1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A devfreq driver for NVIDIA Tegra SoCs 4 * 5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved. 6 * Copyright (C) 2014 Google, Inc 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/cpufreq.h> 11 #include <linux/devfreq.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/irq.h> 15 #include <linux/module.h> 16 #include <linux/of_device.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_opp.h> 19 #include <linux/reset.h> 20 #include <linux/workqueue.h> 21 22 #include "governor.h" 23 24 #define ACTMON_GLB_STATUS 0x0 25 #define ACTMON_GLB_PERIOD_CTRL 0x4 26 27 #define ACTMON_DEV_CTRL 0x0 28 #define ACTMON_DEV_CTRL_K_VAL_SHIFT 10 29 #define ACTMON_DEV_CTRL_ENB_PERIODIC BIT(18) 30 #define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN BIT(20) 31 #define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN BIT(21) 32 #define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT 23 33 #define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT 26 34 #define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN BIT(29) 35 #define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN BIT(30) 36 #define ACTMON_DEV_CTRL_ENB BIT(31) 37 38 #define ACTMON_DEV_CTRL_STOP 0x00000000 39 40 #define ACTMON_DEV_UPPER_WMARK 0x4 41 #define ACTMON_DEV_LOWER_WMARK 0x8 42 #define ACTMON_DEV_INIT_AVG 0xc 43 #define ACTMON_DEV_AVG_UPPER_WMARK 0x10 44 #define ACTMON_DEV_AVG_LOWER_WMARK 0x14 45 #define ACTMON_DEV_COUNT_WEIGHT 0x18 46 #define ACTMON_DEV_AVG_COUNT 0x20 47 #define ACTMON_DEV_INTR_STATUS 0x24 48 49 #define ACTMON_INTR_STATUS_CLEAR 0xffffffff 50 51 #define ACTMON_DEV_INTR_CONSECUTIVE_UPPER BIT(31) 52 #define ACTMON_DEV_INTR_CONSECUTIVE_LOWER BIT(30) 53 54 #define ACTMON_ABOVE_WMARK_WINDOW 1 55 #define ACTMON_BELOW_WMARK_WINDOW 3 56 #define ACTMON_BOOST_FREQ_STEP 16000 57 58 /* 59 * Activity counter is incremented every 256 memory transactions, and each 60 * transaction takes 4 EMC clocks for Tegra124; So the COUNT_WEIGHT is 61 * 4 * 256 = 1024. 62 */ 63 #define ACTMON_COUNT_WEIGHT 0x400 64 65 /* 66 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which 67 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128 68 */ 69 #define ACTMON_AVERAGE_WINDOW_LOG2 6 70 #define ACTMON_SAMPLING_PERIOD 12 /* ms */ 71 #define ACTMON_DEFAULT_AVG_BAND 6 /* 1/10 of % */ 72 73 #define KHZ 1000 74 75 #define KHZ_MAX (ULONG_MAX / KHZ) 76 77 /* Assume that the bus is saturated if the utilization is 25% */ 78 #define BUS_SATURATION_RATIO 25 79 80 /** 81 * struct tegra_devfreq_device_config - configuration specific to an ACTMON 82 * device 83 * 84 * Coefficients and thresholds are percentages unless otherwise noted 85 */ 86 struct tegra_devfreq_device_config { 87 u32 offset; 88 u32 irq_mask; 89 90 /* Factors applied to boost_freq every consecutive watermark breach */ 91 unsigned int boost_up_coeff; 92 unsigned int boost_down_coeff; 93 94 /* Define the watermark bounds when applied to the current avg */ 95 unsigned int boost_up_threshold; 96 unsigned int boost_down_threshold; 97 98 /* 99 * Threshold of activity (cycles translated to kHz) below which the 100 * CPU frequency isn't to be taken into account. This is to avoid 101 * increasing the EMC frequency when the CPU is very busy but not 102 * accessing the bus often. 