xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision 0ad53fe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 #include "dma-buf-sysfs-stats.h"
33 
34 static inline int is_dma_buf_file(struct file *);
35 
36 struct dma_buf_list {
37 	struct list_head head;
38 	struct mutex lock;
39 };
40 
41 static struct dma_buf_list db_list;
42 
43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 	struct dma_buf *dmabuf;
46 	char name[DMA_BUF_NAME_LEN];
47 	size_t ret = 0;
48 
49 	dmabuf = dentry->d_fsdata;
50 	spin_lock(&dmabuf->name_lock);
51 	if (dmabuf->name)
52 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 	spin_unlock(&dmabuf->name_lock);
54 
55 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 			     dentry->d_name.name, ret > 0 ? name : "");
57 }
58 
59 static void dma_buf_release(struct dentry *dentry)
60 {
61 	struct dma_buf *dmabuf;
62 
63 	dmabuf = dentry->d_fsdata;
64 	if (unlikely(!dmabuf))
65 		return;
66 
67 	BUG_ON(dmabuf->vmapping_counter);
68 
69 	/*
70 	 * Any fences that a dma-buf poll can wait on should be signaled
71 	 * before releasing dma-buf. This is the responsibility of each
72 	 * driver that uses the reservation objects.
73 	 *
74 	 * If you hit this BUG() it means someone dropped their ref to the
75 	 * dma-buf while still having pending operation to the buffer.
76 	 */
77 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
78 
79 	dma_buf_stats_teardown(dmabuf);
80 	dmabuf->ops->release(dmabuf);
81 
82 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
83 		dma_resv_fini(dmabuf->resv);
84 
85 	WARN_ON(!list_empty(&dmabuf->attachments));
86 	module_put(dmabuf->owner);
87 	kfree(dmabuf->name);
88 	kfree(dmabuf);
89 }
90 
91 static int dma_buf_file_release(struct inode *inode, struct file *file)
92 {
93 	struct dma_buf *dmabuf;
94 
95 	if (!is_dma_buf_file(file))
96 		return -EINVAL;
97 
98 	dmabuf = file->private_data;
99 
100 	mutex_lock(&db_list.lock);
101 	list_del(&dmabuf->list_node);
102 	mutex_unlock(&db_list.lock);
103 
104 	return 0;
105 }
106 
107 static const struct dentry_operations dma_buf_dentry_ops = {
108 	.d_dname = dmabuffs_dname,
109 	.d_release = dma_buf_release,
110 };
111 
112 static struct vfsmount *dma_buf_mnt;
113 
114 static int dma_buf_fs_init_context(struct fs_context *fc)
115 {
116 	struct pseudo_fs_context *ctx;
117 
118 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
119 	if (!ctx)
120 		return -ENOMEM;
121 	ctx->dops = &dma_buf_dentry_ops;
122 	return 0;
123 }
124 
125 static struct file_system_type dma_buf_fs_type = {
126 	.name = "dmabuf",
127 	.init_fs_context = dma_buf_fs_init_context,
128 	.kill_sb = kill_anon_super,
129 };
130 
131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct dma_buf *dmabuf;
134 
135 	if (!is_dma_buf_file(file))
136 		return -EINVAL;
137 
138 	dmabuf = file->private_data;
139 
140 	/* check if buffer supports mmap */
141 	if (!dmabuf->ops->mmap)
142 		return -EINVAL;
143 
144 	/* check for overflowing the buffer's size */
145 	if (vma->vm_pgoff + vma_pages(vma) >
146 	    dmabuf->size >> PAGE_SHIFT)
147 		return -EINVAL;
148 
149 	return dmabuf->ops->mmap(dmabuf, vma);
150 }
151 
152 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
153 {
154 	struct dma_buf *dmabuf;
155 	loff_t base;
156 
157 	if (!is_dma_buf_file(file))
158 		return -EBADF;
159 
160 	dmabuf = file->private_data;
161 
162 	/* only support discovering the end of the buffer,
163 	   but also allow SEEK_SET to maintain the idiomatic
164 	   SEEK_END(0), SEEK_CUR(0) pattern */
165 	if (whence == SEEK_END)
166 		base = dmabuf->size;
167 	else if (whence == SEEK_SET)
168 		base = 0;
169 	else
170 		return -EINVAL;
171 
172 	if (offset != 0)
173 		return -EINVAL;
174 
175 	return base + offset;
176 }
177 
178 /**
179  * DOC: implicit fence polling
180  *
181  * To support cross-device and cross-driver synchronization of buffer access
182  * implicit fences (represented internally in the kernel with &struct dma_fence)
183  * can be attached to a &dma_buf. The glue for that and a few related things are
184  * provided in the &dma_resv structure.
185  *
186  * Userspace can query the state of these implicitly tracked fences using poll()
187  * and related system calls:
188  *
189  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
190  *   most recent write or exclusive fence.
191  *
192  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
193  *   all attached fences, shared and exclusive ones.
194  *
195  * Note that this only signals the completion of the respective fences, i.e. the
196  * DMA transfers are complete. Cache flushing and any other necessary
197  * preparations before CPU access can begin still need to happen.
