xref: /openbmc/linux/drivers/crypto/talitos.c (revision a09d2831)
1 /*
2  * talitos - Freescale Integrated Security Engine (SEC) device driver
3  *
4  * Copyright (c) 2008 Freescale Semiconductor, Inc.
5  *
6  * Scatterlist Crypto API glue code copied from files with the following:
7  * Copyright (c) 2006-2007 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * Crypto algorithm registration code copied from hifn driver:
10  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
11  * All rights reserved.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/device.h>
32 #include <linux/interrupt.h>
33 #include <linux/crypto.h>
34 #include <linux/hw_random.h>
35 #include <linux/of_platform.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/io.h>
38 #include <linux/spinlock.h>
39 #include <linux/rtnetlink.h>
40 
41 #include <crypto/algapi.h>
42 #include <crypto/aes.h>
43 #include <crypto/des.h>
44 #include <crypto/sha.h>
45 #include <crypto/aead.h>
46 #include <crypto/authenc.h>
47 #include <crypto/skcipher.h>
48 #include <crypto/scatterwalk.h>
49 
50 #include "talitos.h"
51 
52 #define TALITOS_TIMEOUT 100000
53 #define TALITOS_MAX_DATA_LEN 65535
54 
55 #define DESC_TYPE(desc_hdr) ((be32_to_cpu(desc_hdr) >> 3) & 0x1f)
56 #define PRIMARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 28) & 0xf)
57 #define SECONDARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 16) & 0xf)
58 
59 /* descriptor pointer entry */
60 struct talitos_ptr {
61 	__be16 len;	/* length */
62 	u8 j_extent;	/* jump to sg link table and/or extent */
63 	u8 eptr;	/* extended address */
64 	__be32 ptr;	/* address */
65 };
66 
67 /* descriptor */
68 struct talitos_desc {
69 	__be32 hdr;			/* header high bits */
70 	__be32 hdr_lo;			/* header low bits */
71 	struct talitos_ptr ptr[7];	/* ptr/len pair array */
72 };
73 
74 /**
75  * talitos_request - descriptor submission request
76  * @desc: descriptor pointer (kernel virtual)
77  * @dma_desc: descriptor's physical bus address
78  * @callback: whom to call when descriptor processing is done
79  * @context: caller context (optional)
80  */
81 struct talitos_request {
82 	struct talitos_desc *desc;
83 	dma_addr_t dma_desc;
84 	void (*callback) (struct device *dev, struct talitos_desc *desc,
85 	                  void *context, int error);
86 	void *context;
87 };
88 
89 /* per-channel fifo management */
90 struct talitos_channel {
91 	/* request fifo */
92 	struct talitos_request *fifo;
93 
94 	/* number of requests pending in channel h/w fifo */
95 	atomic_t submit_count ____cacheline_aligned;
96 
97 	/* request submission (head) lock */
98 	spinlock_t head_lock ____cacheline_aligned;
99 	/* index to next free descriptor request */
100 	int head;
101 
102 	/* request release (tail) lock */
103 	spinlock_t tail_lock ____cacheline_aligned;
104 	/* index to next in-progress/done descriptor request */
105 	int tail;
106 };
107 
108 struct talitos_private {
109 	struct device *dev;
110 	struct of_device *ofdev;
111 	void __iomem *reg;
112 	int irq;
113 
114 	/* SEC version geometry (from device tree node) */
115 	unsigned int num_channels;
116 	unsigned int chfifo_len;
117 	unsigned int exec_units;
118 	unsigned int desc_types;
119 
120 	/* SEC Compatibility info */
121 	unsigned long features;
122 
123 	/*
124 	 * length of the request fifo
125 	 * fifo_len is chfifo_len rounded up to next power of 2
126 	 * so we can use bitwise ops to wrap
127 	 */
128 	unsigned int fifo_len;
129 
130 	struct talitos_channel *chan;
131 
132 	/* next channel to be assigned next incoming descriptor */
133 	atomic_t last_chan ____cacheline_aligned;
134 
135 	/* request callback tasklet */
136 	struct tasklet_struct done_task;
137 
138 	/* list of registered algorithms */
139 	struct list_head alg_list;
140 
141 	/* hwrng device */
142 	struct hwrng rng;
143 };
144 
145 /* .features flag */
146 #define TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT 0x00000001
147 #define TALITOS_FTR_HW_AUTH_CHECK 0x00000002