103 */ 104 u32 avg_dependency_threshold; 105 }; 106 107 enum tegra_actmon_device { 108 MCALL = 0, 109 MCCPU, 110 }; 111 112 static const struct tegra_devfreq_device_config actmon_device_configs[] = { 113 { 114 /* MCALL: All memory accesses (including from the CPUs) */ 115 .offset = 0x1c0, 116 .irq_mask = 1 << 26, 117 .boost_up_coeff = 200, 118 .boost_down_coeff = 50, 119 .boost_up_threshold = 60, 120 .boost_down_threshold = 40, 121 }, 122 { 123 /* MCCPU: memory accesses from the CPUs */ 124 .offset = 0x200, 125 .irq_mask = 1 << 25, 126 .boost_up_coeff = 800, 127 .boost_down_coeff = 40, 128 .boost_up_threshold = 27, 129 .boost_down_threshold = 10, 130 .avg_dependency_threshold = 16000, /* 16MHz in kHz units */ 131 }, 132 }; 133 134 /** 135 * struct tegra_devfreq_device - state specific to an ACTMON device 136 * 137 * Frequencies are in kHz. 138 */ 139 struct tegra_devfreq_device { 140 const struct tegra_devfreq_device_config *config; 141 void __iomem *regs; 142 143 /* Average event count sampled in the last interrupt */ 144 u32 avg_count; 145 146 /* 147 * Extra frequency to increase the target by due to consecutive 148 * watermark breaches. 149 */ 150 unsigned long boost_freq; 151 152 /* Optimal frequency calculated from the stats for this device */ 153 unsigned long target_freq; 154 }; 155 156 struct tegra_devfreq { 157 struct devfreq *devfreq; 158 159 struct reset_control *reset; 160 struct clk *clock; 161 void __iomem *regs; 162 163 struct clk *emc_clock; 164 unsigned long max_freq; 165 unsigned long cur_freq; 166 struct notifier_block clk_rate_change_nb; 167 168 struct delayed_work cpufreq_update_work; 169 struct notifier_block cpu_rate_change_nb; 170 171 struct tegra_devfreq_device devices[ARRAY_SIZE(actmon_device_configs)]; 172 173 unsigned int irq; 174 175 bool started; 176 }; 177 178 struct tegra_actmon_emc_ratio { 179 unsigned long cpu_freq; 180 unsigned long emc_freq; 181 }; 182 183 static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = { 184 { 1400000, KHZ_MAX }, 185 { 1200000, 750000 }, 186 { 1100000, 600000 }, 187 { 1000000, 500000 }, 188 { 800000, 375000 }, 189 { 500000, 200000 }, 190 { 250000, 100000 }, 191 }; 192 193 static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset) 194 { 195 return readl_relaxed(tegra->regs + offset); 196 } 197 198 static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset) 199 { 200 writel_relaxed(val, tegra->regs + offset); 201 } 202 203 static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset) 204 { 205 return readl_relaxed(dev->regs + offset); 206 } 207 208 static void device_writel(struct tegra_devfreq_device *dev, u32 val, 209 u32 offset) 210 { 211 writel_relaxed(val, dev->regs + offset); 212 } 213 214 static unsigned long do_percent(unsigned long long val, unsigned int pct) 215 { 216 val = val * pct; 217 do_div(val, 100); 218 219 /* 220 * High freq + high boosting percent + large polling interval are 221 * resulting in integer overflow when watermarks are calculated. 222 */ 223 return min_t(u64, val, U32_MAX); 224 } 225 226 static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra, 227 struct tegra_devfreq_device *dev) 228 { 229 u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ; 230 u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms; 231 u32 avg; 232 233 avg = min(dev->avg_count, U32_MAX - band); 234 device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK); 235 236 avg = max(dev->avg_count, band); 237 device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK); 238 } 239 240 static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra, 241 struct tegra_devfreq_device *dev) 242 { 243 u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms; 244 245 device_writel(dev, do_percent(val, dev->config->boost_up_threshold), 246 ACTMON_DEV_UPPER_WMARK); 247 248 device_writel(dev, do_percent(val, dev->config->boost_down_threshold), 249 ACTMON_DEV_LOWER_WMARK); 250 } 251 252 static void actmon_isr_device(struct tegra_devfreq *tegra, 253 struct tegra_devfreq_device *dev) 254 { 255 u32 intr_status, dev_ctrl; 256 257 dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT); 258 tegra_devfreq_update_avg_wmark(tegra, dev); 259 260 intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS); 261 dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL); 262 263 