xref: /openbmc/linux/drivers/dax/super.c (revision a9d85efb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2017 Intel Corporation. All rights reserved.
4  */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/genhd.h>
11 #include <linux/pfn_t.h>
12 #include <linux/cdev.h>
13 #include <linux/hash.h>
14 #include <linux/slab.h>
15 #include <linux/uio.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include "dax-private.h"
19 
20 /**
21  * struct dax_device - anchor object for dax services
22  * @inode: core vfs
23  * @cdev: optional character interface for "device dax"
24  * @host: optional name for lookups where the device path is not available
25  * @private: dax driver private data
26  * @flags: state and boolean properties
27  */
28 struct dax_device {
29 	struct hlist_node list;
30 	struct inode inode;
31 	struct cdev cdev;
32 	const char *host;
33 	void *private;
34 	unsigned long flags;
35 	const struct dax_operations *ops;
36 };
37 
38 static dev_t dax_devt;
39 DEFINE_STATIC_SRCU(dax_srcu);
40 static struct vfsmount *dax_mnt;
41 static DEFINE_IDA(dax_minor_ida);
42 static struct kmem_cache *dax_cache __read_mostly;
43 static struct super_block *dax_superblock __read_mostly;
44 
45 #define DAX_HASH_SIZE (PAGE_SIZE / sizeof(struct hlist_head))
46 static struct hlist_head dax_host_list[DAX_HASH_SIZE];
47 static DEFINE_SPINLOCK(dax_host_lock);
48 
49 int dax_read_lock(void)
50 {
51 	return srcu_read_lock(&dax_srcu);
52 }
53 EXPORT_SYMBOL_GPL(dax_read_lock);
54 
55 void dax_read_unlock(int id)
56 {
57 	srcu_read_unlock(&dax_srcu, id);
58 }
59 EXPORT_SYMBOL_GPL(dax_read_unlock);
60 
61 static int dax_host_hash(const char *host)
62 {
63 	return hashlen_hash(hashlen_string("DAX", host)) % DAX_HASH_SIZE;
64 }
65 
66 /**
67  * dax_get_by_host() - temporary lookup mechanism for filesystem-dax
68  * @host: alternate name for the device registered by a dax driver
69  */
70 static struct dax_device *dax_get_by_host(const char *host)
71 {
72 	struct dax_device *dax_dev, *found = NULL;
73 	int hash, id;
74 
75 	if (!host)
76 		return NULL;
77 
78 	hash = dax_host_hash(host);
79 
80 	id = dax_read_lock();
81 	spin_lock(&dax_host_lock);
82 	hlist_for_each_entry(dax_dev, &dax_host_list[hash], list) {
83 		if (!dax_alive(dax_dev)
84 				|| strcmp(host, dax_dev->host) != 0)
85 			continue;
86 
87 		if (igrab(&dax_dev->inode))
88 			found = dax_dev;
89 		break;
90 	}
91 	spin_unlock(&dax_host_lock);
92 	dax_read_unlock(id);
93 
94 	return found;
95 }
96 
97 #ifdef CONFIG_BLOCK
98 #include <linux/blkdev.h>
99 
100 int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
101 		pgoff_t *pgoff)
102 {
103 	sector_t start_sect = bdev ? get_start_sect(bdev) : 0;
104 	phys_addr_t phys_off = (start_sect + sector) * 512;
105 
106 	if (pgoff)
107 		*pgoff = PHYS_PFN(phys_off);
108 	if (phys_off % PAGE_SIZE || size % PAGE_SIZE)
109 		return -EINVAL;
110 	return 0;
111 }
112 EXPORT_SYMBOL(bdev_dax_pgoff);
113 
114 #if IS_ENABLED(CONFIG_FS_DAX)
115 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev)
116 {
117 	if (!blk_queue_dax(bdev->bd_disk->queue))
118 		return NULL;
119 	return dax_get_by_host(bdev->bd_disk->disk_name);
120 }
121 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
122 
123 bool generic_fsdax_supported(struct dax_device *dax_dev,
124 		struct block_device *bdev, int blocksize, sector_t start,
125 		sector_t sectors)
126 {