148 
149 static void to_talitos_ptr(struct talitos_ptr *talitos_ptr, dma_addr_t dma_addr)
150 {
151 	talitos_ptr->ptr = cpu_to_be32(lower_32_bits(dma_addr));
152 	talitos_ptr->eptr = cpu_to_be32(upper_32_bits(dma_addr));
153 }
154 
155 /*
156  * map virtual single (contiguous) pointer to h/w descriptor pointer
157  */
158 static void map_single_talitos_ptr(struct device *dev,
159 				   struct talitos_ptr *talitos_ptr,
160 				   unsigned short len, void *data,
161 				   unsigned char extent,
162 				   enum dma_data_direction dir)
163 {
164 	dma_addr_t dma_addr = dma_map_single(dev, data, len, dir);
165 
166 	talitos_ptr->len = cpu_to_be16(len);
167 	to_talitos_ptr(talitos_ptr, dma_addr);
168 	talitos_ptr->j_extent = extent;
169 }
170 
171 /*
172  * unmap bus single (contiguous) h/w descriptor pointer
173  */
174 static void unmap_single_talitos_ptr(struct device *dev,
175 				     struct talitos_ptr *talitos_ptr,
176 				     enum dma_data_direction dir)
177 {
178 	dma_unmap_single(dev, be32_to_cpu(talitos_ptr->ptr),
179 			 be16_to_cpu(talitos_ptr->len), dir);
180 }
181 
182 static int reset_channel(struct device *dev, int ch)
183 {
184 	struct talitos_private *priv = dev_get_drvdata(dev);
185 	unsigned int timeout = TALITOS_TIMEOUT;
186 
187 	setbits32(priv->reg + TALITOS_CCCR(ch), TALITOS_CCCR_RESET);
188 
189 	while ((in_be32(priv->reg + TALITOS_CCCR(ch)) & TALITOS_CCCR_RESET)
190 	       && --timeout)
191 		cpu_relax();
192 
193 	if (timeout == 0) {
194 		dev_err(dev, "failed to reset channel %d\n", ch);
195 		return -EIO;
196 	}
197 
198 	/* set 36-bit addressing, done writeback enable and done IRQ enable */
199 	setbits32(priv->reg + TALITOS_CCCR_LO(ch), TALITOS_CCCR_LO_EAE |
200 		  TALITOS_CCCR_LO_CDWE | TALITOS_CCCR_LO_CDIE);
201 
202 	/* and ICCR writeback, if available */
203 	if (priv->features & TALITOS_FTR_HW_AUTH_CHECK)
204 		setbits32(priv->reg + TALITOS_CCCR_LO(ch),
205 		          TALITOS_CCCR_LO_IWSE);
206 
207 	return 0;
208 }
209 
210 static int reset_device(struct device *dev)
211 {
212 	struct talitos_private *priv = dev_get_drvdata(dev);
213 	unsigned int timeout = TALITOS_TIMEOUT;
214 
215 	setbits32(priv->reg + TALITOS_MCR, TALITOS_MCR_SWR);
216 
217 	while ((in_be32(priv->reg + TALITOS_MCR) & TALITOS_MCR_SWR)
218 	       && --timeout)
219 		cpu_relax();
220 
221 	if (timeout == 0) {
222 		dev_err(dev, "failed to reset device\n");
223 		return -EIO;
224 	}
225 
226 	return 0;
227 }
228 
229 /*
230  * Reset and initialize the device
231  */
232 static int init_device(struct device *dev)
233 {
234 	struct talitos_private *priv = dev_get_drvdata(dev);
235 	int ch, err;
236 
237 	/*
238 	 * Master reset
239 	 * errata documentation: warning: certain SEC interrupts
240 	 * are not fully cleared by writing the MCR:SWR bit,
241 	 * set bit twice to completely reset
242 	 */
243 	err = reset_device(dev);
244 	if (err)
245 		return err;
246 
247 	err = reset_device(dev);
248 	if (err)
249 		return err;
250 
251 	/* reset channels */
252 	for (ch = 0; ch < priv->num_channels; ch++) {
253 		err = reset_channel(dev, ch);
254 		if (err)
255 			return err;
256 	}
257 
258 	/* enable channel done and error interrupts */
259 	setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT);
260 	setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT);
261 
262 	/* disable integrity check error interrupts (use writeback instead) */
263 	if (priv->features & TALITOS_FTR_HW_AUTH_CHECK)
264 		setbits32(priv->reg + TALITOS_MDEUICR_LO,
265 		          TALITOS_MDEUICR_LO_ICE);
266 
267 	return 0;
268 }
269 
270 /**
271  * talitos_submit - submits a descriptor to the device for processing
272  * @dev:	the SEC device to be used
273  * @desc:	the descriptor to be processed by the device
274  * @callback:	whom to call when processing is complete
275  * @context:	a handle for use by caller (optional)
276  *
277  * desc must contain valid dma-mapped (bus physical) address pointers.