198  */
199 
200 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
201 {
202 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
203 	unsigned long flags;
204 
205 	spin_lock_irqsave(&dcb->poll->lock, flags);
206 	wake_up_locked_poll(dcb->poll, dcb->active);
207 	dcb->active = 0;
208 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
209 }
210 
211 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
212 {
213 	struct dma_buf *dmabuf;
214 	struct dma_resv *resv;
215 	struct dma_resv_list *fobj;
216 	struct dma_fence *fence_excl;
217 	__poll_t events;
218 	unsigned shared_count, seq;
219 
220 	dmabuf = file->private_data;
221 	if (!dmabuf || !dmabuf->resv)
222 		return EPOLLERR;
223 
224 	resv = dmabuf->resv;
225 
226 	poll_wait(file, &dmabuf->poll, poll);
227 
228 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
229 	if (!events)
230 		return 0;
231 
232 retry:
233 	seq = read_seqcount_begin(&resv->seq);
234 	rcu_read_lock();
235 
236 	fobj = rcu_dereference(resv->fence);
237 	if (fobj)
238 		shared_count = fobj->shared_count;
239 	else
240 		shared_count = 0;
241 	fence_excl = dma_resv_excl_fence(resv);
242 	if (read_seqcount_retry(&resv->seq, seq)) {
243 		rcu_read_unlock();
244 		goto retry;
245 	}
246 
247 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
248 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
249 		__poll_t pevents = EPOLLIN;
250 
251 		if (shared_count == 0)
252 			pevents |= EPOLLOUT;
253 
254 		spin_lock_irq(&dmabuf->poll.lock);
255 		if (dcb->active) {
256 			dcb->active |= pevents;
257 			events &= ~pevents;
258 		} else
259 			dcb->active = pevents;
260 		spin_unlock_irq(&dmabuf->poll.lock);
261 
262 		if (events & pevents) {
263 			if (!dma_fence_get_rcu(fence_excl)) {
264 				/* force a recheck */
265 				events &= ~pevents;
266 				dma_buf_poll_cb(NULL, &dcb->cb);
267 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
268 							   dma_buf_poll_cb)) {
269 				events &= ~pevents;
270 				dma_fence_put(fence_excl);
271 			} else {
272 				/*
273 				 * No callback queued, wake up any additional
274 				 * waiters.
275 				 */
276 				dma_fence_put(fence_excl);
277 				dma_buf_poll_cb(NULL, &dcb->cb);
278 			}
279 		}
280 	}
281 
282 	if ((events & EPOLLOUT) && shared_count > 0) {
283 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
284 		int i;
285 
286 		/* Only queue a new callback if no event has fired yet */
287 		spin_lock_irq(&dmabuf->poll.lock);
288 		if (dcb->active)
289 			events &= ~EPOLLOUT;
290 		else
291 			dcb->active = EPOLLOUT;
292 		spin_unlock_irq(&dmabuf->poll.lock);
293 
294 		if (!(events & EPOLLOUT))
295 			goto out;
296 
297 		for (i = 0; i < shared_count; ++i) {
298 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
299 
300 			if (!dma_fence_get_rcu(fence)) {
301 				/*
302 				 * fence refcount dropped to zero, this means
303 				 * that fobj has been freed
304 				 *
305 				 * call dma_buf_poll_cb and force a recheck!
306 				 */
307 				events &= ~EPOLLOUT;
308 				dma_buf_poll_cb(NULL, &dcb->cb);
309 				break;
310 			}
311 			if (!dma_fence_add_callback(fence, &dcb->cb,
312 						    dma_buf_poll_cb)) {
313 				dma_fence_put(fence);
314 				events &= ~EPOLLOUT;
315 				break;
316 			}
317 			dma_fence_put(fence);
318 		}
319 
320 		/* No callback queued, wake up any additional waiters. */
321 		if (i == shared_count)
322 			dma_buf_poll_cb(NULL, &dcb->cb);
323 	}
324 
325 out:
326 	rcu_read_unlock();
327 	return events;
328 }
329 
330 /**
331  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
332  * The name of the dma-buf buffer can only be set when the dma-buf is not
333  * attached to any devices. It could theoritically support changing the
334  * name of the dma-buf if the same piece of memory is used for multiple
335  * purpose between different devices.
336  *
337  * @dmabuf: [in]     dmabuf buffer that will be renamed.
338  * @buf:    [in]     A piece of userspace memory that contains the name of
339  *                   the dma-buf.
340  *
341  * Returns 0 on success. If the dma-buf buffer is already attached to
342  * devices, return -EBUSY.
343  *
344  */
345 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
346 {
347 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
348 	long ret = 0;
349 
350 	if (IS_ERR(name))
351 		return PTR_ERR(name);
352 
353 	dma_resv_lock(dmabuf->resv, NULL);
354 	if (!list_empty(&dmabuf->attachments)) {
355 		ret = -EBUSY;
356 		kfree(name);
357 		goto out_unlock;
358 	}
359 	spin_lock(&dmabuf->name_lock);
360 	kfree(dmabuf->name);
361 	dmabuf->name = name;
362 	spin_unlock(&dmabuf->name_lock);
363 
364 out_unlock:
365 	dma_resv_unlock(dmabuf->resv);
366 	return ret;
367 }
368 
369 static long dma_buf_ioctl(struct file *file,
370 			  unsigned int cmd, unsigned long arg)
371 {
372 	struct dma_buf *dmabuf;
373 	struct dma_buf_sync sync;
374 	enum dma_data_direction direction;
375 	int ret;
376 
377 	dmabuf = file->private_data;
378 
379 	switch (cmd) {
380 	case DMA_BUF_IOCTL_SYNC:
381 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
382 			return -EFAULT;
383 
384 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
385 			return -EINVAL;
386 
387 		switch (sync.flags & DMA_BUF_SYNC_RW) {
388 		case DMA_BUF_SYNC_READ:
389 			direction = DMA_FROM_DEVICE;
390 			break;
391 		case DMA_BUF_SYNC_WRITE:
392 			direction = DMA_TO_DEVICE;
393 			break;
394 		case DMA_BUF_SYNC_RW:
395 			direction = DMA_BIDIRECTIONAL;
396 			break;
397 		default:
398 			return -EINVAL;
399 		}
400 
401 		if (sync.flags & DMA_BUF_SYNC_END)
402 			ret = dma_buf_end_cpu_access(dmabuf, direction);
403 		else
404 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
405 
406 		return ret;
407 
408 	case DMA_BUF_SET_NAME_A:
409 	case DMA_BUF_SET_NAME_B:
410 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
411 
412 	default:
413 		return -ENOTTY;
414 	}
415 }
416 
417 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
418 {
419 	struct dma_buf *dmabuf = file->private_data;
420 
421 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
