retry(&robj->seq, seq)) 1298 break; 1299 rcu_read_unlock(); 1300 } 1301 1302 if (fence) 1303 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1304 fence->ops->get_driver_name(fence), 1305 fence->ops->get_timeline_name(fence), 1306 dma_fence_is_signaled(fence) ? "" : "un"); 1307 for (i = 0; i < shared_count; i++) { 1308 fence = rcu_dereference(fobj->shared[i]); 1309 if (!dma_fence_get_rcu(fence)) 1310 continue; 1311 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1312 fence->ops->get_driver_name(fence), 1313 fence->ops->get_timeline_name(fence), 1314 dma_fence_is_signaled(fence) ? "" : "un"); 1315 dma_fence_put(fence); 1316 } 1317 rcu_read_unlock(); 1318 1319 seq_puts(s, "\tAttached Devices:\n"); 1320 attach_count = 0; 1321 1322 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1323 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1324 attach_count++; 1325 } 1326 dma_resv_unlock(buf_obj->resv); 1327 1328 seq_printf(s, "Total %d devices attached\n\n", 1329 attach_count); 1330 1331 count++; 1332 size += buf_obj->size; 1333 } 1334 1335 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1336 1337 mutex_unlock(&db_list.lock); 1338 return 0; 1339 1340 error_unlock: 1341 mutex_unlock(&db_list.lock); 1342 return ret; 1343 } 1344 1345 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1346 1347 static struct dentry *dma_buf_debugfs_dir; 1348 1349 static int dma_buf_init_debugfs(void) 1350 { 1351 struct dentry *d; 1352 int err = 0; 1353 1354 d = debugfs_create_dir("dma_buf", NULL); 1355 if (IS_ERR(d)) 1356 return PTR_ERR(d); 1357 1358 dma_buf_debugfs_dir = d; 1359 1360 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1361 NULL, &dma_buf_debug_fops); 1362 if (IS_ERR(d)) { 1363 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1364 debugfs_remove_recursive(dma_buf_debugfs_dir); 1365 dma_buf_debugfs_dir = NULL; 1366 err = PTR_ERR(d); 1367 } 1368 1369 return err; 1370 } 1371 1372 static void dma_buf_uninit_debugfs(void) 1373 { 1374 debugfs_remove_recursive(dma_buf_debugfs_dir); 1375 } 1376 #else 1377 static inline int dma_buf_init_debugfs(void) 1378 { 1379 return 0; 1380 } 1381 static inline void dma_buf_uninit_debugfs(void) 1382 { 1383 } 1384 #endif 1385 1386 static int __init dma_buf_init(void) 1387 { 1388 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1389 if (IS_ERR(dma_buf_mnt)) 1390 return PTR_ERR(dma_buf_mnt); 1391 1392 mutex_init(&db_list.lock); 1393 INIT_LIST_HEAD(&db_list.head); 1394 dma_buf_init_debugfs(); 1395 return 0; 1396 } 1397 subsys_initcall(dma_buf_init); 1398 1399 static void __exit dma_buf_deinit(void) 1400 { 1401 dma_buf_uninit_debugfs(); 1402 kern_unmount(dma_buf_mnt); 1403 } 1404 __exitcall(dma_buf_deinit); 1405