278  * callback must check err and feedback in descriptor header
279  * for device processing status.
280  */
281 static int talitos_submit(struct device *dev, struct talitos_desc *desc,
282 			  void (*callback)(struct device *dev,
283 					   struct talitos_desc *desc,
284 					   void *context, int error),
285 			  void *context)
286 {
287 	struct talitos_private *priv = dev_get_drvdata(dev);
288 	struct talitos_request *request;
289 	unsigned long flags, ch;
290 	int head;
291 
292 	/* select done notification */
293 	desc->hdr |= DESC_HDR_DONE_NOTIFY;
294 
295 	/* emulate SEC's round-robin channel fifo polling scheme */
296 	ch = atomic_inc_return(&priv->last_chan) & (priv->num_channels - 1);
297 
298 	spin_lock_irqsave(&priv->chan[ch].head_lock, flags);
299 
300 	if (!atomic_inc_not_zero(&priv->chan[ch].submit_count)) {
301 		/* h/w fifo is full */
302 		spin_unlock_irqrestore(&priv->chan[ch].head_lock, flags);
303 		return -EAGAIN;
304 	}
305 
306 	head = priv->chan[ch].head;
307 	request = &priv->chan[ch].fifo[head];
308 
309 	/* map descriptor and save caller data */
310 	request->dma_desc = dma_map_single(dev, desc, sizeof(*desc),
311 					   DMA_BIDIRECTIONAL);
312 	request->callback = callback;
313 	request->context = context;
314 
315 	/* increment fifo head */
316 	priv->chan[ch].head = (priv->chan[ch].head + 1) & (priv->fifo_len - 1);
317 
318 	smp_wmb();
319 	request->desc = desc;
320 
321 	/* GO! */
322 	wmb();
323 	out_be32(priv->reg + TALITOS_FF(ch),
324 		 cpu_to_be32(upper_32_bits(request->dma_desc)));
325 	out_be32(priv->reg + TALITOS_FF_LO(ch),
326 		 cpu_to_be32(lower_32_bits(request->dma_desc)));
327 
328 	spin_unlock_irqrestore(&priv->chan[ch].head_lock, flags);
329 
330 	return -EINPROGRESS;
331 }
332 
333 /*
334  * process what was done, notify callback of error if not
335  */
336 static void flush_channel(struct device *dev, int ch, int error, int reset_ch)
337 {
338 	struct talitos_private *priv = dev_get_drvdata(dev);
339 	struct talitos_request *request, saved_req;
340 	unsigned long flags;
341 	int tail, status;
342 
343 	spin_lock_irqsave(&priv->chan[ch].tail_lock, flags);
344 
345 	tail = priv->chan[ch].tail;
346 	while (priv->chan[ch].fifo[tail].desc) {
347 		request = &priv->chan[ch].fifo[tail];
348 
349 		/* descriptors with their done bits set don't get the error */
350 		rmb();
351 		if ((request->desc->hdr & DESC_HDR_DONE) == DESC_HDR_DONE)
352 			status = 0;
353 		else
354 			if (!error)
355 				break;
356 			else
357 				status = error;
358 
359 		dma_unmap_single(dev, request->dma_desc,
360 				 sizeof(struct talitos_desc),
361 				 DMA_BIDIRECTIONAL);
362 
363 		/* copy entries so we can call callback outside lock */
364 		saved_req.desc = request->desc;
365 		saved_req.callback = request->callback;
366 		saved_req.context = request->context;
367 
368 		/* release request entry in fifo */
369 		smp_wmb();
370 		request->desc = NULL;
371 
372 		/* increment fifo tail */
373 		priv->chan[ch].tail = (tail + 1) & (priv->fifo_len - 1);
374 
375 		spin_unlock_irqrestore(&priv->chan[ch].tail_lock, flags);
376 
377 		atomic_dec(&priv->chan[ch].submit_count);
378 
379 		saved_req.callback(dev, saved_req.desc, saved_req.context,
380 				   status);
381 		/* channel may resume processing in single desc error case */
382 		if (error && !reset_ch && status == error)
383 			return;
384 		spin_lock_irqsave(&priv->chan[ch].tail_lock, flags);
385 		tail = priv->chan[ch].tail;
386 	}
387 
388 	spin_unlock_irqrestore(&priv->chan[ch].tail_lock, flags);
389 }
390 
391 /*
392  * process completed requests for channels that have done status
393  */
394 static void talitos_done(unsigned long data)
395 {
396 	struct device *dev = (struct device *)data;
397 	struct talitos_private *priv = dev_get_drvdata(dev);
398 	int ch;
399 
400 	for (ch = 0; ch < priv->num_channels; ch++)
401 		flush_channel(dev, ch, 0, 0);
402 
403 	/* At this point, all completed channels have been processed.
