1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/pagemap.h> 6 #include <linux/module.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include <linux/pfn_t.h> 11 #include <linux/cdev.h> 12 #include <linux/slab.h> 13 #include <linux/uio.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include "dax-private.h" 17 18 /** 19 * struct dax_device - anchor object for dax services 20 * @inode: core vfs 21 * @cdev: optional character interface for "device dax" 22 * @private: dax driver private data 23 * @flags: state and boolean properties 24 */ 25 struct dax_device { 26 struct inode inode; 27 struct cdev cdev; 28 void *private; 29 unsigned long flags; 30 const struct dax_operations *ops; 31 }; 32 33 static dev_t dax_devt; 34 DEFINE_STATIC_SRCU(dax_srcu); 35 static struct vfsmount *dax_mnt; 36 static DEFINE_IDA(dax_minor_ida); 37 static struct kmem_cache *dax_cache __read_mostly; 38 static struct super_block *dax_superblock __read_mostly; 39 40 int dax_read_lock(void) 41 { 42 return srcu_read_lock(&dax_srcu); 43 } 44 EXPORT_SYMBOL_GPL(dax_read_lock); 45 46 void dax_read_unlock(int id) 47 { 48 srcu_read_unlock(&dax_srcu, id); 49 } 50 EXPORT_SYMBOL_GPL(dax_read_unlock); 51 52 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX) 53 #include <linux/blkdev.h> 54 55 static DEFINE_XARRAY(dax_hosts); 56 57 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk) 58 { 59 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL); 60 } 61 EXPORT_SYMBOL_GPL(dax_add_host); 62 63 void dax_remove_host(struct gendisk *disk) 64 { 65 xa_erase(&dax_hosts, (unsigned long)disk); 66 } 67 EXPORT_SYMBOL_GPL(dax_remove_host); 68 69 /** 70 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax 71 * @bdev: block device to find a dax_device for 72 * @start_off: returns the byte offset into the dax_device that @bdev starts 73 */ 74 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off) 75 { 76 struct dax_device *dax_dev; 77 u64 part_size; 78 int id; 79 80 if (!blk_queue_dax(bdev->bd_disk->queue)) 81 return NULL; 82 83 *start_off = get_start_sect(bdev) * SECTOR_SIZE; 84 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE; 85 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) { 86 pr_info("%pg: error: unaligned partition for dax\n", bdev); 87 return NULL; 88 } 89 90 id = dax_read_lock(); 91 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk); 92 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode)) 93 dax_dev = NULL; 94 dax_read_unlock(id); 95 96 return dax_dev; 97 } 98 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev); 99 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */ 100 101 enum dax_device_flags { 102 /* !alive + rcu grace period == no new operations / mappings */ 103 DAXDEV_ALIVE, 104 /* gate whether dax_flush() calls the low level flush routine */ 105 DAXDEV_WRITE_CACHE, 106 /* flag to check if device supports synchronous flush */ 107 DAXDEV_SYNC, 108 /* do not leave the caches dirty after writes */ 109 DAXDEV_NOCACHE, 110 /* handle CPU fetch exceptions during reads */ 111 DAXDEV_NOMC, 112 }; 113 114 /** 115 * dax_direct_access() - translate a device pgoff to an absolute pfn 116 * @dax_dev: a dax_device instance representing the logical memory range 117 * @pgoff: offset in pages from the start of the device to translate 118 * @nr_pages: number of consecutive pages caller can handle relative to @pfn 119 * @kaddr: output parameter that returns a virtual address mapping of pfn 120 * @pfn: output parameter that returns an absolute pfn translation of @pgoff 121 * 122 * Return: negative errno if an error occurs, otherwise the number of 123 * pages accessible at the device relative @pgoff. 