127 	bool dax_enabled = false;
128 	pgoff_t pgoff, pgoff_end;
129 	void *kaddr, *end_kaddr;
130 	pfn_t pfn, end_pfn;
131 	sector_t last_page;
132 	long len, len2;
133 	int err, id;
134 
135 	if (blocksize != PAGE_SIZE) {
136 		pr_info("%pg: error: unsupported blocksize for dax\n", bdev);
137 		return false;
138 	}
139 
140 	if (!dax_dev) {
141 		pr_debug("%pg: error: dax unsupported by block device\n", bdev);
142 		return false;
143 	}
144 
145 	err = bdev_dax_pgoff(bdev, start, PAGE_SIZE, &pgoff);
146 	if (err) {
147 		pr_info("%pg: error: unaligned partition for dax\n", bdev);
148 		return false;
149 	}
150 
151 	last_page = PFN_DOWN((start + sectors - 1) * 512) * PAGE_SIZE / 512;
152 	err = bdev_dax_pgoff(bdev, last_page, PAGE_SIZE, &pgoff_end);
153 	if (err) {
154 		pr_info("%pg: error: unaligned partition for dax\n", bdev);
155 		return false;
156 	}
157 
158 	id = dax_read_lock();
159 	len = dax_direct_access(dax_dev, pgoff, 1, &kaddr, &pfn);
160 	len2 = dax_direct_access(dax_dev, pgoff_end, 1, &end_kaddr, &end_pfn);
161 
162 	if (len < 1 || len2 < 1) {
163 		pr_info("%pg: error: dax access failed (%ld)\n",
164 				bdev, len < 1 ? len : len2);
165 		dax_read_unlock(id);
166 		return false;
167 	}
168 
169 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED) && pfn_t_special(pfn)) {
170 		/*
171 		 * An arch that has enabled the pmem api should also
172 		 * have its drivers support pfn_t_devmap()
173 		 *
174 		 * This is a developer warning and should not trigger in
175 		 * production. dax_flush() will crash since it depends
176 		 * on being able to do (page_address(pfn_to_page())).
177 		 */
178 		WARN_ON(IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API));
179 		dax_enabled = true;
180 	} else if (pfn_t_devmap(pfn) && pfn_t_devmap(end_pfn)) {
181 		struct dev_pagemap *pgmap, *end_pgmap;
182 
183 		pgmap = get_dev_pagemap(pfn_t_to_pfn(pfn), NULL);
184 		end_pgmap = get_dev_pagemap(pfn_t_to_pfn(end_pfn), NULL);
185 		if (pgmap && pgmap == end_pgmap && pgmap->type == MEMORY_DEVICE_FS_DAX
186 				&& pfn_t_to_page(pfn)->pgmap == pgmap
187 				&& pfn_t_to_page(end_pfn)->pgmap == pgmap
188 				&& pfn_t_to_pfn(pfn) == PHYS_PFN(__pa(kaddr))
189 				&& pfn_t_to_pfn(end_pfn) == PHYS_PFN(__pa(end_kaddr)))
190 			dax_enabled = true;
191 		put_dev_pagemap(pgmap);
192 		put_dev_pagemap(end_pgmap);
193 
194 	}
195 	dax_read_unlock(id);
196 
197 	if (!dax_enabled) {
198 		pr_info("%pg: error: dax support not enabled\n", bdev);
199 		return false;
200 	}
201 	return true;
202 }
203 EXPORT_SYMBOL_GPL(generic_fsdax_supported);
204 
205 bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
206 		int blocksize, sector_t start, sector_t len)
207 {
208 	bool ret = false;
209 	int id;
210 
211 	if (!dax_dev)
212 		return false;
213 
214 	id = dax_read_lock();
215 	if (dax_alive(dax_dev) && dax_dev->ops->dax_supported)
216 		ret = dax_dev->ops->dax_supported(dax_dev, bdev, blocksize,
217 						  start, len);
218 	dax_read_unlock(id);
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(dax_supported);
222 #endif /* CONFIG_FS_DAX */
223 #endif /* CONFIG_BLOCK */
224 
225 enum dax_device_flags {
226 	/* !alive + rcu grace period == no new operations / mappings */
227 	DAXDEV_ALIVE,
228 	/* gate whether dax_flush() calls the low level flush routine */
229 	DAXDEV_WRITE_CACHE,
230 	/* flag to check if device supports synchronous flush */
231 	DAXDEV_SYNC,