422 	/* Don't count the temporary reference taken inside procfs seq_show */
423 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
424 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
425 	spin_lock(&dmabuf->name_lock);
426 	if (dmabuf->name)
427 		seq_printf(m, "name:\t%s\n", dmabuf->name);
428 	spin_unlock(&dmabuf->name_lock);
429 }
430 
431 static const struct file_operations dma_buf_fops = {
432 	.release	= dma_buf_file_release,
433 	.mmap		= dma_buf_mmap_internal,
434 	.llseek		= dma_buf_llseek,
435 	.poll		= dma_buf_poll,
436 	.unlocked_ioctl	= dma_buf_ioctl,
437 	.compat_ioctl	= compat_ptr_ioctl,
438 	.show_fdinfo	= dma_buf_show_fdinfo,
439 };
440 
441 /*
442  * is_dma_buf_file - Check if struct file* is associated with dma_buf
443  */
444 static inline int is_dma_buf_file(struct file *file)
445 {
446 	return file->f_op == &dma_buf_fops;
447 }
448 
449 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
450 {
451 	struct file *file;
452 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
453 
454 	if (IS_ERR(inode))
455 		return ERR_CAST(inode);
456 
457 	inode->i_size = dmabuf->size;
458 	inode_set_bytes(inode, dmabuf->size);
459 
460 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
461 				 flags, &dma_buf_fops);
462 	if (IS_ERR(file))
463 		goto err_alloc_file;
464 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
465 	file->private_data = dmabuf;
466 	file->f_path.dentry->d_fsdata = dmabuf;
467 
468 	return file;
469 
470 err_alloc_file:
471 	iput(inode);
472 	return file;
473 }
474 
475 /**
476  * DOC: dma buf device access
477  *
478  * For device DMA access to a shared DMA buffer the usual sequence of operations
479  * is fairly simple:
480  *
481  * 1. The exporter defines his exporter instance using
482  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
483  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
484  *    as a file descriptor by calling dma_buf_fd().
485  *
486  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
487  *    to share with: First the filedescriptor is converted to a &dma_buf using
488  *    dma_buf_get(). Then the buffer is attached to the device using
489  *    dma_buf_attach().
490  *
491  *    Up to this stage the exporter is still free to migrate or reallocate the
492  *    backing storage.
493  *
494  * 3. Once the buffer is attached to all devices userspace can initiate DMA
495  *    access to the shared buffer. In the kernel this is done by calling
496  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
497  *
498  * 4. Once a driver is done with a shared buffer it needs to call
499  *    dma_buf_detach() (after cleaning up any mappings) and then release the
500  *    reference acquired with dma_buf_get() by calling dma_buf_put().
501  *
502  * For the detailed semantics exporters are expected to implement see
503  * &dma_buf_ops.
504  */
505 
506 /**
507  * dma_buf_export - Creates a new dma_buf, and associates an anon file
508  * with this buffer, so it can be exported.
509  * Also connect the allocator specific data and ops to the buffer.
510  * Additionally, provide a name string for exporter; useful in debugging.
511  *
512  * @exp_info:	[in]	holds all the export related information provided
513  *			by the exporter. see &struct dma_buf_export_info
514  *			for further details.
515  *
516  * Returns, on success, a newly created struct dma_buf object, which wraps the
517  * supplied private data and operations for struct dma_buf_ops. On either
518  * missing ops, or error in allocating struct dma_buf, will return negative
519  * error.
520  *
521  * For most cases the easiest way to create @exp_info is through the
522  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
523  */
524 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
525 {
526 	struct dma_buf *dmabuf;
527 	struct dma_resv *resv = exp_info->resv;
528 	struct file *file;
529 	size_t alloc_size = sizeof(struct dma_buf);
530 	int ret;
531 
532 	if (!exp_info->resv)
533 		alloc_size += sizeof(struct dma_resv);
534 	else
535 		/* prevent &dma_buf[1] == dma_buf->resv */
536 		alloc_size += 1;
537 
538 	if (WARN_ON(!exp_info->priv
539 			  || !exp_info->ops
540 			  || !exp_info->ops->map_dma_buf
541 			  || !exp_info->ops->unmap_dma_buf
542 			  || !exp_info->ops->release)) {
543 		return ERR_PTR(-EINVAL);
544 	}
545 
546 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
547 		    (exp_info->ops->pin || exp_info->ops->unpin)))
548 		return ERR_PTR(-EINVAL);
549 
550 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
551 		return ERR_PTR(-EINVAL);
552 
553 	if (!try_module_get(exp_info->owner))
554 		return ERR_PTR(-ENOENT);
555 
556 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
557 	if (!dmabuf) {
558 		ret = -ENOMEM;
559 		goto err_module;
560 	}
561 
562 	dmabuf->priv = exp_info->priv;
563 	dmabuf->ops = exp_info->ops;
564 	dmabuf->size = exp_info->size;
565 	dmabuf->exp_name = exp_info->exp_name;
566 	dmabuf->owner = exp_info->owner;
567 	spin_lock_init(&dmabuf->name_lock);
568 	init_waitqueue_head(&dmabuf->poll);
569 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
570 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
571 
572 	if (!resv) {
573 		resv = (struct dma_resv *)&dmabuf[1];
574 		dma_resv_init(resv);
575 	}
576 	dmabuf->resv = resv;
577 
578 	file = dma_buf_getfile(dmabuf, exp_info->flags);
579 	if (IS_ERR(file)) {
580 		ret = PTR_ERR(file);
581 		goto err_dmabuf;
582 	}
583 
584 	file->f_mode |= FMODE_LSEEK;
585 	dmabuf->file = file;
586 
587 	ret = dma_buf_stats_setup(dmabuf);
588 	if (ret)
589 		goto err_sysfs;
590 
591 	mutex_init(&dmabuf->lock);
592 	INIT_LIST_HEAD(&dmabuf->attachments);
593 
594 	mutex_lock(&db_list.lock);
595 	list_add(&dmabuf->list_node, &db_list.head);
596 	mutex_unlock(&db_list.lock);
597 
598 	return dmabuf;
599 
600 err_sysfs:
601 	/*
602 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
603 	 * dma_buf_release() gets invoked by dentry_ops, it exits
604 	 * early before calling the release() dma_buf op.
