1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/pagemap.h> 6 #include <linux/module.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include <linux/pfn_t.h> 11 #include <linux/cdev.h> 12 #include <linux/slab.h> 13 #include <linux/uio.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include "dax-private.h" 17 18 /** 19 * struct dax_device - anchor object for dax services 20 * @inode: core vfs 21 * @cdev: optional character interface for "device dax" 22 * @private: dax driver private data 23 * @flags: state and boolean properties 24 * @ops: operations for this device 25 * @holder_data: holder of a dax_device: could be filesystem or mapped device 26 * @holder_ops: operations for the inner holder 27 */ 28 struct dax_device { 29 struct inode inode; 30 struct cdev cdev; 31 void *private; 32 unsigned long flags; 33 const struct dax_operations *ops; 34 void *holder_data; 35 const struct dax_holder_operations *holder_ops; 36 }; 37 38 static dev_t dax_devt; 39 DEFINE_STATIC_SRCU(dax_srcu); 40 static struct vfsmount *dax_mnt; 41 static DEFINE_IDA(dax_minor_ida); 42 static struct kmem_cache *dax_cache __read_mostly; 43 static struct super_block *dax_superblock __read_mostly; 44 45 int dax_read_lock(void) 46 { 47 return srcu_read_lock(&dax_srcu); 48 } 49 EXPORT_SYMBOL_GPL(dax_read_lock); 50 51 void dax_read_unlock(int id) 52 { 53 srcu_read_unlock(&dax_srcu, id); 54 } 55 EXPORT_SYMBOL_GPL(dax_read_unlock); 56 57 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX) 58 #include <linux/blkdev.h> 59 60 static DEFINE_XARRAY(dax_hosts); 61 62 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk) 63 { 64 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL); 65 } 66 EXPORT_SYMBOL_GPL(dax_add_host); 67 68 void dax_remove_host(struct gendisk *disk) 69 { 70 xa_erase(&dax_hosts, (unsigned long)disk); 71 } 72 EXPORT_SYMBOL_GPL(dax_remove_host); 73 74 /** 75 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax 76 * @bdev: block device to find a dax_device for 77 * @start_off: returns the byte offset into the dax_device that @bdev starts 78 * @holder: filesystem or mapped device inside the dax_device 79 * @ops: operations for the inner holder 80 */ 81 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off, 82 void *holder, const struct dax_holder_operations *ops) 83 { 84 struct dax_device *dax_dev; 85 u64 part_size; 86 int id; 87 88 if (!blk_queue_dax(bdev->bd_disk->queue)) 89 return NULL; 90 91 *start_off = get_start_sect(bdev) * SECTOR_SIZE; 92 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE; 93 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) { 94 pr_info("%pg: error: unaligned partition for dax\n", bdev); 95 return NULL; 96 } 97 98 id = dax_read_lock(); 99 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk); 100 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode)) 101 dax_dev = NULL; 102 else if (holder) { 103 if (!cmpxchg(&dax_dev->holder_data, NULL, holder)) 104 dax_dev->holder_ops = ops; 105 else 106 dax_dev = NULL; 107 } 108 dax_read_unlock(id); 109 110 return dax_dev; 111 } 112 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev); 113 114 void fs_put_dax(struct dax_device *dax_dev, void *holder) 115 { 116 if (dax_dev && holder && 117 cmpxchg(&dax_dev->holder_data, holder, NULL) == holder) 118 dax_dev->holder_ops = NULL; 119 put_dax(dax_dev); 120 } 121 EXPORT_SYMBOL_GPL(fs_put_dax); 122 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */ 123 124 enum dax_device_flags { 125 /* !alive + rcu grace period == no new operations / mappings */ 126 DAXDEV_ALIVE, 127 /* gate whether dax_flush() calls the low level flush routine */ 128 DAXDEV_WRITE_CACHE, 129 /* flag to check if device supports synchronous flush */ 130 DAXDEV_SYNC, 131 /* do not leave the caches dirty after writes */ 132 DAXDEV_NOCACHE, 133 /* handle CPU fetch exceptions during reads */ 134 DAXDEV_NOMC, 135 }; 136 137 /** 138 * dax_direct_access() - translate a device pgoff to an absolute pfn 139 * @dax_dev: a dax_device instance representing the logical memory range 140 * @pgoff: offset in pages from the start of the device to translate 141 * @nr_pages: number of consecutive pages caller can handle relative to @pfn 142 * @mode: indicator on normal access or recovery write 143 * @kaddr: output parameter that returns a virtual address mapping of pfn 144 * @pfn: output parameter that returns an absolute pfn translation of @pgoff 145 * 146 * Return: negative errno if an error occurs, otherwise the number of 147 * pages accessible at the device relative @pgoff. 