if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) { 264 /* 265 * new_boost = min(old_boost * up_coef + step, max_freq) 266 */ 267 dev->boost_freq = do_percent(dev->boost_freq, 268 dev->config->boost_up_coeff); 269 dev->boost_freq += ACTMON_BOOST_FREQ_STEP; 270 271 dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN; 272 273 if (dev->boost_freq >= tegra->max_freq) { 274 dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN; 275 dev->boost_freq = tegra->max_freq; 276 } 277 } else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) { 278 /* 279 * new_boost = old_boost * down_coef 280 * or 0 if (old_boost * down_coef < step / 2) 281 */ 282 dev->boost_freq = do_percent(dev->boost_freq, 283 dev->config->boost_down_coeff); 284 285 dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN; 286 287 if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) { 288 dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN; 289 dev->boost_freq = 0; 290 } 291 } 292 293 device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL); 294 295 device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS); 296 } 297 298 static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra, 299 unsigned long cpu_freq) 300 { 301 unsigned int i; 302 const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios; 303 304 for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) { 305 if (cpu_freq >= ratio->cpu_freq) { 306 if (ratio->emc_freq >= tegra->max_freq) 307 return tegra->max_freq; 308 else 309 return ratio->emc_freq; 310 } 311 } 312 313 return 0; 314 } 315 316 static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra, 317 struct tegra_devfreq_device *dev) 318 { 319 unsigned int avg_sustain_coef; 320 unsigned long target_freq; 321 322 target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms; 323 avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold; 324 target_freq = do_percent(target_freq, avg_sustain_coef); 325 326 return target_freq; 327 } 328 329 static void actmon_update_target(struct tegra_devfreq *tegra, 330 struct tegra_devfreq_device *dev) 331 { 332 unsigned long cpu_freq = 0; 333 unsigned long static_cpu_emc_freq = 0; 334 335 dev->target_freq = actmon_device_target_freq(tegra, dev); 336 337 if (dev->config->avg_dependency_threshold && 338 dev->config->avg_dependency_threshold <= dev->target_freq) { 339 cpu_freq = cpufreq_quick_get(0); 340 static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq); 341 342 dev->target_freq += dev->boost_freq; 343 dev->target_freq = max(dev->target_freq, static_cpu_emc_freq); 344 } else { 345 dev->target_freq += dev->boost_freq; 346 } 347 } 348 349 static irqreturn_t actmon_thread_isr(int irq, void *data) 350 { 351 struct tegra_devfreq *tegra = data; 352 bool handled = false; 353 unsigned int i; 354 u32 val; 355 356 mutex_lock(&tegra->devfreq->lock); 357 358 val = actmon_readl(tegra, ACTMON_GLB_STATUS); 359 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { 360 if (val & tegra->devices[i].config->irq_mask) { 361 actmon_isr_device(tegra, tegra->devices + i); 362 handled = true; 363 } 364 } 365 366 if (handled) 367 update_devfreq(tegra->devfreq); 368 369 mutex_unlock(&tegra->devfreq->lock); 370 371 return handled ? IRQ_HANDLED : IRQ_NONE; 372 } 373 374 static int tegra_actmon_clk_notify_cb(struct notifier_block *nb, 375 unsigned long action, void *ptr) 376 { 377 struct clk_notifier_data *data = ptr; 378 struct tegra_devfreq *tegra; 379 struct tegra_devfreq_device *dev; 380 unsigned int i; 381 382 if (action != POST_RATE_CHANGE) 383 return NOTIFY_OK; 384 385 tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb); 386 387 tegra->cur_freq = data->new_rate / KHZ; 388 389 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { 390 dev = &tegra->devices[i]; 391 392 tegra_devfreq_update_wmark(tegra, dev); 393 } 394 