605 	 */
606 	file->f_path.dentry->d_fsdata = NULL;
607 	fput(file);
608 err_dmabuf:
609 	kfree(dmabuf);
610 err_module:
611 	module_put(exp_info->owner);
612 	return ERR_PTR(ret);
613 }
614 EXPORT_SYMBOL_GPL(dma_buf_export);
615 
616 /**
617  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
618  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
619  * @flags:      [in]    flags to give to fd
620  *
621  * On success, returns an associated 'fd'. Else, returns error.
622  */
623 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
624 {
625 	int fd;
626 
627 	if (!dmabuf || !dmabuf->file)
628 		return -EINVAL;
629 
630 	fd = get_unused_fd_flags(flags);
631 	if (fd < 0)
632 		return fd;
633 
634 	fd_install(fd, dmabuf->file);
635 
636 	return fd;
637 }
638 EXPORT_SYMBOL_GPL(dma_buf_fd);
639 
640 /**
641  * dma_buf_get - returns the struct dma_buf related to an fd
642  * @fd:	[in]	fd associated with the struct dma_buf to be returned
643  *
644  * On success, returns the struct dma_buf associated with an fd; uses
645  * file's refcounting done by fget to increase refcount. returns ERR_PTR
646  * otherwise.
647  */
648 struct dma_buf *dma_buf_get(int fd)
649 {
650 	struct file *file;
651 
652 	file = fget(fd);
653 
654 	if (!file)
655 		return ERR_PTR(-EBADF);
656 
657 	if (!is_dma_buf_file(file)) {
658 		fput(file);
659 		return ERR_PTR(-EINVAL);
660 	}
661 
662 	return file->private_data;
663 }
664 EXPORT_SYMBOL_GPL(dma_buf_get);
665 
666 /**
667  * dma_buf_put - decreases refcount of the buffer
668  * @dmabuf:	[in]	buffer to reduce refcount of
669  *
670  * Uses file's refcounting done implicitly by fput().
671  *
672  * If, as a result of this call, the refcount becomes 0, the 'release' file
673  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
674  * in turn, and frees the memory allocated for dmabuf when exported.
675  */
676 void dma_buf_put(struct dma_buf *dmabuf)
677 {
678 	if (WARN_ON(!dmabuf || !dmabuf->file))
679 		return;
680 
681 	fput(dmabuf->file);
682 }
683 EXPORT_SYMBOL_GPL(dma_buf_put);
684 
685 static void mangle_sg_table(struct sg_table *sg_table)
686 {
687 #ifdef CONFIG_DMABUF_DEBUG
688 	int i;
689 	struct scatterlist *sg;
690 
691 	/* To catch abuse of the underlying struct page by importers mix
692 	 * up the bits, but take care to preserve the low SG_ bits to
693 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
694 	 * before passing the sgt back to the exporter. */
695 	for_each_sgtable_sg(sg_table, sg, i)
696 		sg->page_link ^= ~0xffUL;
697 #endif
698 
699 }
700 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
701 				       enum dma_data_direction direction)
702 {
703 	struct sg_table *sg_table;
704 
705 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
706 
707 	if (!IS_ERR_OR_NULL(sg_table))
708 		mangle_sg_table(sg_table);
709 
710 	return sg_table;
711 }
712 
713 /**
714  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
715  * @dmabuf:		[in]	buffer to attach device to.
716  * @dev:		[in]	device to be attached.
717  * @importer_ops:	[in]	importer operations for the attachment
718  * @importer_priv:	[in]	importer private pointer for the attachment
719  *
720  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
721  * must be cleaned up by calling dma_buf_detach().
722  *
723  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
724  * functionality.
725  *
726  * Returns:
727  *
728  * A pointer to newly created &dma_buf_attachment on success, or a negative
729  * error code wrapped into a pointer on failure.
730  *
731  * Note that this can fail if the backing storage of @dmabuf is in a place not
732  * accessible to @dev, and cannot be moved to a more suitable place. This is
733  * indicated with the error code -EBUSY.
734  */
735 struct dma_buf_attachment *
736 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
737 		       const struct dma_buf_attach_ops *importer_ops,
738 		       void *importer_priv)
739 {
740 	struct dma_buf_attachment *attach;
741 	int ret;
742 
743 	if (WARN_ON(!dmabuf || !dev))
744 		return ERR_PTR(-EINVAL);
745 
746 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
747 		return ERR_PTR(-EINVAL);
748 
749 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
750 	if (!attach)
751 		return ERR_PTR(-ENOMEM);
752 
753 	attach->dev = dev;
754 	attach->dmabuf = dmabuf;
755 	if (importer_ops)
756 		attach->peer2peer = importer_ops->allow_peer2peer;
757 	attach->importer_ops = importer_ops;
758 	attach->importer_priv = importer_priv;
759 
760 	if (dmabuf->ops->attach) {
761 		ret = dmabuf->ops->attach(dmabuf, attach);
762 		if (ret)
763 			goto err_attach;
764 	}
765 	dma_resv_lock(dmabuf->resv, NULL);
766 	list_add(&attach->node, &dmabuf->attachments);
767 	dma_resv_unlock(dmabuf->resv);
768 
769 	/* When either the importer or the exporter can't handle dynamic
770 	 * mappings we cache the mapping here to avoid issues with the
771 	 * reservation object lock.
