xref: /openbmc/linux/drivers/dax/super.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2017 Intel Corporation. All rights reserved.
4  */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/genhd.h>
11 #include <linux/pfn_t.h>
12 #include <linux/cdev.h>
13 #include <linux/hash.h>
14 #include <linux/slab.h>
15 #include <linux/uio.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include "dax-private.h"
19 
20 /**
21  * struct dax_device - anchor object for dax services
22  * @inode: core vfs
23  * @cdev: optional character interface for "device dax"
24  * @host: optional name for lookups where the device path is not available
25  * @private: dax driver private data
26  * @flags: state and boolean properties
27  */
28 struct dax_device {
29 	struct hlist_node list;
30 	struct inode inode;
31 	struct cdev cdev;
32 	const char *host;
33 	void *private;
34 	unsigned long flags;
35 	const struct dax_operations *ops;
36 };
37 
38 static dev_t dax_devt;
39 DEFINE_STATIC_SRCU(dax_srcu);
40 static struct vfsmount *dax_mnt;
41 static DEFINE_IDA(dax_minor_ida);
42 static struct kmem_cache *dax_cache __read_mostly;
43 static struct super_block *dax_superblock __read_mostly;
44 
45 #define DAX_HASH_SIZE (PAGE_SIZE / sizeof(struct hlist_head))
46 static struct hlist_head dax_host_list[DAX_HASH_SIZE];
47 static DEFINE_SPINLOCK(dax_host_lock);
48 
49 int dax_read_lock(void)
50 {
51 	return srcu_read_lock(&dax_srcu);
52 }
53 EXPORT_SYMBOL_GPL(dax_read_lock);
54 
55 void dax_read_unlock(int id)
56 {
57 	srcu_read_unlock(&dax_srcu, id);
58 }
59 EXPORT_SYMBOL_GPL(dax_read_unlock);
60 
61 static int dax_host_hash(const char *host)
62 {
63 	return hashlen_hash(hashlen_string("DAX", host)) % DAX_HASH_SIZE;
64 }
65 
66 #ifdef CONFIG_BLOCK
67 #include <linux/blkdev.h>
68 
69 int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
70 		pgoff_t *pgoff)
71 {
72 	sector_t start_sect = bdev ? get_start_sect(bdev) : 0;
73 	phys_addr_t phys_off = (start_sect + sector) * 512;
74 
75 	if (pgoff)
76 		*pgoff = PHYS_PFN(phys_off);
77 	if (phys_off % PAGE_SIZE || size % PAGE_SIZE)
78 		return -EINVAL;
79 	return 0;
80 }
81 EXPORT_SYMBOL(bdev_dax_pgoff);
82 
83 #if IS_ENABLED(CONFIG_FS_DAX)
84 /**
85  * dax_get_by_host() - temporary lookup mechanism for filesystem-dax
86  * @host: alternate name for the device registered by a dax driver
87  */
88 static struct dax_device *dax_get_by_host(const char *host)
89 {
90 	struct dax_device *dax_dev, *found = NULL;
91 	int hash, id;
92 
93 	if (!host)
94 		return NULL;
95 
96 	hash = dax_host_hash(host);
97 
98 	id = dax_read_lock();
99 	spin_lock(&dax_host_lock);
100 	hlist_for_each_entry(dax_dev, &dax_host_list[hash], list) {
101 		if (!dax_alive(dax_dev)
102 				|| strcmp(host, dax_dev->host) != 0)
103 			continue;
104 
105 		if (igrab(&dax_dev->inode))
106 			found = dax_dev;
107 		break;
108 	}
109 	spin_unlock(&dax_host_lock);
110 	dax_read_unlock(id);
111 
112 	return found;
113 }
114 
115 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev)
116 {
117 	if (!blk_queue_dax(bdev->bd_disk->queue))
118 		return NULL;
119 	return dax_get_by_host(bdev->bd_disk->disk_name);
120 }
121 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
122 
123 bool generic_fsdax_supported(struct dax_device *dax_dev,
124 		struct block_device *bdev, int blocksize, sector_t start,
125 		sector_t sectors)
126 {
127 	bool dax_enabled = false;
128 	pgoff_t pgoff, pgoff_end;
129 	void *kaddr, *end_kaddr;
130 	pfn_t pfn, end_pfn;
131 	sector_t last_page;
132 	long len, len2;
133 	int err, id;
134 
135 	if (blocksize != PAGE_SIZE) {
136 		pr_info("%pg: error: unsupported blocksize for dax\n", bdev);
137 		return false;
138 	}
139 