404 	 * Unmask done interrupts for channels completed later on.
405 	 */
406 	setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT);
407 	setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT);
408 }
409 
410 /*
411  * locate current (offending) descriptor
412  */
413 static struct talitos_desc *current_desc(struct device *dev, int ch)
414 {
415 	struct talitos_private *priv = dev_get_drvdata(dev);
416 	int tail = priv->chan[ch].tail;
417 	dma_addr_t cur_desc;
418 
419 	cur_desc = in_be32(priv->reg + TALITOS_CDPR_LO(ch));
420 
421 	while (priv->chan[ch].fifo[tail].dma_desc != cur_desc) {
422 		tail = (tail + 1) & (priv->fifo_len - 1);
423 		if (tail == priv->chan[ch].tail) {
424 			dev_err(dev, "couldn't locate current descriptor\n");
425 			return NULL;
426 		}
427 	}
428 
429 	return priv->chan[ch].fifo[tail].desc;
430 }
431 
432 /*
433  * user diagnostics; report root cause of error based on execution unit status
434  */
435 static void report_eu_error(struct device *dev, int ch,
436 			    struct talitos_desc *desc)
437 {
438 	struct talitos_private *priv = dev_get_drvdata(dev);
439 	int i;
440 
441 	switch (desc->hdr & DESC_HDR_SEL0_MASK) {
442 	case DESC_HDR_SEL0_AFEU:
443 		dev_err(dev, "AFEUISR 0x%08x_%08x\n",
444 			in_be32(priv->reg + TALITOS_AFEUISR),
445 			in_be32(priv->reg + TALITOS_AFEUISR_LO));
446 		break;
447 	case DESC_HDR_SEL0_DEU:
448 		dev_err(dev, "DEUISR 0x%08x_%08x\n",
449 			in_be32(priv->reg + TALITOS_DEUISR),
450 			in_be32(priv->reg + TALITOS_DEUISR_LO));
451 		break;
452 	case DESC_HDR_SEL0_MDEUA:
453 	case DESC_HDR_SEL0_MDEUB:
454 		dev_err(dev, "MDEUISR 0x%08x_%08x\n",
455 			in_be32(priv->reg + TALITOS_MDEUISR),
456 			in_be32(priv->reg + TALITOS_MDEUISR_LO));
457 		break;
458 	case DESC_HDR_SEL0_RNG:
459 		dev_err(dev, "RNGUISR 0x%08x_%08x\n",
460 			in_be32(priv->reg + TALITOS_RNGUISR),
461 			in_be32(priv->reg + TALITOS_RNGUISR_LO));
462 		break;
463 	case DESC_HDR_SEL0_PKEU:
464 		dev_err(dev, "PKEUISR 0x%08x_%08x\n",
465 			in_be32(priv->reg + TALITOS_PKEUISR),
466 			in_be32(priv->reg + TALITOS_PKEUISR_LO));
467 		break;
468 	case DESC_HDR_SEL0_AESU:
469 		dev_err(dev, "AESUISR 0x%08x_%08x\n",
470 			in_be32(priv->reg + TALITOS_AESUISR),
471 			in_be32(priv->reg + TALITOS_AESUISR_LO));
472 		break;
473 	case DESC_HDR_SEL0_CRCU:
474 		dev_err(dev, "CRCUISR 0x%08x_%08x\n",
475 			in_be32(priv->reg + TALITOS_CRCUISR),
476 			in_be32(priv->reg + TALITOS_CRCUISR_LO));
477 		break;
478 	case DESC_HDR_SEL0_KEU:
479 		dev_err(dev, "KEUISR 0x%08x_%08x\n",
480 			in_be32(priv->reg + TALITOS_KEUISR),
481 			in_be32(priv->reg + TALITOS_KEUISR_LO));
482 		break;
483 	}
484 
485 	switch (desc->hdr & DESC_HDR_SEL1_MASK) {
486 	case DESC_HDR_SEL1_MDEUA:
487 	case DESC_HDR_SEL1_MDEUB:
488 		dev_err(dev, "MDEUISR 0x%08x_%08x\n",
489 			in_be32(priv->reg + TALITOS_MDEUISR),
490 			in_be32(priv->reg + TALITOS_MDEUISR_LO));
491 		break;
492 	case DESC_HDR_SEL1_CRCU:
493 		dev_err(dev, "CRCUISR 0x%08x_%08x\n",
494 			in_be32(priv->reg + TALITOS_CRCUISR),
495 			in_be32(priv->reg + TALITOS_CRCUISR_LO));
496 		break;
497 	}
498 
499 	for (i = 0; i < 8; i++)
500 		dev_err(dev, "DESCBUF 0x%08x_%08x\n",
501 			in_be32(priv->reg + TALITOS_DESCBUF(ch) + 8*i),
502 			in_be32(priv->reg + TALITOS_DESCBUF_LO(ch) + 8*i));
503 }
504 
505 /*
506  * recover from error interrupts
507  */
508 static void talitos_error(unsigned long data, u32 isr, u32 isr_lo)
509 {
510 	struct device *dev = (struct device *)data;
511 	struct talitos_private *priv = dev_get_drvdata(dev);