772 	 */
773 	if (dma_buf_attachment_is_dynamic(attach) !=
774 	    dma_buf_is_dynamic(dmabuf)) {
775 		struct sg_table *sgt;
776 
777 		if (dma_buf_is_dynamic(attach->dmabuf)) {
778 			dma_resv_lock(attach->dmabuf->resv, NULL);
779 			ret = dmabuf->ops->pin(attach);
780 			if (ret)
781 				goto err_unlock;
782 		}
783 
784 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
785 		if (!sgt)
786 			sgt = ERR_PTR(-ENOMEM);
787 		if (IS_ERR(sgt)) {
788 			ret = PTR_ERR(sgt);
789 			goto err_unpin;
790 		}
791 		if (dma_buf_is_dynamic(attach->dmabuf))
792 			dma_resv_unlock(attach->dmabuf->resv);
793 		attach->sgt = sgt;
794 		attach->dir = DMA_BIDIRECTIONAL;
795 	}
796 
797 	return attach;
798 
799 err_attach:
800 	kfree(attach);
801 	return ERR_PTR(ret);
802 
803 err_unpin:
804 	if (dma_buf_is_dynamic(attach->dmabuf))
805 		dmabuf->ops->unpin(attach);
806 
807 err_unlock:
808 	if (dma_buf_is_dynamic(attach->dmabuf))
809 		dma_resv_unlock(attach->dmabuf->resv);
810 
811 	dma_buf_detach(dmabuf, attach);
812 	return ERR_PTR(ret);
813 }
814 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
815 
816 /**
817  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
818  * @dmabuf:	[in]	buffer to attach device to.
819  * @dev:	[in]	device to be attached.
820  *
821  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
822  * mapping.
823  */
824 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
825 					  struct device *dev)
826 {
827 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
828 }
829 EXPORT_SYMBOL_GPL(dma_buf_attach);
830 
831 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
832 			    struct sg_table *sg_table,
833 			    enum dma_data_direction direction)
834 {
835 	/* uses XOR, hence this unmangles */
836 	mangle_sg_table(sg_table);
837 
838 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
839 }
840 
841 /**
842  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
843  * @dmabuf:	[in]	buffer to detach from.
844  * @attach:	[in]	attachment to be detached; is free'd after this call.
845  *
846  * Clean up a device attachment obtained by calling dma_buf_attach().
847  *
848  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
849  */
850 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
851 {
852 	if (WARN_ON(!dmabuf || !attach))
853 		return;
854 
855 	if (attach->sgt) {
856 		if (dma_buf_is_dynamic(attach->dmabuf))
857 			dma_resv_lock(attach->dmabuf->resv, NULL);
858 
859 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
860 
861 		if (dma_buf_is_dynamic(attach->dmabuf)) {
862 			dmabuf->ops->unpin(attach);
863 			dma_resv_unlock(attach->dmabuf->resv);
864 		}
865 	}
866 
867 	dma_resv_lock(dmabuf->resv, NULL);
868 	list_del(&attach->node);
869 	dma_resv_unlock(dmabuf->resv);
870 	if (dmabuf->ops->detach)
871 		dmabuf->ops->detach(dmabuf, attach);
872 
873 	kfree(attach);
874 }
875 EXPORT_SYMBOL_GPL(dma_buf_detach);
876 
877 /**
878  * dma_buf_pin - Lock down the DMA-buf
879  * @attach:	[in]	attachment which should be pinned
880  *
881  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
882  * call this, and only for limited use cases like scanout and not for temporary
883  * pin operations. It is not permitted to allow userspace to pin arbitrary
884  * amounts of buffers through this interface.
885  *
886  * Buffers must be unpinned by calling dma_buf_unpin().
887  *
888  * Returns:
889  * 0 on success, negative error code on failure.
890  */
891 int dma_buf_pin(struct dma_buf_attachment *attach)
892 {
893 	struct dma_buf *dmabuf = attach->dmabuf;
894 	int ret = 0;
895 
896 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
897 
898 	dma_resv_assert_held(dmabuf->resv);
899 
900 	if (dmabuf->ops->pin)
901 		ret = dmabuf->ops->pin(attach);
902 
903 	return ret;
904 }
905 EXPORT_SYMBOL_GPL(dma_buf_pin);
906 
907 /**
908  * dma_buf_unpin - Unpin a DMA-buf
909  * @attach:	[in]	attachment which should be unpinned
910  *
911  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
912  * any mapping of @attach again and inform the importer through
913  * &dma_buf_attach_ops.move_notify.
914  */
915 void dma_buf_unpin(struct dma_buf_attachment *attach)
916 {
917 	struct dma_buf *dmabuf = attach->dmabuf;
918 
919 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
920 
921 	dma_resv_assert_held(dmabuf->resv);
922 
923 	if (dmabuf->ops->unpin)
924 		dmabuf->ops->unpin(attach);
925 }
926 EXPORT_SYMBOL_GPL(dma_buf_unpin);
927 
928 /**
929  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
930  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
931  * dma_buf_ops.
932  * @attach:	[in]	attachment whose scatterlist is to be returned
933  * @direction:	[in]	direction of DMA transfer
934  *
935  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
936  * on error. May return -EINTR if it is interrupted by a signal.
937  *
938  * On success, the DMA addresses and lengths in the returned scatterlist are
939  * PAGE_SIZE aligned.
940  *
941  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
942  * the underlying backing storage is pinned for as long as a mapping exists,
943  * therefore users/importers should not hold onto a mapping for undue amounts of
944  * time.
945  *
946  * Important: Dynamic importers must wait for the exclusive fence of the struct
947  * dma_resv attached to the DMA-BUF first.
