1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/pagemap.h> 6 #include <linux/module.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include <linux/pfn_t.h> 11 #include <linux/cdev.h> 12 #include <linux/slab.h> 13 #include <linux/uio.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include "dax-private.h" 17 18 /** 19 * struct dax_device - anchor object for dax services 20 * @inode: core vfs 21 * @cdev: optional character interface for "device dax" 22 * @private: dax driver private data 23 * @flags: state and boolean properties 24 * @ops: operations for this device 25 */ 26 struct dax_device { 27 struct inode inode; 28 struct cdev cdev; 29 void *private; 30 unsigned long flags; 31 const struct dax_operations *ops; 32 }; 33 34 static dev_t dax_devt; 35 DEFINE_STATIC_SRCU(dax_srcu); 36 static struct vfsmount *dax_mnt; 37 static DEFINE_IDA(dax_minor_ida); 38 static struct kmem_cache *dax_cache __read_mostly; 39 static struct super_block *dax_superblock __read_mostly; 40 41 int dax_read_lock(void) 42 { 43 return srcu_read_lock(&dax_srcu); 44 } 45 EXPORT_SYMBOL_GPL(dax_read_lock); 46 47 void dax_read_unlock(int id) 48 { 49 srcu_read_unlock(&dax_srcu, id); 50 } 51 EXPORT_SYMBOL_GPL(dax_read_unlock); 52 53 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX) 54 #include <linux/blkdev.h> 55 56 static DEFINE_XARRAY(dax_hosts); 57 58 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk) 59 { 60 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL); 61 } 62 EXPORT_SYMBOL_GPL(dax_add_host); 63 64 void dax_remove_host(struct gendisk *disk) 65 { 66 xa_erase(&dax_hosts, (unsigned long)disk); 67 } 68 EXPORT_SYMBOL_GPL(dax_remove_host); 69 70 /** 71 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax 72 * @bdev: block device to find a dax_device for 73 * @start_off: returns the byte offset into the dax_device that @bdev starts 74 */ 75 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off) 76 { 77 struct dax_device *dax_dev; 78 u64 part_size; 79 int id; 80 81 if (!blk_queue_dax(bdev->bd_disk->queue)) 82 return NULL; 83 84 *start_off = get_start_sect(bdev) * SECTOR_SIZE; 85 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE; 86 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) { 87 pr_info("%pg: error: unaligned partition for dax\n", bdev); 88 return NULL; 89 } 90 91 id = dax_read_lock(); 92 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk); 93 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode)) 94 dax_dev = NULL; 95 dax_read_unlock(id); 96 97 return dax_dev; 98 } 99 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev); 100 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */ 101 102 enum dax_device_flags { 103 /* !alive + rcu grace period == no new operations / mappings */ 104 DAXDEV_ALIVE, 105 /* gate whether dax_flush() calls the low level flush routine */ 106 DAXDEV_WRITE_CACHE, 107 /* flag to check if device supports synchronous flush */ 108 DAXDEV_SYNC, 109 /* do not leave the caches dirty after writes */ 110 DAXDEV_NOCACHE, 111 /* handle CPU fetch exceptions during reads */ 112 DAXDEV_NOMC, 113 }; 114 115 /** 116 * dax_direct_access() - translate a device pgoff to an absolute pfn 117 * @dax_dev: a dax_device instance representing the logical memory range 118 * @pgoff: offset in pages from the start of the device to translate 119 * @nr_pages: number of consecutive pages caller can handle relative to @pfn 120 * @kaddr: output parameter that returns a virtual address mapping of pfn 121 * @pfn: output parameter that returns an absolute pfn translation of @pgoff 122 * 123 * Return: negative errno if an error occurs, otherwise the number of 124 * pages accessible at the device relative @pgoff. 125 */ 126 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, 127 void **kaddr, pfn_t *pfn) 128 { 129 long avail; 130 131 if (!dax_dev) 132 return -EOPNOTSUPP; 133 134 if (!dax_alive(dax_dev)) 135 return -ENXIO; 136 137 if (nr_pages < 0) 138 return -EINVAL; 139 140 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages, 141 kaddr, pfn); 142 if (!avail) 143 return -ERANGE; 144 return min(avail, nr_pages); 145 } 146 EXPORT_SYMBOL_GPL(dax_direct_access); 147 148 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 149 size_t bytes, struct iov_iter *i) 150 { 151 if (!dax_alive(dax_dev)) 152 return 0; 153 154 /* 155 * The userspace address for the memory copy has already been validated 156 * via access_ok() in vfs_write, so use the 'no check' version to bypass 157 * the HARDENED_USERCOPY overhead. 