395 return NOTIFY_OK; 396 } 397 398 static void tegra_actmon_delayed_update(struct work_struct *work) 399 { 400 struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq, 401 cpufreq_update_work.work); 402 403 mutex_lock(&tegra->devfreq->lock); 404 update_devfreq(tegra->devfreq); 405 mutex_unlock(&tegra->devfreq->lock); 406 } 407 408 static unsigned long 409 tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra, 410 unsigned int cpu_freq) 411 { 412 struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU]; 413 unsigned long static_cpu_emc_freq, dev_freq; 414 415 dev_freq = actmon_device_target_freq(tegra, actmon_dev); 416 417 /* check whether CPU's freq is taken into account at all */ 418 if (dev_freq < actmon_dev->config->avg_dependency_threshold) 419 return 0; 420 421 static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq); 422 423 if (dev_freq >= static_cpu_emc_freq) 424 return 0; 425 426 return static_cpu_emc_freq; 427 } 428 429 static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb, 430 unsigned long action, void *ptr) 431 { 432 struct cpufreq_freqs *freqs = ptr; 433 struct tegra_devfreq *tegra; 434 unsigned long old, new, delay; 435 436 if (action != CPUFREQ_POSTCHANGE) 437 return NOTIFY_OK; 438 439 tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb); 440 441 /* 442 * Quickly check whether CPU frequency should be taken into account 443 * at all, without blocking CPUFreq's core. 444 */ 445 if (mutex_trylock(&tegra->devfreq->lock)) { 446 old = tegra_actmon_cpufreq_contribution(tegra, freqs->old); 447 new = tegra_actmon_cpufreq_contribution(tegra, freqs->new); 448 mutex_unlock(&tegra->devfreq->lock); 449 450 /* 451 * If CPU's frequency shouldn't be taken into account at 452 * the moment, then there is no need to update the devfreq's 453 * state because ISR will re-check CPU's frequency on the 454 * next interrupt. 455 */ 456 if (old == new) 457 return NOTIFY_OK; 458 } 459 460 /* 461 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order 462 * to allow asynchronous notifications. This means we can't block 463 * here for too long, otherwise CPUFreq's core will complain with a 464 * warning splat. 465 */ 466 delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD); 467 schedule_delayed_work(&tegra->cpufreq_update_work, delay); 468 469 return NOTIFY_OK; 470 } 471 472 static void tegra_actmon_configure_device(struct tegra_devfreq *tegra, 473 struct tegra_devfreq_device *dev) 474 { 475 u32 val = 0; 476 477 /* reset boosting on governor's restart */ 478 dev->boost_freq = 0; 479 480 dev->target_freq = tegra->cur_freq; 481 482 dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms; 483 device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG); 484 485 tegra_devfreq_update_avg_wmark(tegra, dev); 486 tegra_devfreq_update_wmark(tegra, dev); 487 488 device_writel(dev, ACTMON_COUNT_WEIGHT, ACTMON_DEV_COUNT_WEIGHT); 489 device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS); 490 491 val |= ACTMON_DEV_CTRL_ENB_PERIODIC; 492 val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1) 493 << ACTMON_DEV_CTRL_K_VAL_SHIFT; 494 val |= (ACTMON_BELOW_WMARK_WINDOW - 1) 495 << ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT; 496 val |= (ACTMON_ABOVE_WMARK_WINDOW - 1) 497 << ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT; 498 val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN; 499 val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN; 500 val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN; 501 val |= ACTMON_DEV_CTRL_ENB; 502 503 device_writel(dev, val, ACTMON_DEV_CTRL); 504 } 505 506 static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra) 507 { 508 struct tegra_devfreq_device *dev = tegra->devices; 509 unsigned int i; 510 511 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) { 512 