232 };
233 
234 static ssize_t write_cache_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
238 	ssize_t rc;
239 
240 	WARN_ON_ONCE(!dax_dev);
241 	if (!dax_dev)
242 		return -ENXIO;
243 
244 	rc = sprintf(buf, "%d\n", !!dax_write_cache_enabled(dax_dev));
245 	put_dax(dax_dev);
246 	return rc;
247 }
248 
249 static ssize_t write_cache_store(struct device *dev,
250 		struct device_attribute *attr, const char *buf, size_t len)
251 {
252 	bool write_cache;
253 	int rc = strtobool(buf, &write_cache);
254 	struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
255 
256 	WARN_ON_ONCE(!dax_dev);
257 	if (!dax_dev)
258 		return -ENXIO;
259 
260 	if (rc)
261 		len = rc;
262 	else
263 		dax_write_cache(dax_dev, write_cache);
264 
265 	put_dax(dax_dev);
266 	return len;
267 }
268 static DEVICE_ATTR_RW(write_cache);
269 
270 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
271 {
272 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
273 	struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
274 
275 	WARN_ON_ONCE(!dax_dev);
276 	if (!dax_dev)
277 		return 0;
278 
279 #ifndef CONFIG_ARCH_HAS_PMEM_API
280 	if (a == &dev_attr_write_cache.attr)
281 		return 0;
282 #endif
283 	return a->mode;
284 }
285 
286 static struct attribute *dax_attributes[] = {
287 	&dev_attr_write_cache.attr,
288 	NULL,
289 };
290 
291 struct attribute_group dax_attribute_group = {
292 	.name = "dax",
293 	.attrs = dax_attributes,
294 	.is_visible = dax_visible,
295 };
296 EXPORT_SYMBOL_GPL(dax_attribute_group);
297 
298 /**
299  * dax_direct_access() - translate a device pgoff to an absolute pfn
300  * @dax_dev: a dax_device instance representing the logical memory range
301  * @pgoff: offset in pages from the start of the device to translate
302  * @nr_pages: number of consecutive pages caller can handle relative to @pfn
303  * @kaddr: output parameter that returns a virtual address mapping of pfn
304  * @pfn: output parameter that returns an absolute pfn translation of @pgoff
305  *
306  * Return: negative errno if an error occurs, otherwise the number of
307  * pages accessible at the device relative @pgoff.
308  */
309 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
310 		void **kaddr, pfn_t *pfn)
311 {
312 	long avail;
313 
314 	if (!dax_dev)
315 		return -EOPNOTSUPP;
316 
317 	if (!dax_alive(dax_dev))
318 		return -ENXIO;
319 
320 	if (nr_pages < 0)
321 		return -EINVAL;
322 
323 	avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
324 			kaddr, pfn);
325 	if (!avail)
326 		return -ERANGE;
327 	return min(avail, nr_pages);
328 }
329 EXPORT_SYMBOL_GPL(dax_direct_access);
330 
331 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
332 		size_t bytes, struct iov_iter *i)
333 {
334 	if (!dax_alive(dax_dev))
335 		return 0;
336 
337 	return dax_dev->ops->copy_from_iter(dax_dev, pgoff, addr, bytes, i);
338 }
339 EXPORT_SYMBOL_GPL(dax_copy_from_iter);
340 
341 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
342 		size_t bytes, struct iov_iter *i)
343 {
344 	if (!dax_alive(dax_dev))
345 		return 0;
346 
347 	return dax_dev->ops->copy_to_iter(dax_dev, pgoff, addr, bytes, i);
348 }
349 EXPORT_SYMBOL_GPL(dax_copy_to_iter);
350 
351 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
352 			size_t nr_pages)
353 {
354 	if (!dax_alive(dax_dev))
355 		return -ENXIO;
356 	/*
357 	 * There are no callers that want to zero more than one page as of now.