948  */
949 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
950 					enum dma_data_direction direction)
951 {
952 	struct sg_table *sg_table;
953 	int r;
954 
955 	might_sleep();
956 
957 	if (WARN_ON(!attach || !attach->dmabuf))
958 		return ERR_PTR(-EINVAL);
959 
960 	if (dma_buf_attachment_is_dynamic(attach))
961 		dma_resv_assert_held(attach->dmabuf->resv);
962 
963 	if (attach->sgt) {
964 		/*
965 		 * Two mappings with different directions for the same
966 		 * attachment are not allowed.
967 		 */
968 		if (attach->dir != direction &&
969 		    attach->dir != DMA_BIDIRECTIONAL)
970 			return ERR_PTR(-EBUSY);
971 
972 		return attach->sgt;
973 	}
974 
975 	if (dma_buf_is_dynamic(attach->dmabuf)) {
976 		dma_resv_assert_held(attach->dmabuf->resv);
977 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
978 			r = attach->dmabuf->ops->pin(attach);
979 			if (r)
980 				return ERR_PTR(r);
981 		}
982 	}
983 
984 	sg_table = __map_dma_buf(attach, direction);
985 	if (!sg_table)
986 		sg_table = ERR_PTR(-ENOMEM);
987 
988 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
989 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
990 		attach->dmabuf->ops->unpin(attach);
991 
992 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
993 		attach->sgt = sg_table;
994 		attach->dir = direction;
995 	}
996 
997 #ifdef CONFIG_DMA_API_DEBUG
998 	if (!IS_ERR(sg_table)) {
999 		struct scatterlist *sg;
1000 		u64 addr;
1001 		int len;
1002 		int i;
1003 
1004 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1005 			addr = sg_dma_address(sg);
1006 			len = sg_dma_len(sg);
1007 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1008 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1009 					 __func__, addr, len);
1010 			}
1011 		}
1012 	}
1013 #endif /* CONFIG_DMA_API_DEBUG */
1014 	return sg_table;
1015 }
1016 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
1017 
1018 /**
1019  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1020  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1021  * dma_buf_ops.
1022  * @attach:	[in]	attachment to unmap buffer from
1023  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1024  * @direction:  [in]    direction of DMA transfer
1025  *
1026  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1027  */
1028 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1029 				struct sg_table *sg_table,
1030 				enum dma_data_direction direction)
1031 {
1032 	might_sleep();
1033 
1034 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1035 		return;
1036 
1037 	if (dma_buf_attachment_is_dynamic(attach))
1038 		dma_resv_assert_held(attach->dmabuf->resv);
1039 
1040 	if (attach->sgt == sg_table)
1041 		return;
1042 
1043 	if (dma_buf_is_dynamic(attach->dmabuf))
1044 		dma_resv_assert_held(attach->dmabuf->resv);
1045 
1046 	__unmap_dma_buf(attach, sg_table, direction);
1047 
1048 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1049 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1050 		dma_buf_unpin(attach);
1051 }
1052 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
1053 
1054 /**
1055  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1056  *
1057  * @dmabuf:	[in]	buffer which is moving
1058  *
1059  * Informs all attachmenst that they need to destroy and recreated all their
1060  * mappings.
1061  */
1062 void dma_buf_move_notify(struct dma_buf *dmabuf)
1063 {
1064 	struct dma_buf_attachment *attach;
1065 
1066 	dma_resv_assert_held(dmabuf->resv);
1067 
1068 	list_for_each_entry(attach, &dmabuf->attachments, node)
1069 		if (attach->importer_ops)
1070 			attach->importer_ops->move_notify(attach);
1071 }
1072 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1073 
1074 /**
1075  * DOC: cpu access
1076  *
1077  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1078  *
1079  * - Fallback operations in the kernel, for example when a device is connected
1080  *   over USB and the kernel needs to shuffle the data around first before
1081  *   sending it away. Cache coherency is handled by braketing any transactions
1082  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1083  *   access.
1084  *
1085  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1086  *   vmap interface is introduced. Note that on very old 32-bit architectures
1087  *   vmalloc space might be limited and result in vmap calls failing.
1088  *
1089  *   Interfaces::
1090  *
1091  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1092  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1093  *
1094  *   The vmap call can fail if there is no vmap support in the exporter, or if
1095  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1096  *   count for all vmap access and calls down into the exporter's vmap function
1097  *   only when no vmapping exists, and only unmaps it once. Protection against
1098  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1099  *
1100  * - For full compatibility on the importer side with existing userspace
1101  *   interfaces, which might already support mmap'ing buffers. This is needed in
1102  *   many processing pipelines (e.g. feeding a software rendered image into a
1103  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1104  *   framework already supported this and for DMA buffer file descriptors to
1105  *   replace ION buffers mmap support was needed.
1106  *
1107  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1108  *   fd. But like for CPU access there's a need to braket the actual access,
1109  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1110  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1111  *   be restarted.
1112  *
1113  *   Some systems might need some sort of cache coherency management e.g. when
1114  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1115  *   To circumvent this problem there are begin/end coherency markers, that
1116  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1117  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1118  *   sequence would be used like following:
1119  *
1120  *     - mmap dma-buf fd
1121  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1122  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1123  *       want (with the new data being consumed by say the GPU or the scanout
1124  *       device)
1125  *     - munmap once you don't need the buffer any more
1126  *
1127  *    For correctness and optimal performance, it is always required to use
1128  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1129  *    mapped address. Userspace cannot rely on coherent access, even when there
1130  *    are systems where it just works without calling these ioctls.
1131  *
1132  * - And as a CPU fallback in userspace processing pipelines.
1133  *
1134  *   Similar to the motivation for kernel cpu access it is again important that
1135  *   the userspace code of a given importing subsystem can use the same
1136  *   interfaces with a imported dma-buf buffer object as with a native buffer
1137  *   object. This is especially important for drm where the userspace part of
1138  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1139  *   use a different way to mmap a buffer rather invasive.