512 	unsigned int timeout = TALITOS_TIMEOUT;
513 	int ch, error, reset_dev = 0, reset_ch = 0;
514 	u32 v, v_lo;
515 
516 	for (ch = 0; ch < priv->num_channels; ch++) {
517 		/* skip channels without errors */
518 		if (!(isr & (1 << (ch * 2 + 1))))
519 			continue;
520 
521 		error = -EINVAL;
522 
523 		v = in_be32(priv->reg + TALITOS_CCPSR(ch));
524 		v_lo = in_be32(priv->reg + TALITOS_CCPSR_LO(ch));
525 
526 		if (v_lo & TALITOS_CCPSR_LO_DOF) {
527 			dev_err(dev, "double fetch fifo overflow error\n");
528 			error = -EAGAIN;
529 			reset_ch = 1;
530 		}
531 		if (v_lo & TALITOS_CCPSR_LO_SOF) {
532 			/* h/w dropped descriptor */
533 			dev_err(dev, "single fetch fifo overflow error\n");
534 			error = -EAGAIN;
535 		}
536 		if (v_lo & TALITOS_CCPSR_LO_MDTE)
537 			dev_err(dev, "master data transfer error\n");
538 		if (v_lo & TALITOS_CCPSR_LO_SGDLZ)
539 			dev_err(dev, "s/g data length zero error\n");
540 		if (v_lo & TALITOS_CCPSR_LO_FPZ)
541 			dev_err(dev, "fetch pointer zero error\n");
542 		if (v_lo & TALITOS_CCPSR_LO_IDH)
543 			dev_err(dev, "illegal descriptor header error\n");
544 		if (v_lo & TALITOS_CCPSR_LO_IEU)
545 			dev_err(dev, "invalid execution unit error\n");
546 		if (v_lo & TALITOS_CCPSR_LO_EU)
547 			report_eu_error(dev, ch, current_desc(dev, ch));
548 		if (v_lo & TALITOS_CCPSR_LO_GB)
549 			dev_err(dev, "gather boundary error\n");
550 		if (v_lo & TALITOS_CCPSR_LO_GRL)
551 			dev_err(dev, "gather return/length error\n");
552 		if (v_lo & TALITOS_CCPSR_LO_SB)
553 			dev_err(dev, "scatter boundary error\n");
554 		if (v_lo & TALITOS_CCPSR_LO_SRL)
555 			dev_err(dev, "scatter return/length error\n");
556 
557 		flush_channel(dev, ch, error, reset_ch);
558 
559 		if (reset_ch) {
560 			reset_channel(dev, ch);
561 		} else {
562 			setbits32(priv->reg + TALITOS_CCCR(ch),
563 				  TALITOS_CCCR_CONT);
564 			setbits32(priv->reg + TALITOS_CCCR_LO(ch), 0);
565 			while ((in_be32(priv->reg + TALITOS_CCCR(ch)) &
566 			       TALITOS_CCCR_CONT) && --timeout)
567 				cpu_relax();
568 			if (timeout == 0) {
569 				dev_err(dev, "failed to restart channel %d\n",
570 					ch);
571 				reset_dev = 1;
572 			}
573 		}
574 	}
575 	if (reset_dev || isr & ~TALITOS_ISR_CHERR || isr_lo) {
576 		dev_err(dev, "done overflow, internal time out, or rngu error: "
577 		        "ISR 0x%08x_%08x\n", isr, isr_lo);
578 
579 		/* purge request queues */
580 		for (ch = 0; ch < priv->num_channels; ch++)
581 			flush_channel(dev, ch, -EIO, 1);
582 
583 		/* reset and reinitialize the device */
584 		init_device(dev);
585 	}
586 }
587 
588 static irqreturn_t talitos_interrupt(int irq, void *data)
589 {
590 	struct device *dev = data;
591 	struct talitos_private *priv = dev_get_drvdata(dev);
592 	u32 isr, isr_lo;
593 
594 	isr = in_be32(priv->reg + TALITOS_ISR);
595 	isr_lo = in_be32(priv->reg + TALITOS_ISR_LO);
596 	/* Acknowledge interrupt */
597 	out_be32(priv->reg + TALITOS_ICR, isr);
598 	out_be32(priv->reg + TALITOS_ICR_LO, isr_lo);
599 
600 	if (unlikely((isr & ~TALITOS_ISR_CHDONE) || isr_lo))
601 		talitos_error((unsigned long)data, isr, isr_lo);
602 	else
603 		if (likely(isr & TALITOS_ISR_CHDONE)) {
604 			/* mask further done interrupts. */
605 			clrbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_DONE);
606 			/* done_task will unmask done interrupts at exit */
607 			tasklet_schedule(&priv->done_task);
608 		}
609 
610 	return (isr || isr_lo) ? IRQ_HANDLED : IRQ_NONE;
611 }
612 
613 /*
614  * hwrng
615  */
616 static int talitos_rng_data_present(struct hwrng *rng, int wait)