358 	 * Once users are there, this check can be removed after the
359 	 * device mapper code has been updated to split ranges across targets.
360 	 */
361 	if (nr_pages != 1)
362 		return -EIO;
363 
364 	return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
365 }
366 EXPORT_SYMBOL_GPL(dax_zero_page_range);
367 
368 #ifdef CONFIG_ARCH_HAS_PMEM_API
369 void arch_wb_cache_pmem(void *addr, size_t size);
370 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
371 {
372 	if (unlikely(!dax_write_cache_enabled(dax_dev)))
373 		return;
374 
375 	arch_wb_cache_pmem(addr, size);
376 }
377 #else
378 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
379 {
380 }
381 #endif
382 EXPORT_SYMBOL_GPL(dax_flush);
383 
384 void dax_write_cache(struct dax_device *dax_dev, bool wc)
385 {
386 	if (wc)
387 		set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
388 	else
389 		clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
390 }
391 EXPORT_SYMBOL_GPL(dax_write_cache);
392 
393 bool dax_write_cache_enabled(struct dax_device *dax_dev)
394 {
395 	return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
396 }
397 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
398 
399 bool __dax_synchronous(struct dax_device *dax_dev)
400 {
401 	return test_bit(DAXDEV_SYNC, &dax_dev->flags);
402 }
403 EXPORT_SYMBOL_GPL(__dax_synchronous);
404 
405 void __set_dax_synchronous(struct dax_device *dax_dev)
406 {
407 	set_bit(DAXDEV_SYNC, &dax_dev->flags);
408 }
409 EXPORT_SYMBOL_GPL(__set_dax_synchronous);
410 
411 bool dax_alive(struct dax_device *dax_dev)
412 {
413 	lockdep_assert_held(&dax_srcu);
414 	return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
415 }
416 EXPORT_SYMBOL_GPL(dax_alive);
417 
418 /*
419  * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
420  * that any fault handlers or operations that might have seen
421  * dax_alive(), have completed.  Any operations that start after
422  * synchronize_srcu() has run will abort upon seeing !dax_alive().
423  */
424 void kill_dax(struct dax_device *dax_dev)
425 {
426 	if (!dax_dev)
427 		return;
428 
429 	clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
430 
431 	synchronize_srcu(&dax_srcu);
432 
433 	spin_lock(&dax_host_lock);
434 	hlist_del_init(&dax_dev->list);
435 	spin_unlock(&dax_host_lock);
436 }
437 EXPORT_SYMBOL_GPL(kill_dax);
438 
439 void run_dax(struct dax_device *dax_dev)
440 {
441 	set_bit(DAXDEV_ALIVE, &dax_dev->flags);
442 }
443 EXPORT_SYMBOL_GPL(run_dax);
444 
445 static struct inode *dax_alloc_inode(struct super_block *sb)
446 {
447 	struct dax_device *dax_dev;
448 	struct inode *inode;
449 
450 	dax_dev = kmem_cache_alloc(dax_cache, GFP_KERNEL);
451 	if (!dax_dev)
452 		return NULL;
453 
454 	inode = &dax_dev->inode;
455 	inode->i_rdev = 0;
456 	return inode;
457 }
458 
459 static struct dax_device *to_dax_dev(struct inode *inode)
460 {
461 	return container_of(inode, struct dax_device, inode);
462 }
463 
464 static void dax_free_inode(struct inode *inode)
465 {
466 	struct dax_device *dax_dev = to_dax_dev(inode);
467 	kfree(dax_dev->host);
468 	dax_dev->host = NULL;
469 	if (inode->i_rdev)
470 		ida_simple_remove(&dax_minor_ida, iminor(inode));
471 	kmem_cache_free(dax_cache, dax_dev);
472 }
473 
474 static void dax_destroy_inode(struct inode *inode)
475 {
476 	struct dax_device *dax_dev = to_dax_dev(inode);
477 	WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
478 			"kill_dax() must be called before final iput()\n");
479 }
480 
481 static const struct super_operations dax_sops = {