124 */ 125 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, 126 void **kaddr, pfn_t *pfn) 127 { 128 long avail; 129 130 if (!dax_dev) 131 return -EOPNOTSUPP; 132 133 if (!dax_alive(dax_dev)) 134 return -ENXIO; 135 136 if (nr_pages < 0) 137 return -EINVAL; 138 139 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages, 140 kaddr, pfn); 141 if (!avail) 142 return -ERANGE; 143 return min(avail, nr_pages); 144 } 145 EXPORT_SYMBOL_GPL(dax_direct_access); 146 147 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 148 size_t bytes, struct iov_iter *i) 149 { 150 if (!dax_alive(dax_dev)) 151 return 0; 152 153 /* 154 * The userspace address for the memory copy has already been validated 155 * via access_ok() in vfs_write, so use the 'no check' version to bypass 156 * the HARDENED_USERCOPY overhead. 157 */ 158 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags)) 159 return _copy_from_iter_flushcache(addr, bytes, i); 160 return _copy_from_iter(addr, bytes, i); 161 } 162 163 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 164 size_t bytes, struct iov_iter *i) 165 { 166 if (!dax_alive(dax_dev)) 167 return 0; 168 169 /* 170 * The userspace address for the memory copy has already been validated 171 * via access_ok() in vfs_red, so use the 'no check' version to bypass 172 * the HARDENED_USERCOPY overhead. 173 */ 174 if (test_bit(DAXDEV_NOMC, &dax_dev->flags)) 175 return _copy_mc_to_iter(addr, bytes, i); 176 return _copy_to_iter(addr, bytes, i); 177 } 178 179 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 180 size_t nr_pages) 181 { 182 if (!dax_alive(dax_dev)) 183 return -ENXIO; 184 /* 185 * There are no callers that want to zero more than one page as of now. 186 * Once users are there, this check can be removed after the 187 * device mapper code has been updated to split ranges across targets. 188 */ 189 if (nr_pages != 1) 190 return -EIO; 191 192 return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages); 193 } 194 EXPORT_SYMBOL_GPL(dax_zero_page_range); 195 196 #ifdef CONFIG_ARCH_HAS_PMEM_API 197 void arch_wb_cache_pmem(void *addr, size_t size); 198 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 199 { 200 if (unlikely(!dax_write_cache_enabled(dax_dev))) 201 return; 202 203 arch_wb_cache_pmem(addr, size); 204 } 205 #else 206 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 207 { 208 } 209 #endif 210 EXPORT_SYMBOL_GPL(dax_flush); 211 212 void dax_write_cache(struct dax_device *dax_dev, bool wc) 213 { 214 if (wc) 215 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 216 else 217 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 218 } 219 EXPORT_SYMBOL_GPL(dax_write_cache); 220 221 bool dax_write_cache_enabled(struct dax_device *dax_dev) 222 { 223 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 224 } 225 EXPORT_SYMBOL_GPL(dax_write_cache_enabled); 226 227 bool dax_synchronous(struct dax_device *dax_dev) 228 { 229 return test_bit(DAXDEV_SYNC, &dax_dev->flags); 230 } 231 EXPORT_SYMBOL_GPL(dax_synchronous); 232 233 void set_dax_synchronous(struct dax_device *dax_dev) 234 { 235 set_bit(DAXDEV_SYNC, &dax_dev->flags); 236 } 237 EXPORT_SYMBOL_GPL(set_dax_synchronous); 