device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL); 513 device_writel(dev, ACTMON_INTR_STATUS_CLEAR, 514 ACTMON_DEV_INTR_STATUS); 515 } 516 } 517 518 static int tegra_actmon_resume(struct tegra_devfreq *tegra) 519 { 520 unsigned int i; 521 int err; 522 523 if (!tegra->devfreq->profile->polling_ms || !tegra->started) 524 return 0; 525 526 actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1, 527 ACTMON_GLB_PERIOD_CTRL); 528 529 /* 530 * CLK notifications are needed in order to reconfigure the upper 531 * consecutive watermark in accordance to the actual clock rate 532 * to avoid unnecessary upper interrupts. 533 */ 534 err = clk_notifier_register(tegra->emc_clock, 535 &tegra->clk_rate_change_nb); 536 if (err) { 537 dev_err(tegra->devfreq->dev.parent, 538 "Failed to register rate change notifier\n"); 539 return err; 540 } 541 542 tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ; 543 544 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) 545 tegra_actmon_configure_device(tegra, &tegra->devices[i]); 546 547 /* 548 * We are estimating CPU's memory bandwidth requirement based on 549 * amount of memory accesses and system's load, judging by CPU's 550 * frequency. We also don't want to receive events about CPU's 551 * frequency transaction when governor is stopped, hence notifier 552 * is registered dynamically. 553 */ 554 err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb, 555 CPUFREQ_TRANSITION_NOTIFIER); 556 if (err) { 557 dev_err(tegra->devfreq->dev.parent, 558 "Failed to register rate change notifier: %d\n", err); 559 goto err_stop; 560 } 561 562 enable_irq(tegra->irq); 563 564 return 0; 565 566 err_stop: 567 tegra_actmon_stop_devices(tegra); 568 569 clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb); 570 571 return err; 572 } 573 574 static int tegra_actmon_start(struct tegra_devfreq *tegra) 575 { 576 int ret = 0; 577 578 if (!tegra->started) { 579 tegra->started = true; 580 581 ret = tegra_actmon_resume(tegra); 582 if (ret) 583 tegra->started = false; 584 } 585 586 return ret; 587 } 588 589 static void tegra_actmon_pause(struct tegra_devfreq *tegra) 590 { 591 if (!tegra->devfreq->profile->polling_ms || !tegra->started) 592 return; 593 594 disable_irq(tegra->irq); 595 596 cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb, 597 CPUFREQ_TRANSITION_NOTIFIER); 598 599 cancel_delayed_work_sync(&tegra->cpufreq_update_work); 600 601 tegra_actmon_stop_devices(tegra); 602 603 clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb); 604 } 605 606 static void tegra_actmon_stop(struct tegra_devfreq *tegra) 607 { 608 tegra_actmon_pause(tegra); 609 tegra->started = false; 610 } 611 612 static int tegra_devfreq_target(struct device *dev, unsigned long *freq, 613 u32 flags) 614 { 615 struct tegra_devfreq *tegra = dev_get_drvdata(dev); 616 struct devfreq *devfreq = tegra->devfreq; 617 struct dev_pm_opp *opp; 618 unsigned long rate; 619 int err; 620 621 opp = devfreq_recommended_opp(dev, freq, flags); 622 if (IS_ERR(opp)) { 623 dev_err(dev, "Failed to find opp for %lu Hz\n", *freq); 624 return PTR_ERR(opp); 625 } 626 rate = dev_pm_opp_get_freq(opp); 627 dev_pm_opp_put(opp); 628 629 err = clk_set_min_rate(tegra->emc_clock, rate * KHZ); 630 if (err) 631 return err; 632 633 err = clk_set_rate(tegra->emc_clock, 0); 634 if (err) 635 goto restore_min_rate; 636 637 return 0; 638 639 restore_min_rate: 640 clk_set_min_rate(tegra->emc_clock, devfreq->previous_freq); 641 642 return err; 643 } 644 645 static int tegra_devfreq_get_dev_status(struct device *dev, 646 struct devfreq_dev_status *stat) 647 { 648 struct tegra_devfreq *tegra = dev_get_drvdata(dev); 649 struct tegra_devfreq_device *actmon_dev; 650 unsigned long cur_freq; 651 652 cur_freq = READ_ONCE(tegra->cur_freq); 653 654 /* To be used by the tegra governor */ 655 stat->private_data = tegra; 656 657 /* The below are to be used by the other governors */ 658 stat->current_frequency = cur_freq; 659 660 actmon_dev = &tegra->devices[MCALL]; 661 662 /* Number of cycles spent on memory access */ 663 stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT); 664 665 /* The bus can be considered to be saturated way before 100% */ 666 stat->busy_time *= 100 / BUS_SATURATION_RATIO; 667 668 /* Number of cycles in a sampling period */ 669 stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq; 670 671 stat->busy_time = min(stat->busy_time, stat->total_time); 672 673 return 0; 674 } 675 676 static struct devfreq_dev_profile tegra_devfreq_profile = { 677 .polling_ms = ACTMON_SAMPLING_PERIOD, 678 .target = tegra_devfreq_target, 679 .get_dev_status = tegra_devfreq_get_dev_status, 680 }; 681 682 static int tegra_governor_get_target(struct devfreq *devfreq, 683 unsigned long *freq) 684 { 685 struct devfreq_dev_status *stat; 686 struct tegra_devfreq *tegra; 687 struct tegra_devfreq_device *dev; 688 unsigned long target_freq = 0; 689 unsigned int i; 690 int err; 691 692 err = devfreq_update_stats(devfreq); 693 if (err) 694 return err; 695 696 stat = &devfreq->last_status; 697 698 tegra = stat->private_data; 699 700 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { 701 dev = &tegra->devices[i]; 702 703 actmon_update_target(tegra, dev); 704 705 target_freq = max(target_freq, dev->target_freq); 706 } 707 708 *freq = target_freq; 709 710 return 0; 711 } 712 713 static int tegra_governor_event_handler(struct devfreq *devfreq, 714 unsigned int event, void *data) 715 { 716 struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent); 717 unsigned int *new_delay = data; 718 int ret = 0; 719 720 /* 721 * Couple devfreq-device with the governor early because it is 722 * needed at the moment of governor's start (used by ISR). 723 */ 724 tegra->devfreq = devfreq; 725 726 switch (event) { 727 case DEVFREQ_GOV_START: 728 devfreq_monitor_start(devfreq); 729 ret = tegra_actmon_start(tegra); 730 break; 731 732 case DEVFREQ_GOV_STOP: 733 tegra_actmon_stop(tegra); 734 devfreq_monitor_stop(devfreq); 735 break; 736 737 case DEVFREQ_GOV_UPDATE_INTERVAL: 738 /* 739 * ACTMON hardware supports up to 256 milliseconds for the 740 * sampling period. 741 */ 742 if (*new_delay > 256) { 743 ret = -EINVAL; 744 break; 745 } 746 747 tegra_actmon_pause(tegra); 748 devfreq_update_interval(devfreq, new_delay); 749 ret = tegra_actmon_resume(tegra); 750 break; 751 752 case DEVFREQ_GOV_SUSPEND: 753 tegra_actmon_stop(tegra); 754 devfreq_monitor_suspend(devfreq); 755 break; 756 757 case DEVFREQ_GOV_RESUME: 758 devfreq_monitor_resume(devfreq); 759 ret = tegra_actmon_start(tegra); 760 break; 761 } 762 763 return ret; 764 } 765 766 static struct devfreq_governor tegra_devfreq_governor = { 767 .name = "tegra_actmon", 768 .get_target_freq = tegra_governor_get_target, 769 .event_handler = tegra_governor_event_handler, 770 .immutable = true, 771 .interrupt_driven = true, 772 }; 773 774 static int tegra_devfreq_probe(struct platform_device *pdev) 775 { 776 struct tegra_devfreq_device *dev; 777 struct tegra_devfreq *tegra; 778 struct devfreq *devfreq; 779 unsigned int i; 780 long rate; 781 int err; 782 783 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 784 if (!tegra) 785 return -ENOMEM; 786 787 tegra->regs = devm_platform_ioremap_resource(pdev, 0); 788 if (IS_ERR(tegra->regs)) 789 return PTR_ERR(tegra->regs); 790 791 tegra->reset = devm_reset_control_get(&pdev->dev, "actmon"); 792 if (IS_ERR(tegra->reset)) { 793 dev_err(&pdev->dev, "Failed to get reset\n"); 794 return PTR_ERR(tegra->reset); 795 } 796 797 tegra->clock = devm_clk_get(&pdev->dev, "actmon"); 798 if (IS_ERR(tegra->clock)) { 799 dev_err(&pdev->dev, "Failed to get actmon clock\n"); 800 return PTR_ERR(tegra->clock); 