140 	if (!dax_dev) {
141 		pr_debug("%pg: error: dax unsupported by block device\n", bdev);
142 		return false;
143 	}
144 
145 	err = bdev_dax_pgoff(bdev, start, PAGE_SIZE, &pgoff);
146 	if (err) {
147 		pr_info("%pg: error: unaligned partition for dax\n", bdev);
148 		return false;
149 	}
150 
151 	last_page = PFN_DOWN((start + sectors - 1) * 512) * PAGE_SIZE / 512;
152 	err = bdev_dax_pgoff(bdev, last_page, PAGE_SIZE, &pgoff_end);
153 	if (err) {
154 		pr_info("%pg: error: unaligned partition for dax\n", bdev);
155 		return false;
156 	}
157 
158 	id = dax_read_lock();
159 	len = dax_direct_access(dax_dev, pgoff, 1, &kaddr, &pfn);
160 	len2 = dax_direct_access(dax_dev, pgoff_end, 1, &end_kaddr, &end_pfn);
161 
162 	if (len < 1 || len2 < 1) {
163 		pr_info("%pg: error: dax access failed (%ld)\n",
164 				bdev, len < 1 ? len : len2);
165 		dax_read_unlock(id);
166 		return false;
167 	}
168 
169 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED) && pfn_t_special(pfn)) {
170 		/*
171 		 * An arch that has enabled the pmem api should also
172 		 * have its drivers support pfn_t_devmap()
173 		 *
174 		 * This is a developer warning and should not trigger in
175 		 * production. dax_flush() will crash since it depends
176 		 * on being able to do (page_address(pfn_to_page())).
177 		 */
178 		WARN_ON(IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API));
179 		dax_enabled = true;
180 	} else if (pfn_t_devmap(pfn) && pfn_t_devmap(end_pfn)) {
181 		struct dev_pagemap *pgmap, *end_pgmap;
182 
183 		pgmap = get_dev_pagemap(pfn_t_to_pfn(pfn), NULL);
184 		end_pgmap = get_dev_pagemap(pfn_t_to_pfn(end_pfn), NULL);
185 		if (pgmap && pgmap == end_pgmap && pgmap->type == MEMORY_DEVICE_FS_DAX
186 				&& pfn_t_to_page(pfn)->pgmap == pgmap
187 				&& pfn_t_to_page(end_pfn)->pgmap == pgmap
188 				&& pfn_t_to_pfn(pfn) == PHYS_PFN(__pa(kaddr))
189 				&& pfn_t_to_pfn(end_pfn) == PHYS_PFN(__pa(end_kaddr)))
190 			dax_enabled = true;
191 		put_dev_pagemap(pgmap);
192 		put_dev_pagemap(end_pgmap);
193 
194 	}
195 	dax_read_unlock(id);
196 
197 	if (!dax_enabled) {
198 		pr_info("%pg: error: dax support not enabled\n", bdev);
199 		return false;
200 	}
201 	return true;
202 }
203 EXPORT_SYMBOL_GPL(generic_fsdax_supported);
204 
205 bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
206 		int blocksize, sector_t start, sector_t len)
207 {
208 	bool ret = false;
209 	int id;
210 
211 	if (!dax_dev)
212 		return false;
213 
214 	id = dax_read_lock();
215 	if (dax_alive(dax_dev) && dax_dev->ops->dax_supported)
216 		ret = dax_dev->ops->dax_supported(dax_dev, bdev, blocksize,
217 						  start, len);
218 	dax_read_unlock(id);
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(dax_supported);
222 #endif /* CONFIG_FS_DAX */
223 #endif /* CONFIG_BLOCK */
224 
225 enum dax_device_flags {
226 	/* !alive + rcu grace period == no new operations / mappings */
227 	DAXDEV_ALIVE,
228 	/* gate whether dax_flush() calls the low level flush routine */
229 	DAXDEV_WRITE_CACHE,
230 	/* flag to check if device supports synchronous flush */
231 	DAXDEV_SYNC,
232 };
233 
234 /**
235  * dax_direct_access() - translate a device pgoff to an absolute pfn
236  * @dax_dev: a dax_device instance representing the logical memory range
237  * @pgoff: offset in pages from the start of the device to translate
238  * @nr_pages: number of consecutive pages caller can handle relative to @pfn
239  * @kaddr: output parameter that returns a virtual address mapping of pfn
240  * @pfn: output parameter that returns an absolute pfn translation of @pgoff
241  *
242  * Return: negative errno if an error occurs, otherwise the number of
243  * pages accessible at the device relative @pgoff.