148 */ 149 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, 150 enum dax_access_mode mode, void **kaddr, pfn_t *pfn) 151 { 152 long avail; 153 154 if (!dax_dev) 155 return -EOPNOTSUPP; 156 157 if (!dax_alive(dax_dev)) 158 return -ENXIO; 159 160 if (nr_pages < 0) 161 return -EINVAL; 162 163 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages, 164 mode, kaddr, pfn); 165 if (!avail) 166 return -ERANGE; 167 return min(avail, nr_pages); 168 } 169 EXPORT_SYMBOL_GPL(dax_direct_access); 170 171 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 172 size_t bytes, struct iov_iter *i) 173 { 174 if (!dax_alive(dax_dev)) 175 return 0; 176 177 /* 178 * The userspace address for the memory copy has already been validated 179 * via access_ok() in vfs_write, so use the 'no check' version to bypass 180 * the HARDENED_USERCOPY overhead. 181 */ 182 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags)) 183 return _copy_from_iter_flushcache(addr, bytes, i); 184 return _copy_from_iter(addr, bytes, i); 185 } 186 187 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 188 size_t bytes, struct iov_iter *i) 189 { 190 if (!dax_alive(dax_dev)) 191 return 0; 192 193 /* 194 * The userspace address for the memory copy has already been validated 195 * via access_ok() in vfs_red, so use the 'no check' version to bypass 196 * the HARDENED_USERCOPY overhead. 197 */ 198 if (test_bit(DAXDEV_NOMC, &dax_dev->flags)) 199 return _copy_mc_to_iter(addr, bytes, i); 200 return _copy_to_iter(addr, bytes, i); 201 } 202 203 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 204 size_t nr_pages) 205 { 206 if (!dax_alive(dax_dev)) 207 return -ENXIO; 208 /* 209 * There are no callers that want to zero more than one page as of now. 210 * Once users are there, this check can be removed after the 211 * device mapper code has been updated to split ranges across targets. 212 */ 213 if (nr_pages != 1) 214 return -EIO; 215 216 return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages); 217 } 218 EXPORT_SYMBOL_GPL(dax_zero_page_range); 219 220 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 221 void *addr, size_t bytes, struct iov_iter *iter) 222 { 223 if (!dax_dev->ops->recovery_write) 224 return 0; 225 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter); 226 } 227 EXPORT_SYMBOL_GPL(dax_recovery_write); 228 229 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off, 230 u64 len, int mf_flags) 231 { 232 int rc, id; 233 234 id = dax_read_lock(); 235 if (!dax_alive(dax_dev)) { 236 rc = -ENXIO; 237 goto out; 238 } 239 240 if (!dax_dev->holder_ops) { 241 rc = -EOPNOTSUPP; 242 goto out; 243 } 244 245 rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags); 246 out: 247 dax_read_unlock(id); 248 return rc; 249 } 250 EXPORT_SYMBOL_GPL(dax_holder_notify_failure); 251 252 #ifdef CONFIG_ARCH_HAS_PMEM_API 253 void arch_wb_cache_pmem(void *addr, size_t size); 254 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 255 { 256 if (unlikely(!dax_write_cache_enabled(dax_dev))) 257 return; 258 259 arch_wb_cache_pmem(addr, size); 260 } 261 #else 262 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 263 { 264 } 265 #endif 266 EXPORT_SYMBOL_GPL(dax_flush); 267 268 void dax_write_cache(struct dax_device *dax_dev, bool wc) 269 { 270 if (wc) 271 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 272 else 273 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 