482 	.statfs = simple_statfs,
483 	.alloc_inode = dax_alloc_inode,
484 	.destroy_inode = dax_destroy_inode,
485 	.free_inode = dax_free_inode,
486 	.drop_inode = generic_delete_inode,
487 };
488 
489 static int dax_init_fs_context(struct fs_context *fc)
490 {
491 	struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
492 	if (!ctx)
493 		return -ENOMEM;
494 	ctx->ops = &dax_sops;
495 	return 0;
496 }
497 
498 static struct file_system_type dax_fs_type = {
499 	.name		= "dax",
500 	.init_fs_context = dax_init_fs_context,
501 	.kill_sb	= kill_anon_super,
502 };
503 
504 static int dax_test(struct inode *inode, void *data)
505 {
506 	dev_t devt = *(dev_t *) data;
507 
508 	return inode->i_rdev == devt;
509 }
510 
511 static int dax_set(struct inode *inode, void *data)
512 {
513 	dev_t devt = *(dev_t *) data;
514 
515 	inode->i_rdev = devt;
516 	return 0;
517 }
518 
519 static struct dax_device *dax_dev_get(dev_t devt)
520 {
521 	struct dax_device *dax_dev;
522 	struct inode *inode;
523 
524 	inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
525 			dax_test, dax_set, &devt);
526 
527 	if (!inode)
528 		return NULL;
529 
530 	dax_dev = to_dax_dev(inode);
531 	if (inode->i_state & I_NEW) {
532 		set_bit(DAXDEV_ALIVE, &dax_dev->flags);
533 		inode->i_cdev = &dax_dev->cdev;
534 		inode->i_mode = S_IFCHR;
535 		inode->i_flags = S_DAX;
536 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
537 		unlock_new_inode(inode);
538 	}
539 
540 	return dax_dev;
541 }
542 
543 static void dax_add_host(struct dax_device *dax_dev, const char *host)
544 {
545 	int hash;
546 
547 	/*
548 	 * Unconditionally init dax_dev since it's coming from a
549 	 * non-zeroed slab cache
550 	 */
551 	INIT_HLIST_NODE(&dax_dev->list);
552 	dax_dev->host = host;
553 	if (!host)
554 		return;
555 
556 	hash = dax_host_hash(host);
557 	spin_lock(&dax_host_lock);
558 	hlist_add_head(&dax_dev->list, &dax_host_list[hash]);
559 	spin_unlock(&dax_host_lock);
560 }
561 
562 struct dax_device *alloc_dax(void *private, const char *__host,
563 		const struct dax_operations *ops, unsigned long flags)
564 {
565 	struct dax_device *dax_dev;
566 	const char *host;
567 	dev_t devt;
568 	int minor;
569 
570 	if (ops && !ops->zero_page_range) {
571 		pr_debug("%s: error: device does not provide dax"
572 			 " operation zero_page_range()\n",
573 			 __host ? __host : "Unknown");
574 		return ERR_PTR(-EINVAL);
575 	}
576 
577 	host = kstrdup(__host, GFP_KERNEL);
578 	if (__host && !host)
579 		return ERR_PTR(-ENOMEM);
580 
581 	minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL);
582 	if (minor < 0)
583 		goto err_minor;
584 
585 	devt = MKDEV(MAJOR(dax_devt), minor);
586 	dax_dev = dax_dev_get(devt);
587 	if (!dax_dev)
588 		goto err_dev;
589 
590 	dax_add_host(dax_dev, host);
591 	dax_dev->ops = ops;
592 	dax_dev->private = private;
593 	if (flags & DAXDEV_F_SYNC)
594 		set_dax_synchronous(dax_dev);
595 
596 	return dax_dev;
597 
598  err_dev:
599 	ida_simple_remove(&dax_minor_ida, minor);
600  err_minor:
601 	kfree(host);
602 	return ERR_PTR(-ENOMEM);
603 }
604 EXPORT_SYMBOL_GPL(alloc_dax);
605 
606 void put_dax(struct dax_device *dax_dev)
607 {
608 	if (!dax_dev)
609 		return;
610 	iput(&dax_dev->inode);
611 }
612 EXPORT_SYMBOL_GPL(put_dax);
613 
614 /**
615  * inode_dax: convert a public inode into its dax_dev
616  * @inode: An inode with i_cdev pointing to a dax_dev
617  *
618  * Note this is not equivalent to to_dax_dev() which is for private
619  * internal use where we know the inode filesystem type == dax_fs_type.