244  */
245 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
246 		void **kaddr, pfn_t *pfn)
247 {
248 	long avail;
249 
250 	if (!dax_dev)
251 		return -EOPNOTSUPP;
252 
253 	if (!dax_alive(dax_dev))
254 		return -ENXIO;
255 
256 	if (nr_pages < 0)
257 		return -EINVAL;
258 
259 	avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
260 			kaddr, pfn);
261 	if (!avail)
262 		return -ERANGE;
263 	return min(avail, nr_pages);
264 }
265 EXPORT_SYMBOL_GPL(dax_direct_access);
266 
267 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
268 		size_t bytes, struct iov_iter *i)
269 {
270 	if (!dax_alive(dax_dev))
271 		return 0;
272 
273 	return dax_dev->ops->copy_from_iter(dax_dev, pgoff, addr, bytes, i);
274 }
275 EXPORT_SYMBOL_GPL(dax_copy_from_iter);
276 
277 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
278 		size_t bytes, struct iov_iter *i)
279 {
280 	if (!dax_alive(dax_dev))
281 		return 0;
282 
283 	return dax_dev->ops->copy_to_iter(dax_dev, pgoff, addr, bytes, i);
284 }
285 EXPORT_SYMBOL_GPL(dax_copy_to_iter);
286 
287 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288 			size_t nr_pages)
289 {
290 	if (!dax_alive(dax_dev))
291 		return -ENXIO;
292 	/*
293 	 * There are no callers that want to zero more than one page as of now.
294 	 * Once users are there, this check can be removed after the
295 	 * device mapper code has been updated to split ranges across targets.
296 	 */
297 	if (nr_pages != 1)
298 		return -EIO;
299 
300 	return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
301 }
302 EXPORT_SYMBOL_GPL(dax_zero_page_range);
303 
304 #ifdef CONFIG_ARCH_HAS_PMEM_API
305 void arch_wb_cache_pmem(void *addr, size_t size);
306 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
307 {
308 	if (unlikely(!dax_write_cache_enabled(dax_dev)))
309 		return;
310 
311 	arch_wb_cache_pmem(addr, size);
312 }
313 #else
314 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
315 {
316 }
317 #endif
318 EXPORT_SYMBOL_GPL(dax_flush);
319 
320 void dax_write_cache(struct dax_device *dax_dev, bool wc)
321 {
322 	if (wc)
323 		set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
324 	else
325 		clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
326 }
327 EXPORT_SYMBOL_GPL(dax_write_cache);
328 
329 bool dax_write_cache_enabled(struct dax_device *dax_dev)
330 {
331 	return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
332 }
333 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
334 
335 bool __dax_synchronous(struct dax_device *dax_dev)
336 {
337 	return test_bit(DAXDEV_SYNC, &dax_dev->flags);
338 }
339 EXPORT_SYMBOL_GPL(__dax_synchronous);
340 
341 void __set_dax_synchronous(struct dax_device *dax_dev)
342 {
343 	set_bit(DAXDEV_SYNC, &dax_dev->flags);
344 }
345 EXPORT_SYMBOL_GPL(__set_dax_synchronous);
346 
347 bool dax_alive(struct dax_device *dax_dev)
348 {
349 	lockdep_assert_held(&dax_srcu);
350 	return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
351 }
352 EXPORT_SYMBOL_GPL(dax_alive);
353 
354 /*
355  * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
356  * that any fault handlers or operations that might have seen
357  * dax_alive(), have completed.  Any operations that start after
358  * synchronize_srcu() has run will abort upon seeing !dax_alive().