158 */ 159 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags)) 160 return _copy_from_iter_flushcache(addr, bytes, i); 161 return _copy_from_iter(addr, bytes, i); 162 } 163 164 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 165 size_t bytes, struct iov_iter *i) 166 { 167 if (!dax_alive(dax_dev)) 168 return 0; 169 170 /* 171 * The userspace address for the memory copy has already been validated 172 * via access_ok() in vfs_red, so use the 'no check' version to bypass 173 * the HARDENED_USERCOPY overhead. 174 */ 175 if (test_bit(DAXDEV_NOMC, &dax_dev->flags)) 176 return _copy_mc_to_iter(addr, bytes, i); 177 return _copy_to_iter(addr, bytes, i); 178 } 179 180 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 181 size_t nr_pages) 182 { 183 if (!dax_alive(dax_dev)) 184 return -ENXIO; 185 /* 186 * There are no callers that want to zero more than one page as of now. 187 * Once users are there, this check can be removed after the 188 * device mapper code has been updated to split ranges across targets. 189 */ 190 if (nr_pages != 1) 191 return -EIO; 192 193 return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages); 194 } 195 EXPORT_SYMBOL_GPL(dax_zero_page_range); 196 197 #ifdef CONFIG_ARCH_HAS_PMEM_API 198 void arch_wb_cache_pmem(void *addr, size_t size); 199 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 200 { 201 if (unlikely(!dax_write_cache_enabled(dax_dev))) 202 return; 203 204 arch_wb_cache_pmem(addr, size); 205 } 206 #else 207 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 208 { 209 } 210 #endif 211 EXPORT_SYMBOL_GPL(dax_flush); 212 213 void dax_write_cache(struct dax_device *dax_dev, bool wc) 214 { 215 if (wc) 216 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 217 else 218 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 219 } 220 EXPORT_SYMBOL_GPL(dax_write_cache); 221 222 bool dax_write_cache_enabled(struct dax_device *dax_dev) 223 { 224 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 225 } 226 EXPORT_SYMBOL_GPL(dax_write_cache_enabled); 227 228 bool dax_synchronous(struct dax_device *dax_dev) 229 { 230 return test_bit(DAXDEV_SYNC, &dax_dev->flags); 231 } 232 EXPORT_SYMBOL_GPL(dax_synchronous); 233 234 void set_dax_synchronous(struct dax_device *dax_dev) 235 { 236 set_bit(DAXDEV_SYNC, &dax_dev->flags); 237 } 238 EXPORT_SYMBOL_GPL(set_dax_synchronous); 239 240 void set_dax_nocache(struct dax_device *dax_dev) 241 { 242 set_bit(DAXDEV_NOCACHE, &dax_dev->flags); 243 } 244 EXPORT_SYMBOL_GPL(set_dax_nocache); 245 246 void set_dax_nomc(struct dax_device *dax_dev) 247 { 248 set_bit(DAXDEV_NOMC, &dax_dev->flags); 249 } 250 EXPORT_SYMBOL_GPL(set_dax_nomc); 251 252 bool dax_alive(struct dax_device *dax_dev) 253 { 254 lockdep_assert_held(&dax_srcu); 255 return test_bit(DAXDEV_ALIVE, &dax_dev->flags); 256 } 257 EXPORT_SYMBOL_GPL(dax_alive); 258 259 /* 260 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring 261 * that any fault handlers or operations that might have seen 262 * dax_alive(), have completed. Any operations that start after 263 * synchronize_srcu() has run will abort upon seeing !dax_alive(). 264 */ 265 void kill_dax(struct dax_device *dax_dev) 266 { 267 if (!dax_dev) 268 return; 269 270 clear_bit(DAXDEV_ALIVE, &dax_dev->flags); 271 synchronize_srcu(&dax_srcu); 272 } 273 EXPORT_SYMBOL_GPL(kill_dax); 274 275 void run_dax(struct dax_device *dax_dev) 276 { 277 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 278 } 279 EXPORT_SYMBOL_GPL(run_dax); 280 281 static struct inode *dax_alloc_inode(struct super_block *sb) 282 { 283 struct dax_device *dax_dev; 284 struct inode *inode; 285 286 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL); 287 if (!dax_dev) 288 return NULL; 289 290 inode = &dax_dev->inode; 291 inode->i_rdev = 0; 292 return inode; 293 } 294 295 static struct dax_device *to_dax_dev(struct inode *inode) 296 { 297 return container_of(inode, struct dax_device, inode); 298 } 299 300 static void dax_free_inode(struct inode *inode) 301 { 302 struct dax_device *dax_dev = to_dax_dev(inode); 303 if (inode->i_rdev) 304 ida_simple_remove(&dax_minor_ida, iminor(inode)); 305 kmem_cache_free(dax_cache, dax_dev); 306 } 307 308 static void dax_destroy_inode(struct inode *inode) 309 { 310 struct dax_device *dax_dev = to_dax_dev(inode); 311 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags), 312 "kill_dax() must be called before final iput()\n"); 313 } 314 315 static const struct super_operations dax_sops = { 316 .statfs = simple_statfs, 317 .alloc_inode = dax_alloc_inode, 318 .destroy_inode = dax_destroy_inode, 319 .free_inode = dax_free_inode, 320 .drop_inode = generic_delete_inode, 