801 } 802 803 tegra->emc_clock = devm_clk_get(&pdev->dev, "emc"); 804 if (IS_ERR(tegra->emc_clock)) { 805 dev_err(&pdev->dev, "Failed to get emc clock\n"); 806 return PTR_ERR(tegra->emc_clock); 807 } 808 809 err = platform_get_irq(pdev, 0); 810 if (err < 0) { 811 dev_err(&pdev->dev, "Failed to get IRQ: %d\n", err); 812 return err; 813 } 814 tegra->irq = err; 815 816 irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN); 817 818 err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL, 819 actmon_thread_isr, IRQF_ONESHOT, 820 "tegra-devfreq", tegra); 821 if (err) { 822 dev_err(&pdev->dev, "Interrupt request failed: %d\n", err); 823 return err; 824 } 825 826 reset_control_assert(tegra->reset); 827 828 err = clk_prepare_enable(tegra->clock); 829 if (err) { 830 dev_err(&pdev->dev, 831 "Failed to prepare and enable ACTMON clock\n"); 832 return err; 833 } 834 835 reset_control_deassert(tegra->reset); 836 837 rate = clk_round_rate(tegra->emc_clock, ULONG_MAX); 838 if (rate < 0) { 839 dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate); 840 return rate; 841 } 842 843 tegra->max_freq = rate / KHZ; 844 845 for (i = 0; i < ARRAY_SIZE(actmon_device_configs); i++) { 846 dev = tegra->devices + i; 847 dev->config = actmon_device_configs + i; 848 dev->regs = tegra->regs + dev->config->offset; 849 } 850 851 for (rate = 0; rate <= tegra->max_freq * KHZ; rate++) { 852 rate = clk_round_rate(tegra->emc_clock, rate); 853 854 if (rate < 0) { 855 dev_err(&pdev->dev, 856 "Failed to round clock rate: %ld\n", rate); 857 err = rate; 858 goto remove_opps; 859 } 860 861 err = dev_pm_opp_add(&pdev->dev, rate / KHZ, 0); 862 if (err) { 863 dev_err(&pdev->dev, "Failed to add OPP: %d\n", err); 864 goto remove_opps; 865 } 866 } 867 868 platform_set_drvdata(pdev, tegra); 869 870 tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb; 871 tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb; 872 873 INIT_DELAYED_WORK(&tegra->cpufreq_update_work, 874 tegra_actmon_delayed_update); 875 876 err = devfreq_add_governor(&tegra_devfreq_governor); 877 if (err) { 878 dev_err(&pdev->dev, "Failed to add governor: %d\n", err); 879 goto remove_opps; 880 } 881 882 tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock); 883 tegra_devfreq_profile.initial_freq /= KHZ; 884 885 devfreq = devfreq_add_device(&pdev->dev, &tegra_devfreq_profile, 886 "tegra_actmon", NULL); 887 if (IS_ERR(devfreq)) { 888 err = PTR_ERR(devfreq); 889 goto remove_governor; 890 } 891 892 return 0; 893 894 remove_governor: 895 devfreq_remove_governor(&tegra_devfreq_governor); 896 897 remove_opps: 898 dev_pm_opp_remove_all_dynamic(&pdev->dev); 899 900 reset_control_reset(tegra->reset); 901 clk_disable_unprepare(tegra->clock); 902 903 return err; 904 } 905 906 static int tegra_devfreq_remove(struct platform_device *pdev) 907 { 908 struct tegra_devfreq *tegra = platform_get_drvdata(pdev); 909 910 devfreq_remove_device(tegra->devfreq); 911 devfreq_remove_governor(&tegra_devfreq_governor); 912 913 dev_pm_opp_remove_all_dynamic(&pdev->dev); 914 915 reset_control_reset(tegra->reset); 916 clk_disable_unprepare(tegra->clock); 917 918 return 0; 919 } 920 921 static const struct of_device_id tegra_devfreq_of_match[] = { 922 { .compatible = "nvidia,tegra30-actmon" }, 923 { .compatible = "nvidia,tegra124-actmon" }, 924 { }, 925 }; 926 927 MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match); 928 929 static struct platform_driver tegra_devfreq_driver = { 930 .probe = tegra_devfreq_probe, 931 .remove = tegra_devfreq_remove, 932 .driver = { 933 .name = "tegra-devfreq", 934 .of_match_table = tegra_devfreq_of_match, 935 }, 936 }; 937 module_platform_driver(tegra_devfreq_driver); 938 939 MODULE_LICENSE("GPL v2"); 940 MODULE_DESCRIPTION("Tegra devfreq driver"); 941 MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>"); 942