274 } 275 EXPORT_SYMBOL_GPL(dax_write_cache); 276 277 bool dax_write_cache_enabled(struct dax_device *dax_dev) 278 { 279 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 280 } 281 EXPORT_SYMBOL_GPL(dax_write_cache_enabled); 282 283 bool dax_synchronous(struct dax_device *dax_dev) 284 { 285 return test_bit(DAXDEV_SYNC, &dax_dev->flags); 286 } 287 EXPORT_SYMBOL_GPL(dax_synchronous); 288 289 void set_dax_synchronous(struct dax_device *dax_dev) 290 { 291 set_bit(DAXDEV_SYNC, &dax_dev->flags); 292 } 293 EXPORT_SYMBOL_GPL(set_dax_synchronous); 294 295 void set_dax_nocache(struct dax_device *dax_dev) 296 { 297 set_bit(DAXDEV_NOCACHE, &dax_dev->flags); 298 } 299 EXPORT_SYMBOL_GPL(set_dax_nocache); 300 301 void set_dax_nomc(struct dax_device *dax_dev) 302 { 303 set_bit(DAXDEV_NOMC, &dax_dev->flags); 304 } 305 EXPORT_SYMBOL_GPL(set_dax_nomc); 306 307 bool dax_alive(struct dax_device *dax_dev) 308 { 309 lockdep_assert_held(&dax_srcu); 310 return test_bit(DAXDEV_ALIVE, &dax_dev->flags); 311 } 312 EXPORT_SYMBOL_GPL(dax_alive); 313 314 /* 315 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring 316 * that any fault handlers or operations that might have seen 317 * dax_alive(), have completed. Any operations that start after 318 * synchronize_srcu() has run will abort upon seeing !dax_alive(). 319 */ 320 void kill_dax(struct dax_device *dax_dev) 321 { 322 if (!dax_dev) 323 return; 324 325 if (dax_dev->holder_data != NULL) 326 dax_holder_notify_failure(dax_dev, 0, U64_MAX, 0); 327 328 clear_bit(DAXDEV_ALIVE, &dax_dev->flags); 329 synchronize_srcu(&dax_srcu); 330 331 /* clear holder data */ 332 dax_dev->holder_ops = NULL; 333 dax_dev->holder_data = NULL; 334 } 335 EXPORT_SYMBOL_GPL(kill_dax); 336 337 void run_dax(struct dax_device *dax_dev) 338 { 339 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 340 } 341 EXPORT_SYMBOL_GPL(run_dax); 342 343 static struct inode *dax_alloc_inode(struct super_block *sb) 344 { 345 struct dax_device *dax_dev; 346 struct inode *inode; 347 348 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL); 349 if (!dax_dev) 350 return NULL; 351 352 inode = &dax_dev->inode; 353 inode->i_rdev = 0; 354 return inode; 355 } 356 357 static struct dax_device *to_dax_dev(struct inode *inode) 358 { 359 return container_of(inode, struct dax_device, inode); 360 } 361 362 static void dax_free_inode(struct inode *inode) 363 { 364 struct dax_device *dax_dev = to_dax_dev(inode); 365 if (inode->i_rdev) 366 ida_simple_remove(&dax_minor_ida, iminor(inode)); 367 kmem_cache_free(dax_cache, dax_dev); 368 } 369 370 static void dax_destroy_inode(struct inode *inode) 371 { 372 struct dax_device *dax_dev = to_dax_dev(inode); 373 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags), 374 "kill_dax() must be called before final iput()\n"); 375 } 376 377 static const struct super_operations dax_sops = { 378 .statfs = simple_statfs, 379 .alloc_inode = dax_alloc_inode, 380 .destroy_inode = dax_destroy_inode, 381 .free_inode = dax_free_inode, 382 .drop_inode = generic_delete_inode, 383 }; 384 385 static int dax_init_fs_context(struct fs_context *fc) 386 { 387 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC); 388 if (!ctx) 389 return -ENOMEM; 390 ctx->ops = &dax_sops; 391 return 0; 392 } 393 394 static struct file_system_type dax_fs_type = { 395 .name = "dax", 396 .init_fs_context = dax_init_fs_context, 397 .kill_sb = kill_anon_super, 398 }; 399 400 static int dax_test(struct inode *inode, void *data) 401 { 402 dev_t devt = *(dev_t *) data; 403 404 return inode->i_rdev == devt; 405 } 406 407 static int dax_set(struct inode *inode, void *data) 408 { 409 dev_t devt = *(dev_t *) data; 410 411 inode->i_rdev = devt; 412 return 0; 413 } 414 415 static struct dax_device *dax_dev_get(dev_t devt) 416 { 417 struct dax_device *dax_dev; 418 struct inode *inode; 419 420 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), 421 dax_test, dax_set, &devt); 422 423 if (!inode) 424 return NULL; 425 426 dax_dev = to_dax_dev(inode); 427 if (inode->i_state & I_NEW) { 428 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 429 inode->i_cdev = &dax_dev->cdev; 430 inode->i_mode = S_IFCHR; 431 inode->i_flags = S_DAX; 432 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 433 unlock_new_inode(inode); 434 } 435 436 return dax_dev; 437 } 438 439 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops) 440 { 441 struct dax_device *dax_dev; 442 dev_t devt; 443 int minor; 444 445 if (WARN_ON_ONCE(ops && !ops->zero_page_range)) 446 return ERR_PTR(-EINVAL); 447 448 minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL); 449 if (minor < 0) 450 return ERR_PTR(-ENOMEM); 451 452 devt = MKDEV(MAJOR(dax_devt), minor); 453 dax_dev = dax_dev_get(devt); 454 if (!dax_dev) 455 goto err_dev; 456 457 dax_dev->ops = ops; 458 dax_dev->private = private; 459 return dax_dev; 460 461 err_dev: 462 ida_simple_remove(&dax_minor_ida, minor); 463 return ERR_PTR(-ENOMEM); 464 } 465 EXPORT_SYMBOL_GPL(alloc_dax); 466 467 void put_dax(struct dax_device *dax_dev) 468 { 469 if (!dax_dev) 470 return; 471 iput(&dax_dev->inode); 472 } 473 EXPORT_SYMBOL_GPL(put_dax); 474 475 /** 476 * dax_holder() - obtain the holder of a dax device 477 * @dax_dev: a dax_device instance 478 479 * Return: the holder's data which represents the holder if registered, 480 * otherwize NULL. 481 */ 482 void *dax_holder(struct dax_device *dax_dev) 483 { 484 return dax_dev->holder_data; 485 } 486 EXPORT_SYMBOL_GPL(dax_holder); 487 488 /** 489 * inode_dax: convert a public inode into its dax_dev 490 * @inode: An inode with i_cdev pointing to a dax_dev 491 * 492 * Note this is not equivalent to to_dax_dev() which is for private 493 * internal use where we know the inode filesystem type == dax_fs_type. 494 */ 495 struct dax_device *inode_dax(struct inode *inode) 496 { 497 struct cdev *cdev = inode->i_cdev; 498 499 return container_of(cdev, struct dax_device, cdev); 500 } 501 EXPORT_SYMBOL_GPL(inode_dax); 502 503 struct inode *dax_inode(struct dax_device *dax_dev) 504 { 505 return &dax_dev->inode; 506 } 507 EXPORT_SYMBOL_GPL(dax_inode); 508 509 void *dax_get_private(struct dax_device *dax_dev) 510 { 511 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags)) 512 return NULL; 513 return dax_dev->private; 514 } 515 EXPORT_SYMBOL_GPL(dax_get_private); 516 517 static void init_once(void *_dax_dev) 518 { 519 struct dax_device *dax_dev = _dax_dev; 520 struct inode *inode = &dax_dev->inode; 521 522 memset(dax_dev, 0, sizeof(*dax_dev)); 523 inode_init_once(inode); 524 } 525 526 static int dax_fs_init(void) 527 { 528 int rc; 529 530 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0, 531 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 532 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 533 init_once); 534 if (!dax_cache) 535 return -ENOMEM; 536 537 dax_mnt = kern_mount(&dax_fs_type); 538 if (IS_ERR(dax_mnt)) { 539 rc = PTR_ERR(dax_mnt); 540 goto err_mount; 541 } 542 dax_superblock = dax_mnt->mnt_sb; 543 544 return 0; 545 546 err_mount: 547 kmem_cache_destroy(dax_cache); 548 549 return rc; 550 } 551 552 static void dax_fs_exit(void) 553 { 554 kern_unmount(dax_mnt); 555 rcu_barrier(); 556 kmem_cache_destroy(dax_cache); 557 } 558 559 static int __init dax_core_init(void) 560 { 561 int rc; 562 563 rc = dax_fs_init(); 564 if (rc) 565 return rc; 566 567 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax"); 568 if (rc) 569 goto err_chrdev; 570 571 rc = dax_bus_init(); 572 if (rc) 573 goto err_bus; 574 return 0; 575 576 err_bus: 577 unregister_chrdev_region(dax_devt, MINORMASK+1); 578 err_chrdev: 579 dax_fs_exit(); 580 return 0; 581 } 582 583 static void __exit dax_core_exit(void) 584 { 585 dax_bus_exit(); 586 unregister_chrdev_region(dax_devt, MINORMASK+1); 587 ida_destroy(&dax_minor_ida); 588 dax_fs_exit(); 589 } 590 591 MODULE_AUTHOR("Intel Corporation"); 592 MODULE_LICENSE("GPL v2"); 593 subsys_initcall(dax_core_init); 594 module_exit(dax_core_exit); 595