617 {
618 	struct device *dev = (struct device *)rng->priv;
619 	struct talitos_private *priv = dev_get_drvdata(dev);
620 	u32 ofl;
621 	int i;
622 
623 	for (i = 0; i < 20; i++) {
624 		ofl = in_be32(priv->reg + TALITOS_RNGUSR_LO) &
625 		      TALITOS_RNGUSR_LO_OFL;
626 		if (ofl || !wait)
627 			break;
628 		udelay(10);
629 	}
630 
631 	return !!ofl;
632 }
633 
634 static int talitos_rng_data_read(struct hwrng *rng, u32 *data)
635 {
636 	struct device *dev = (struct device *)rng->priv;
637 	struct talitos_private *priv = dev_get_drvdata(dev);
638 
639 	/* rng fifo requires 64-bit accesses */
640 	*data = in_be32(priv->reg + TALITOS_RNGU_FIFO);
641 	*data = in_be32(priv->reg + TALITOS_RNGU_FIFO_LO);
642 
643 	return sizeof(u32);
644 }
645 
646 static int talitos_rng_init(struct hwrng *rng)
647 {
648 	struct device *dev = (struct device *)rng->priv;
649 	struct talitos_private *priv = dev_get_drvdata(dev);
650 	unsigned int timeout = TALITOS_TIMEOUT;
651 
652 	setbits32(priv->reg + TALITOS_RNGURCR_LO, TALITOS_RNGURCR_LO_SR);
653 	while (!(in_be32(priv->reg + TALITOS_RNGUSR_LO) & TALITOS_RNGUSR_LO_RD)
654 	       && --timeout)
655 		cpu_relax();
656 	if (timeout == 0) {
657 		dev_err(dev, "failed to reset rng hw\n");
658 		return -ENODEV;
659 	}
660 
661 	/* start generating */
662 	setbits32(priv->reg + TALITOS_RNGUDSR_LO, 0);
663 
664 	return 0;
665 }
666 
667 static int talitos_register_rng(struct device *dev)
668 {
669 	struct talitos_private *priv = dev_get_drvdata(dev);
670 
671 	priv->rng.name		= dev_driver_string(dev),
672 	priv->rng.init		= talitos_rng_init,
673 	priv->rng.data_present	= talitos_rng_data_present,
674 	priv->rng.data_read	= talitos_rng_data_read,
675 	priv->rng.priv		= (unsigned long)dev;
676 
677 	return hwrng_register(&priv->rng);
678 }
679 
680 static void talitos_unregister_rng(struct device *dev)
681 {
682 	struct talitos_private *priv = dev_get_drvdata(dev);
683 
684 	hwrng_unregister(&priv->rng);
685 }
686 
687 /*
688  * crypto alg
689  */
690 #define TALITOS_CRA_PRIORITY		3000
691 #define TALITOS_MAX_KEY_SIZE		64
692 #define TALITOS_MAX_IV_LENGTH		16 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
693 
694 #define MD5_DIGEST_SIZE   16
695 
696 struct talitos_ctx {
697 	struct device *dev;
698 	__be32 desc_hdr_template;
699 	u8 key[TALITOS_MAX_KEY_SIZE];
700 	u8 iv[TALITOS_MAX_IV_LENGTH];
701 	unsigned int keylen;
702 	unsigned int enckeylen;
703 	unsigned int authkeylen;
704 	unsigned int authsize;
705 };
706 
707 static int aead_setauthsize(struct crypto_aead *authenc,
708 			    unsigned int authsize)
709 {
710 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
711 
712 	ctx->authsize = authsize;
713 
714 	return 0;
715 }
716 
717 static int aead_setkey(struct crypto_aead *authenc,
718 		       const u8 *key, unsigned int keylen)
719 {
720 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
721 	struct rtattr *rta = (void *)key;
722 	struct crypto_authenc_key_param *param;
723 	unsigned int authkeylen;
724 	unsigned int enckeylen;
725 
726 	if (!RTA_OK(rta, keylen))
727 		goto badkey;
728 
729 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
730 		goto badkey;
731 
732 	if (RTA_PAYLOAD(rta) < sizeof(*param))
733 		goto badkey;
734 
735 	param = RTA_DATA(rta);
736 	enckeylen = be32_to_cpu(param->enckeylen);
737 
738 	key += RTA_ALIGN(rta->rta_len);
739 	keylen -= RTA_ALIGN(rta->rta_len);
740 
741 	if (keylen < enckeylen)
742 		goto badkey;
743 
744 	authkeylen = keylen - enckeylen;
745 
746 	if (keylen > TALITOS_MAX_KEY_SIZE)