1140  *
1141  *   The assumption in the current dma-buf interfaces is that redirecting the
1142  *   initial mmap is all that's needed. A survey of some of the existing
1143  *   subsystems shows that no driver seems to do any nefarious thing like
1144  *   syncing up with outstanding asynchronous processing on the device or
1145  *   allocating special resources at fault time. So hopefully this is good
1146  *   enough, since adding interfaces to intercept pagefaults and allow pte
1147  *   shootdowns would increase the complexity quite a bit.
1148  *
1149  *   Interface::
1150  *
1151  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1152  *		       unsigned long);
1153  *
1154  *   If the importing subsystem simply provides a special-purpose mmap call to
1155  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1156  *   equally achieve that for a dma-buf object.
1157  */
1158 
1159 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1160 				      enum dma_data_direction direction)
1161 {
1162 	bool write = (direction == DMA_BIDIRECTIONAL ||
1163 		      direction == DMA_TO_DEVICE);
1164 	struct dma_resv *resv = dmabuf->resv;
1165 	long ret;
1166 
1167 	/* Wait on any implicit rendering fences */
1168 	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1169 	if (ret < 0)
1170 		return ret;
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1177  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1178  * preparations. Coherency is only guaranteed in the specified range for the
1179  * specified access direction.
1180  * @dmabuf:	[in]	buffer to prepare cpu access for.
1181  * @direction:	[in]	length of range for cpu access.
1182  *
1183  * After the cpu access is complete the caller should call
1184  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1185  * it guaranteed to be coherent with other DMA access.
1186  *
1187  * This function will also wait for any DMA transactions tracked through
1188  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1189  * synchronization this function will only ensure cache coherency, callers must
1190  * ensure synchronization with such DMA transactions on their own.
1191  *
1192  * Can return negative error values, returns 0 on success.
1193  */
1194 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1195 			     enum dma_data_direction direction)
1196 {
1197 	int ret = 0;
1198 
1199 	if (WARN_ON(!dmabuf))
1200 		return -EINVAL;
1201 
1202 	might_lock(&dmabuf->resv->lock.base);
1203 
1204 	if (dmabuf->ops->begin_cpu_access)
1205 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1206 
1207 	/* Ensure that all fences are waited upon - but we first allow
1208 	 * the native handler the chance to do so more efficiently if it
1209 	 * chooses. A double invocation here will be reasonably cheap no-op.
1210 	 */
1211 	if (ret == 0)
1212 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1213 
1214 	return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1217 
1218 /**
1219  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1220  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1221  * actions. Coherency is only guaranteed in the specified range for the
1222  * specified access direction.
1223  * @dmabuf:	[in]	buffer to complete cpu access for.
1224  * @direction:	[in]	length of range for cpu access.
1225  *
1226  * This terminates CPU access started with dma_buf_begin_cpu_access().
1227  *
1228  * Can return negative error values, returns 0 on success.
1229  */
1230 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1231 			   enum dma_data_direction direction)
1232 {
1233 	int ret = 0;
1234 
1235 	WARN_ON(!dmabuf);
1236 
1237 	might_lock(&dmabuf->resv->lock.base);
1238 
1239 	if (dmabuf->ops->end_cpu_access)
1240 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1241 
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1245 
1246 
1247 /**
1248  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1249  * @dmabuf:	[in]	buffer that should back the vma
1250  * @vma:	[in]	vma for the mmap
1251  * @pgoff:	[in]	offset in pages where this mmap should start within the
1252  *			dma-buf buffer.
1253  *
1254  * This function adjusts the passed in vma so that it points at the file of the
1255  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1256  * checking on the size of the vma. Then it calls the exporters mmap function to
1257  * set up the mapping.
1258  *
1259  * Can return negative error values, returns 0 on success.
1260  */
1261 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1262 		 unsigned long pgoff)
1263 {
1264 	if (WARN_ON(!dmabuf || !vma))
1265 		return -EINVAL;
1266 
1267 	/* check if buffer supports mmap */
1268 	if (!dmabuf->ops->mmap)
1269 		return -EINVAL;
1270 
1271 	/* check for offset overflow */
1272 	if (pgoff + vma_pages(vma) < pgoff)
1273 		return -EOVERFLOW;
1274 
1275 	/* check for overflowing the buffer's size */
1276 	if (pgoff + vma_pages(vma) >
1277 	    dmabuf->size >> PAGE_SHIFT)
1278 		return -EINVAL;
1279 
1280 	/* readjust the vma */
1281 	vma_set_file(vma, dmabuf->file);
1282 	vma->vm_pgoff = pgoff;
1283 
1284 	return dmabuf->ops->mmap(dmabuf, vma);
1285 }
1286 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1287 
1288 /**
1289  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1290  * address space. Same restrictions as for vmap and friends apply.
1291  * @dmabuf:	[in]	buffer to vmap
1292  * @map:	[out]	returns the vmap pointer
1293  *
1294  * This call may fail due to lack of virtual mapping address space.
1295  * These calls are optional in drivers. The intended use for them
1296  * is for mapping objects linear in kernel space for high use objects.
1297  *
1298  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1299  * dma_buf_end_cpu_access() around any cpu access performed through this
1300  * mapping.
1301  *
1302  * Returns 0 on success, or a negative errno code otherwise.