238 239 void set_dax_nocache(struct dax_device *dax_dev) 240 { 241 set_bit(DAXDEV_NOCACHE, &dax_dev->flags); 242 } 243 EXPORT_SYMBOL_GPL(set_dax_nocache); 244 245 void set_dax_nomc(struct dax_device *dax_dev) 246 { 247 set_bit(DAXDEV_NOMC, &dax_dev->flags); 248 } 249 EXPORT_SYMBOL_GPL(set_dax_nomc); 250 251 bool dax_alive(struct dax_device *dax_dev) 252 { 253 lockdep_assert_held(&dax_srcu); 254 return test_bit(DAXDEV_ALIVE, &dax_dev->flags); 255 } 256 EXPORT_SYMBOL_GPL(dax_alive); 257 258 /* 259 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring 260 * that any fault handlers or operations that might have seen 261 * dax_alive(), have completed. Any operations that start after 262 * synchronize_srcu() has run will abort upon seeing !dax_alive(). 263 */ 264 void kill_dax(struct dax_device *dax_dev) 265 { 266 if (!dax_dev) 267 return; 268 269 clear_bit(DAXDEV_ALIVE, &dax_dev->flags); 270 synchronize_srcu(&dax_srcu); 271 } 272 EXPORT_SYMBOL_GPL(kill_dax); 273 274 void run_dax(struct dax_device *dax_dev) 275 { 276 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 277 } 278 EXPORT_SYMBOL_GPL(run_dax); 279 280 static struct inode *dax_alloc_inode(struct super_block *sb) 281 { 282 struct dax_device *dax_dev; 283 struct inode *inode; 284 285 dax_dev = kmem_cache_alloc(dax_cache, GFP_KERNEL); 286 if (!dax_dev) 287 return NULL; 288 289 inode = &dax_dev->inode; 290 inode->i_rdev = 0; 291 return inode; 292 } 293 294 static struct dax_device *to_dax_dev(struct inode *inode) 295 { 296 return container_of(inode, struct dax_device, inode); 297 } 298 299 static void dax_free_inode(struct inode *inode) 300 { 301 struct dax_device *dax_dev = to_dax_dev(inode); 302 if (inode->i_rdev) 303 ida_simple_remove(&dax_minor_ida, iminor(inode)); 304 kmem_cache_free(dax_cache, dax_dev); 305 } 306 307 static void dax_destroy_inode(struct inode *inode) 308 { 309 struct dax_device *dax_dev = to_dax_dev(inode); 310 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags), 311 "kill_dax() must be called before final iput()\n"); 312 } 313 314 static const struct super_operations dax_sops = { 315 .statfs = simple_statfs, 316 .alloc_inode = dax_alloc_inode, 317 .destroy_inode = dax_destroy_inode, 318 .free_inode = dax_free_inode, 319 .drop_inode = generic_delete_inode, 320 }; 321 322 static int dax_init_fs_context(struct fs_context *fc) 323 { 324 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC); 325 if (!ctx) 326 return -ENOMEM; 327 ctx->ops = &dax_sops; 328 return 0; 329 } 330 331 static struct file_system_type dax_fs_type = { 332 .name = "dax", 333 .init_fs_context = dax_init_fs_context, 334 .kill_sb = kill_anon_super, 335 }; 336 337 static int dax_test(struct inode *inode, void *data) 338 { 339 dev_t devt = *(dev_t *) data; 340 341 return inode->i_rdev == devt; 342 } 343 344 static int dax_set(struct inode *inode, void *data) 345 { 346 dev_t devt = *(dev_t *) data; 347 348 inode->i_rdev = devt; 349 return 0; 350 } 351 352 static struct dax_device *dax_dev_get(dev_t devt) 353 { 354 struct dax_device *dax_dev; 355 struct inode *inode; 356 357 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), 358 dax_test, dax_set, &devt); 359 360 if (!inode) 361 return NULL; 362 363 dax_dev = to_dax_dev(inode); 364 if (inode->i_state & I_NEW) { 365 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 366 inode->i_cdev = &dax_dev->cdev; 367 inode->i_mode = S_IFCHR; 368 inode->i_flags = S_DAX; 369 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 370 unlock_new_inode(inode); 371 } 372 373 return dax_dev; 374 } 375 376 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops) 377 { 378 struct dax_device *dax_dev; 379 dev_t devt; 380 int minor; 381 382 if (WARN_ON_ONCE(ops && !ops->zero_page_range)) 383 return ERR_PTR(-EINVAL); 384 385 minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL); 386 if (minor < 0) 387 return ERR_PTR(-ENOMEM); 388 389 devt = MKDEV(MAJOR(dax_devt), minor); 390 dax_dev = dax_dev_get(devt); 391 if (!dax_dev) 392 goto err_dev; 393 394 dax_dev->ops = ops; 395 dax_dev->private = private; 396 return dax_dev; 397 398 err_dev: 399 ida_simple_remove(&dax_minor_ida, minor); 400 return ERR_PTR(-ENOMEM); 401 } 402 EXPORT_SYMBOL_GPL(alloc_dax); 403 404 void put_dax(struct dax_device *dax_dev) 405 { 406 if (!dax_dev) 407 return; 408 iput(&dax_dev->inode); 409 } 410 EXPORT_SYMBOL_GPL(put_dax); 411 412 /** 413 * inode_dax: convert a public inode into its dax_dev 414 * @inode: An inode with i_cdev pointing to a dax_dev 415 * 416 * Note this is not equivalent to to_dax_dev() which is for private 417 * internal use where we know the inode filesystem type == dax_fs_type. 418 */ 419 struct dax_device *inode_dax(struct inode *inode) 420 { 421 struct cdev *cdev = inode->i_cdev; 422 423 return container_of(cdev, struct dax_device, cdev); 424 } 425 EXPORT_SYMBOL_GPL(inode_dax); 426 427 struct inode *dax_inode(struct dax_device *dax_dev) 428 { 429 return &dax_dev->inode; 430 } 431 EXPORT_SYMBOL_GPL(dax_inode); 432 433 void *dax_get_private(struct dax_device *dax_dev) 434 { 435 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags)) 436 return NULL; 437 return dax_dev->private; 438 } 439 EXPORT_SYMBOL_GPL(dax_get_private); 440 441 static void init_once(void *_dax_dev) 442 { 443 struct dax_device *dax_dev = _dax_dev; 444 struct inode *inode = &dax_dev->inode; 445 446 memset(dax_dev, 0, sizeof(*dax_dev)); 447 inode_init_once(inode); 448 } 449 450 static int dax_fs_init(void) 451 { 452 int rc; 453 454 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0, 455 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 456 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 457 init_once); 458 if (!dax_cache) 459 return -ENOMEM; 460 461 dax_mnt = kern_mount(&dax_fs_type); 462 if (IS_ERR(dax_mnt)) { 463 rc = PTR_ERR(dax_mnt); 464 goto err_mount; 465 } 466 dax_superblock = dax_mnt->mnt_sb; 467 468 return 0; 469 470 err_mount: 471 kmem_cache_destroy(dax_cache); 472 473 return rc; 474 } 475 476 static void dax_fs_exit(void) 477 { 478 kern_unmount(dax_mnt); 479 kmem_cache_destroy(dax_cache); 480 } 481 482 static int __init dax_core_init(void) 483 { 484 int rc; 485 486 rc = dax_fs_init(); 487 if (rc) 488 return rc; 489 490 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax"); 491 if (rc) 492 goto err_chrdev; 493 494 rc = dax_bus_init(); 495 if (rc) 496 goto err_bus; 497 return 0; 498 499 err_bus: 500 unregister_chrdev_region(dax_devt, MINORMASK+1); 501 err_chrdev: 502 dax_fs_exit(); 503 return 0; 504 } 505 506 static void __exit dax_core_exit(void) 507 { 508 dax_bus_exit(); 509 unregister_chrdev_region(dax_devt, MINORMASK+1); 510 ida_destroy(&dax_minor_ida); 511 dax_fs_exit(); 512 } 513 514 MODULE_AUTHOR("Intel Corporation"); 515 MODULE_LICENSE("GPL v2"); 516 subsys_initcall(dax_core_init); 517 module_exit(dax_core_exit); 518