747 		goto badkey;
748 
749 	memcpy(&ctx->key, key, keylen);
750 
751 	ctx->keylen = keylen;
752 	ctx->enckeylen = enckeylen;
753 	ctx->authkeylen = authkeylen;
754 
755 	return 0;
756 
757 badkey:
758 	crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN);
759 	return -EINVAL;
760 }
761 
762 /*
763  * talitos_edesc - s/w-extended descriptor
764  * @src_nents: number of segments in input scatterlist
765  * @dst_nents: number of segments in output scatterlist
766  * @dma_len: length of dma mapped link_tbl space
767  * @dma_link_tbl: bus physical address of link_tbl
768  * @desc: h/w descriptor
769  * @link_tbl: input and output h/w link tables (if {src,dst}_nents > 1)
770  *
771  * if decrypting (with authcheck), or either one of src_nents or dst_nents
772  * is greater than 1, an integrity check value is concatenated to the end
773  * of link_tbl data
774  */
775 struct talitos_edesc {
776 	int src_nents;
777 	int dst_nents;
778 	int src_is_chained;
779 	int dst_is_chained;
780 	int dma_len;
781 	dma_addr_t dma_link_tbl;
782 	struct talitos_desc desc;
783 	struct talitos_ptr link_tbl[0];
784 };
785 
786 static int talitos_map_sg(struct device *dev, struct scatterlist *sg,
787 			  unsigned int nents, enum dma_data_direction dir,
788 			  int chained)
789 {
790 	if (unlikely(chained))
791 		while (sg) {
792 			dma_map_sg(dev, sg, 1, dir);
793 			sg = scatterwalk_sg_next(sg);
794 		}
795 	else
796 		dma_map_sg(dev, sg, nents, dir);
797 	return nents;
798 }
799 
800 static void talitos_unmap_sg_chain(struct device *dev, struct scatterlist *sg,
801 				   enum dma_data_direction dir)
802 {
803 	while (sg) {
804 		dma_unmap_sg(dev, sg, 1, dir);
805 		sg = scatterwalk_sg_next(sg);
806 	}
807 }
808 
809 static void talitos_sg_unmap(struct device *dev,
810 			     struct talitos_edesc *edesc,
811 			     struct scatterlist *src,
812 			     struct scatterlist *dst)
813 {
814 	unsigned int src_nents = edesc->src_nents ? : 1;
815 	unsigned int dst_nents = edesc->dst_nents ? : 1;
816 
817 	if (src != dst) {
818 		if (edesc->src_is_chained)
819 			talitos_unmap_sg_chain(dev, src, DMA_TO_DEVICE);
820 		else
821 			dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
822 
823 		if (edesc->dst_is_chained)
824 			talitos_unmap_sg_chain(dev, dst, DMA_FROM_DEVICE);
825 		else
826 			dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
827 	} else
828 		if (edesc->src_is_chained)
829 			talitos_unmap_sg_chain(dev, src, DMA_BIDIRECTIONAL);
830 		else
831 			dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
832 }
833 
834 static void ipsec_esp_unmap(struct device *dev,
835 			    struct talitos_edesc *edesc,
836 			    struct aead_request *areq)
837 {
838 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[6], DMA_FROM_DEVICE);
839 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[3], DMA_TO_DEVICE);
840 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE);
841 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[0], DMA_TO_DEVICE);
842 
843 	dma_unmap_sg(dev, areq->assoc, 1, DMA_TO_DEVICE);
844 
845 	talitos_sg_unmap(dev, edesc, areq->src, areq->dst);
846 
847 	if (edesc->dma_len)
848 		dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
849 				 DMA_BIDIRECTIONAL);
850 }
851 
852 /*
853  * ipsec_esp descriptor callbacks
854  */
855 static void ipsec_esp_encrypt_done(struct device *dev,
856 				   struct talitos_desc *desc, void *context,
857 				   int err)
858 {
859 	struct aead_request *areq = context;
860 	struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