1303  */
1304 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1305 {
1306 	struct dma_buf_map ptr;
1307 	int ret = 0;
1308 
1309 	dma_buf_map_clear(map);
1310 
1311 	if (WARN_ON(!dmabuf))
1312 		return -EINVAL;
1313 
1314 	if (!dmabuf->ops->vmap)
1315 		return -EINVAL;
1316 
1317 	mutex_lock(&dmabuf->lock);
1318 	if (dmabuf->vmapping_counter) {
1319 		dmabuf->vmapping_counter++;
1320 		BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1321 		*map = dmabuf->vmap_ptr;
1322 		goto out_unlock;
1323 	}
1324 
1325 	BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1326 
1327 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1328 	if (WARN_ON_ONCE(ret))
1329 		goto out_unlock;
1330 
1331 	dmabuf->vmap_ptr = ptr;
1332 	dmabuf->vmapping_counter = 1;
1333 
1334 	*map = dmabuf->vmap_ptr;
1335 
1336 out_unlock:
1337 	mutex_unlock(&dmabuf->lock);
1338 	return ret;
1339 }
1340 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1341 
1342 /**
1343  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1344  * @dmabuf:	[in]	buffer to vunmap
1345  * @map:	[in]	vmap pointer to vunmap
1346  */
1347 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1348 {
1349 	if (WARN_ON(!dmabuf))
1350 		return;
1351 
1352 	BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1353 	BUG_ON(dmabuf->vmapping_counter == 0);
1354 	BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1355 
1356 	mutex_lock(&dmabuf->lock);
1357 	if (--dmabuf->vmapping_counter == 0) {
1358 		if (dmabuf->ops->vunmap)
1359 			dmabuf->ops->vunmap(dmabuf, map);
1360 		dma_buf_map_clear(&dmabuf->vmap_ptr);
1361 	}
1362 	mutex_unlock(&dmabuf->lock);
1363 }
1364 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1365 
1366 #ifdef CONFIG_DEBUG_FS
1367 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1368 {
1369 	struct dma_buf *buf_obj;
1370 	struct dma_buf_attachment *attach_obj;
1371 	struct dma_resv *robj;
1372 	struct dma_resv_list *fobj;
1373 	struct dma_fence *fence;
1374 	int count = 0, attach_count, shared_count, i;
1375 	size_t size = 0;
1376 	int ret;
1377 
1378 	ret = mutex_lock_interruptible(&db_list.lock);
1379 
1380 	if (ret)
1381 		return ret;
1382 
1383 	seq_puts(s, "\nDma-buf Objects:\n");
1384 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1385 		   "size", "flags", "mode", "count", "ino");
1386 
1387 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1388 
1389 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1390 		if (ret)
1391 			goto error_unlock;
1392 
1393 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1394 				buf_obj->size,
1395 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1396 				file_count(buf_obj->file),
1397 				buf_obj->exp_name,
1398 				file_inode(buf_obj->file)->i_ino,
1399 				buf_obj->name ?: "");
1400 
1401 		robj = buf_obj->resv;
1402 		fence = dma_resv_excl_fence(robj);
1403 		if (fence)
1404 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1405 				   fence->ops->get_driver_name(fence),
1406 				   fence->ops->get_timeline_name(fence),
1407 				   dma_fence_is_signaled(fence) ? "" : "un");
1408 
1409 		fobj = rcu_dereference_protected(robj->fence,
1410 						 dma_resv_held(robj));
1411 		shared_count = fobj ? fobj->shared_count : 0;
1412 		for (i = 0; i < shared_count; i++) {
1413 			fence = rcu_dereference_protected(fobj->shared[i],
1414 							  dma_resv_held(robj));
1415 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1416 				   fence->ops->get_driver_name(fence),
1417 				   fence->ops->get_timeline_name(fence),
1418 				   dma_fence_is_signaled(fence) ? "" : "un");
1419 		}
1420 
1421 		seq_puts(s, "\tAttached Devices:\n");
1422 		attach_count = 0;
1423 
1424 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1425 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1426 			attach_count++;
1427 		}
1428 		dma_resv_unlock(buf_obj->resv);
1429 
1430 		seq_printf(s, "Total %d devices attached\n\n",
1431 				attach_count);
1432 
1433 		count++;
1434 		size += buf_obj->size;
1435 	}
1436 
1437 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1438 
1439 	mutex_unlock(&db_list.lock);
1440 	return 0;
1441 
1442 error_unlock:
1443 	mutex_unlock(&db_list.lock);
1444 	return ret;
1445 }
1446 
1447 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1448 
1449 static struct dentry *dma_buf_debugfs_dir;
1450 
1451 static int dma_buf_init_debugfs(void)
1452 {
1453 	struct dentry *d;
1454 	int err = 0;
1455 
1456 	d = debugfs_create_dir("dma_buf", NULL);
1457 	if (IS_ERR(d))
1458 		return PTR_ERR(d);
1459 
1460 	dma_buf_debugfs_dir = d;
1461 
1462 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1463 				NULL, &dma_buf_debug_fops);
1464 	if (IS_ERR(d)) {
1465 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1466 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1467 		dma_buf_debugfs_dir = NULL;
1468 		err = PTR_ERR(d);
1469 	}
1470 
1471 	return err;
1472 }
1473 
1474 static void dma_buf_uninit_debugfs(void)
1475 {
1476 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1477 }
1478 #else
1479 static inline int dma_buf_init_debugfs(void)
1480 {
1481 	return 0;
1482 }
1483 static inline void dma_buf_uninit_debugfs(void)
1484 {
1485 }
1486 #endif
1487 
1488 static int __init dma_buf_init(void)
1489 {
1490 	int ret;
1491 
1492 	ret = dma_buf_init_sysfs_statistics();
1493 	if (ret)
1494 		return ret;
1495 
1496 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1497 	if (IS_ERR(dma_buf_mnt))
1498 		return PTR_ERR(dma_buf_mnt);
1499 
1500 	mutex_init(&db_list.lock);
1501 	INIT_LIST_HEAD(&db_list.head);
1502 	dma_buf_init_debugfs();
1503 	return 0;
1504 }
1505 subsys_initcall(dma_buf_init);
1506 
1507 static void __exit dma_buf_deinit(void)
1508 {
1509 	dma_buf_uninit_debugfs();
1510 	kern_unmount(dma_buf_mnt);
1511 	dma_buf_uninit_sysfs_statistics();
1512 }
1513 __exitcall(dma_buf_deinit);
1514