359  */
360 void kill_dax(struct dax_device *dax_dev)
361 {
362 	if (!dax_dev)
363 		return;
364 
365 	clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
366 
367 	synchronize_srcu(&dax_srcu);
368 
369 	spin_lock(&dax_host_lock);
370 	hlist_del_init(&dax_dev->list);
371 	spin_unlock(&dax_host_lock);
372 }
373 EXPORT_SYMBOL_GPL(kill_dax);
374 
375 void run_dax(struct dax_device *dax_dev)
376 {
377 	set_bit(DAXDEV_ALIVE, &dax_dev->flags);
378 }
379 EXPORT_SYMBOL_GPL(run_dax);
380 
381 static struct inode *dax_alloc_inode(struct super_block *sb)
382 {
383 	struct dax_device *dax_dev;
384 	struct inode *inode;
385 
386 	dax_dev = kmem_cache_alloc(dax_cache, GFP_KERNEL);
387 	if (!dax_dev)
388 		return NULL;
389 
390 	inode = &dax_dev->inode;
391 	inode->i_rdev = 0;
392 	return inode;
393 }
394 
395 static struct dax_device *to_dax_dev(struct inode *inode)
396 {
397 	return container_of(inode, struct dax_device, inode);
398 }
399 
400 static void dax_free_inode(struct inode *inode)
401 {
402 	struct dax_device *dax_dev = to_dax_dev(inode);
403 	kfree(dax_dev->host);
404 	dax_dev->host = NULL;
405 	if (inode->i_rdev)
406 		ida_simple_remove(&dax_minor_ida, iminor(inode));
407 	kmem_cache_free(dax_cache, dax_dev);
408 }
409 
410 static void dax_destroy_inode(struct inode *inode)
411 {
412 	struct dax_device *dax_dev = to_dax_dev(inode);
413 	WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
414 			"kill_dax() must be called before final iput()\n");
415 }
416 
417 static const struct super_operations dax_sops = {
418 	.statfs = simple_statfs,
419 	.alloc_inode = dax_alloc_inode,
420 	.destroy_inode = dax_destroy_inode,
421 	.free_inode = dax_free_inode,
422 	.drop_inode = generic_delete_inode,
423 };
424 
425 static int dax_init_fs_context(struct fs_context *fc)
426 {
427 	struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
428 	if (!ctx)
429 		return -ENOMEM;
430 	ctx->ops = &dax_sops;
431 	return 0;
432 }
433 
434 static struct file_system_type dax_fs_type = {
435 	.name		= "dax",
436 	.init_fs_context = dax_init_fs_context,
437 	.kill_sb	= kill_anon_super,
438 };
439 
440 static int dax_test(struct inode *inode, void *data)
441 {
442 	dev_t devt = *(dev_t *) data;
443 
444 	return inode->i_rdev == devt;
445 }
446 
447 static int dax_set(struct inode *inode, void *data)
448 {
449 	dev_t devt = *(dev_t *) data;
450 
451 	inode->i_rdev = devt;
452 	return 0;
453 }
454 
455 static struct dax_device *dax_dev_get(dev_t devt)
456 {
457 	struct dax_device *dax_dev;
458 	struct inode *inode;
459 
460 	inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
461 			dax_test, dax_set, &devt);
462 
463 	if (!inode)
464 		return NULL;
465 
466 	dax_dev = to_dax_dev(inode);
467 	if (inode->i_state & I_NEW) {
468 		set_bit(DAXDEV_ALIVE, &dax_dev->flags);
469 		inode->i_cdev = &dax_dev->cdev;
470 		inode->i_mode = S_IFCHR;
471 		inode->i_flags = S_DAX;
472 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
473 		unlock_new_inode(inode);
474 	}
475 
476 	return dax_dev;
477 }
478 
479 static void dax_add_host(struct dax_device *dax_dev, const char *host)
480 {
481 	int hash;
482 
483 	/*
484 	 * Unconditionally init dax_dev since it's coming from a
485 	 * non-zeroed slab cache
486 	 */
487 	INIT_HLIST_NODE(&dax_dev->list);
488 	dax_dev->host = host;
489 	if (!host)
490 		return;
491 
492 	hash = dax_host_hash(host);
493 	spin_lock(&dax_host_lock);
494 	hlist_add_head(&dax_dev->list, &dax_host_list[hash]);
495 	spin_unlock(&dax_host_lock);
496 }
497 
498 struct dax_device *alloc_dax(void *private, const char *__host,
499 		const struct dax_operations *ops, unsigned long flags)
500 {
501 	struct dax_device *dax_dev;