620  */
621 struct dax_device *inode_dax(struct inode *inode)
622 {
623 	struct cdev *cdev = inode->i_cdev;
624 
625 	return container_of(cdev, struct dax_device, cdev);
626 }
627 EXPORT_SYMBOL_GPL(inode_dax);
628 
629 struct inode *dax_inode(struct dax_device *dax_dev)
630 {
631 	return &dax_dev->inode;
632 }
633 EXPORT_SYMBOL_GPL(dax_inode);
634 
635 void *dax_get_private(struct dax_device *dax_dev)
636 {
637 	if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
638 		return NULL;
639 	return dax_dev->private;
640 }
641 EXPORT_SYMBOL_GPL(dax_get_private);
642 
643 static void init_once(void *_dax_dev)
644 {
645 	struct dax_device *dax_dev = _dax_dev;
646 	struct inode *inode = &dax_dev->inode;
647 
648 	memset(dax_dev, 0, sizeof(*dax_dev));
649 	inode_init_once(inode);
650 }
651 
652 static int dax_fs_init(void)
653 {
654 	int rc;
655 
656 	dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
657 			(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
658 			 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
659 			init_once);
660 	if (!dax_cache)
661 		return -ENOMEM;
662 
663 	dax_mnt = kern_mount(&dax_fs_type);
664 	if (IS_ERR(dax_mnt)) {
665 		rc = PTR_ERR(dax_mnt);
666 		goto err_mount;
667 	}
668 	dax_superblock = dax_mnt->mnt_sb;
669 
670 	return 0;
671 
672  err_mount:
673 	kmem_cache_destroy(dax_cache);
674 
675 	return rc;
676 }
677 
678 static void dax_fs_exit(void)
679 {
680 	kern_unmount(dax_mnt);
681 	kmem_cache_destroy(dax_cache);
682 }
683 
684 static int __init dax_core_init(void)
685 {
686 	int rc;
687 
688 	rc = dax_fs_init();
689 	if (rc)
690 		return rc;
691 
692 	rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
693 	if (rc)
694 		goto err_chrdev;
695 
696 	rc = dax_bus_init();
697 	if (rc)
698 		goto err_bus;
699 	return 0;
700 
701 err_bus:
702 	unregister_chrdev_region(dax_devt, MINORMASK+1);
703 err_chrdev:
704 	dax_fs_exit();
705 	return 0;
706 }
707 
708 static void __exit dax_core_exit(void)
709 {
710 	dax_bus_exit();
711 	unregister_chrdev_region(dax_devt, MINORMASK+1);
712 	ida_destroy(&dax_minor_ida);
713 	dax_fs_exit();
714 }
715 
716 MODULE_AUTHOR("Intel Corporation");
717 MODULE_LICENSE("GPL v2");
718 subsys_initcall(dax_core_init);
719 module_exit(dax_core_exit);
720