321 }; 322 323 static int dax_init_fs_context(struct fs_context *fc) 324 { 325 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC); 326 if (!ctx) 327 return -ENOMEM; 328 ctx->ops = &dax_sops; 329 return 0; 330 } 331 332 static struct file_system_type dax_fs_type = { 333 .name = "dax", 334 .init_fs_context = dax_init_fs_context, 335 .kill_sb = kill_anon_super, 336 }; 337 338 static int dax_test(struct inode *inode, void *data) 339 { 340 dev_t devt = *(dev_t *) data; 341 342 return inode->i_rdev == devt; 343 } 344 345 static int dax_set(struct inode *inode, void *data) 346 { 347 dev_t devt = *(dev_t *) data; 348 349 inode->i_rdev = devt; 350 return 0; 351 } 352 353 static struct dax_device *dax_dev_get(dev_t devt) 354 { 355 struct dax_device *dax_dev; 356 struct inode *inode; 357 358 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), 359 dax_test, dax_set, &devt); 360 361 if (!inode) 362 return NULL; 363 364 dax_dev = to_dax_dev(inode); 365 if (inode->i_state & I_NEW) { 366 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 367 inode->i_cdev = &dax_dev->cdev; 368 inode->i_mode = S_IFCHR; 369 inode->i_flags = S_DAX; 370 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 371 unlock_new_inode(inode); 372 } 373 374 return dax_dev; 375 } 376 377 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops) 378 { 379 struct dax_device *dax_dev; 380 dev_t devt; 381 int minor; 382 383 if (WARN_ON_ONCE(ops && !ops->zero_page_range)) 384 return ERR_PTR(-EINVAL); 385 386 minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL); 387 if (minor < 0) 388 return ERR_PTR(-ENOMEM); 389 390 devt = MKDEV(MAJOR(dax_devt), minor); 391 dax_dev = dax_dev_get(devt); 392 if (!dax_dev) 393 goto err_dev; 394 395 dax_dev->ops = ops; 396 dax_dev->private = private; 397 return dax_dev; 398 399 err_dev: 400 ida_simple_remove(&dax_minor_ida, minor); 401 return ERR_PTR(-ENOMEM); 402 } 403 EXPORT_SYMBOL_GPL(alloc_dax); 404 405 void put_dax(struct dax_device *dax_dev) 406 { 407 if (!dax_dev) 408 return; 409 iput(&dax_dev->inode); 410 } 411 EXPORT_SYMBOL_GPL(put_dax); 412 413 /** 414 * inode_dax: convert a public inode into its dax_dev 415 * @inode: An inode with i_cdev pointing to a dax_dev 416 * 417 * Note this is not equivalent to to_dax_dev() which is for private 418 * internal use where we know the inode filesystem type == dax_fs_type. 419 */ 420 struct dax_device *inode_dax(struct inode *inode) 421 { 422 struct cdev *cdev = inode->i_cdev; 423 424 return container_of(cdev, struct dax_device, cdev); 425 } 426 EXPORT_SYMBOL_GPL(inode_dax); 427 428 struct inode *dax_inode(struct dax_device *dax_dev) 429 { 430 return &dax_dev->inode; 431 } 432 EXPORT_SYMBOL_GPL(dax_inode); 433 434 void *dax_get_private(struct dax_device *dax_dev) 435 { 436 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags)) 437 return NULL; 438 return dax_dev->private; 439 } 440 EXPORT_SYMBOL_GPL(dax_get_private); 441 442 static void init_once(void *_dax_dev) 443 { 444 struct dax_device *dax_dev = _dax_dev; 445 struct inode *inode = &dax_dev->inode; 446 447 memset(dax_dev, 0, sizeof(*dax_dev)); 448 inode_init_once(inode); 449 } 450 451 static int dax_fs_init(void) 452 { 453 int rc; 454 455 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0, 456 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 457 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 458 init_once); 459 if (!dax_cache) 460 return -ENOMEM; 461 462 dax_mnt = kern_mount(&dax_fs_type); 463 if (IS_ERR(dax_mnt)) { 464 rc = PTR_ERR(dax_mnt); 465 goto err_mount; 466 } 467 dax_superblock = dax_mnt->mnt_sb; 468 469 return 0; 470 471 err_mount: 472 kmem_cache_destroy(dax_cache); 473 474 return rc; 475 } 476 477 static void dax_fs_exit(void) 478 { 479 kern_unmount(dax_mnt); 480 rcu_barrier(); 481 kmem_cache_destroy(dax_cache); 482 } 483 484 static int __init dax_core_init(void) 485 { 486 int rc; 487 488 rc = dax_fs_init(); 489 if (rc) 490 return rc; 491 492 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax"); 493 if (rc) 494 goto err_chrdev; 495 496 rc = dax_bus_init(); 497 if (rc) 498 goto err_bus; 499 return 0; 500 501 err_bus: 502 unregister_chrdev_region(dax_devt, MINORMASK+1); 503 err_chrdev: 504 dax_fs_exit(); 505 return 0; 506 } 507 508 static void __exit dax_core_exit(void) 509 { 510 dax_bus_exit(); 511 unregister_chrdev_region(dax_devt, MINORMASK+1); 512 ida_destroy(&dax_minor_ida); 513 dax_fs_exit(); 514 } 515 516 MODULE_AUTHOR("Intel Corporation"); 517 MODULE_LICENSE("GPL v2"); 518 subsys_initcall(dax_core_init); 519 module_exit(dax_core_exit); 520