502 	const char *host;
503 	dev_t devt;
504 	int minor;
505 
506 	if (ops && !ops->zero_page_range) {
507 		pr_debug("%s: error: device does not provide dax"
508 			 " operation zero_page_range()\n",
509 			 __host ? __host : "Unknown");
510 		return ERR_PTR(-EINVAL);
511 	}
512 
513 	host = kstrdup(__host, GFP_KERNEL);
514 	if (__host && !host)
515 		return ERR_PTR(-ENOMEM);
516 
517 	minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL);
518 	if (minor < 0)
519 		goto err_minor;
520 
521 	devt = MKDEV(MAJOR(dax_devt), minor);
522 	dax_dev = dax_dev_get(devt);
523 	if (!dax_dev)
524 		goto err_dev;
525 
526 	dax_add_host(dax_dev, host);
527 	dax_dev->ops = ops;
528 	dax_dev->private = private;
529 	if (flags & DAXDEV_F_SYNC)
530 		set_dax_synchronous(dax_dev);
531 
532 	return dax_dev;
533 
534  err_dev:
535 	ida_simple_remove(&dax_minor_ida, minor);
536  err_minor:
537 	kfree(host);
538 	return ERR_PTR(-ENOMEM);
539 }
540 EXPORT_SYMBOL_GPL(alloc_dax);
541 
542 void put_dax(struct dax_device *dax_dev)
543 {
544 	if (!dax_dev)
545 		return;
546 	iput(&dax_dev->inode);
547 }
548 EXPORT_SYMBOL_GPL(put_dax);
549 
550 /**
551  * inode_dax: convert a public inode into its dax_dev
552  * @inode: An inode with i_cdev pointing to a dax_dev
553  *
554  * Note this is not equivalent to to_dax_dev() which is for private
555  * internal use where we know the inode filesystem type == dax_fs_type.
556  */
557 struct dax_device *inode_dax(struct inode *inode)
558 {
559 	struct cdev *cdev = inode->i_cdev;
560 
561 	return container_of(cdev, struct dax_device, cdev);
562 }
563 EXPORT_SYMBOL_GPL(inode_dax);
564 
565 struct inode *dax_inode(struct dax_device *dax_dev)
566 {
567 	return &dax_dev->inode;
568 }
569 EXPORT_SYMBOL_GPL(dax_inode);
570 
571 void *dax_get_private(struct dax_device *dax_dev)
572 {
573 	if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
574 		return NULL;
575 	return dax_dev->private;
576 }
577 EXPORT_SYMBOL_GPL(dax_get_private);
578 
579 static void init_once(void *_dax_dev)
580 {
581 	struct dax_device *dax_dev = _dax_dev;
582 	struct inode *inode = &dax_dev->inode;
583 
584 	memset(dax_dev, 0, sizeof(*dax_dev));
585 	inode_init_once(inode);
586 }
587 
588 static int dax_fs_init(void)
589 {
590 	int rc;
591 
592 	dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
593 			(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
594 			 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
595 			init_once);
596 	if (!dax_cache)
597 		return -ENOMEM;
598 
599 	dax_mnt = kern_mount(&dax_fs_type);
600 	if (IS_ERR(dax_mnt)) {
601 		rc = PTR_ERR(dax_mnt);
602 		goto err_mount;
603 	}
604 	dax_superblock = dax_mnt->mnt_sb;
605 
606 	return 0;
607 
608  err_mount:
609 	kmem_cache_destroy(dax_cache);
610 
611 	return rc;
612 }
613 
614 static void dax_fs_exit(void)
615 {
616 	kern_unmount(dax_mnt);
617 	kmem_cache_destroy(dax_cache);
618 }
619 
620 static int __init dax_core_init(void)
621 {
622 	int rc;
623 
624 	rc = dax_fs_init();
625 	if (rc)
626 		return rc;
627 
628 	rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
629 	if (rc)
630 		goto err_chrdev;
631 
632 	rc = dax_bus_init();
633 	if (rc)
634 		goto err_bus;
635 	return 0;
636 
637 err_bus:
638 	unregister_chrdev_region(dax_devt, MINORMASK+1);
639 err_chrdev:
640 	dax_fs_exit();
641 	return 0;
642 }
643 
644 static void __exit dax_core_exit(void)
645 {
646 	dax_bus_exit();
647 	unregister_chrdev_region(dax_devt, MINORMASK+1);
648 	ida_destroy(&dax_minor_ida);
649 	dax_fs_exit();
650 }
651 
652 MODULE_AUTHOR("Intel Corporation");
653 MODULE_LICENSE("GPL v2");
654 subsys_initcall(dax_core_init);
655 module_exit(dax_core_exit);
656