861 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
862 	struct talitos_edesc *edesc;
863 	struct scatterlist *sg;
864 	void *icvdata;
865 
866 	edesc = container_of(desc, struct talitos_edesc, desc);
867 
868 	ipsec_esp_unmap(dev, edesc, areq);
869 
870 	/* copy the generated ICV to dst */
871 	if (edesc->dma_len) {
872 		icvdata = &edesc->link_tbl[edesc->src_nents +
873 					   edesc->dst_nents + 2];
874 		sg = sg_last(areq->dst, edesc->dst_nents);
875 		memcpy((char *)sg_virt(sg) + sg->length - ctx->authsize,
876 		       icvdata, ctx->authsize);
877 	}
878 
879 	kfree(edesc);
880 
881 	aead_request_complete(areq, err);
882 }
883 
884 static void ipsec_esp_decrypt_swauth_done(struct device *dev,
885 					  struct talitos_desc *desc,
886 					  void *context, int err)
887 {
888 	struct aead_request *req = context;
889 	struct crypto_aead *authenc = crypto_aead_reqtfm(req);
890 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
891 	struct talitos_edesc *edesc;
892 	struct scatterlist *sg;
893 	void *icvdata;
894 
895 	edesc = container_of(desc, struct talitos_edesc, desc);
896 
897 	ipsec_esp_unmap(dev, edesc, req);
898 
899 	if (!err) {
900 		/* auth check */
901 		if (edesc->dma_len)
902 			icvdata = &edesc->link_tbl[edesc->src_nents +
903 						   edesc->dst_nents + 2];
904 		else
905 			icvdata = &edesc->link_tbl[0];
906 
907 		sg = sg_last(req->dst, edesc->dst_nents ? : 1);
908 		err = memcmp(icvdata, (char *)sg_virt(sg) + sg->length -
909 			     ctx->authsize, ctx->authsize) ? -EBADMSG : 0;
910 	}
911 
912 	kfree(edesc);
913 
914 	aead_request_complete(req, err);
915 }
916 
917 static void ipsec_esp_decrypt_hwauth_done(struct device *dev,
918 					  struct talitos_desc *desc,
919 					  void *context, int err)
920 {
921 	struct aead_request *req = context;
922 	struct talitos_edesc *edesc;
923 
924 	edesc = container_of(desc, struct talitos_edesc, desc);
925 
926 	ipsec_esp_unmap(dev, edesc, req);
927 
928 	/* check ICV auth status */
929 	if (!err && ((desc->hdr_lo & DESC_HDR_LO_ICCR1_MASK) !=
930 		     DESC_HDR_LO_ICCR1_PASS))
931 		err = -EBADMSG;
932 
933 	kfree(edesc);
934 
935 	aead_request_complete(req, err);
936 }
937 
938 /*
939  * convert scatterlist to SEC h/w link table format
940  * stop at cryptlen bytes
941  */
942 static int sg_to_link_tbl(struct scatterlist *sg, int sg_count,
943 			   int cryptlen, struct talitos_ptr *link_tbl_ptr)
944 {
945 	int n_sg = sg_count;
946 
947 	while (n_sg--) {
948 		to_talitos_ptr(link_tbl_ptr, sg_dma_address(sg));
949 		link_tbl_ptr->len = cpu_to_be16(sg_dma_len(sg));
950 		link_tbl_ptr->j_extent = 0;
951 		link_tbl_ptr++;
952 		cryptlen -= sg_dma_len(sg);
953 		sg = scatterwalk_sg_next(sg);
954 	}
955 
956 	/* adjust (decrease) last one (or two) entry's len to cryptlen */
957 	link_tbl_ptr--;
958 	while (be16_to_cpu(link_tbl_ptr->len) <= (-cryptlen)) {
959 		/* Empty this entry, and move to previous one */
960 		cryptlen += be16_to_cpu(link_tbl_ptr->len);
961 		link_tbl_ptr->len = 0;
962 		sg_count--;
963 		link_tbl_ptr--;
964 	}
965 	link_tbl_ptr->len = cpu_to_be16(be16_to_cpu(link_tbl_ptr->len)
966 					+ cryptlen);
967 
968 	/* tag end of link table */
969 	link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN;
970 
971 	return sg_count;
972 }
973 
974 /*
975  * fill in and submit ipsec_esp descriptor
976  */
977 static int ipsec_esp(struct talitos_edesc *edesc, struct aead_request *areq,
978 		     u8 *giv, u64 seq,
979 		     void (*callback) (struct device *dev,
980 				       struct talitos_desc *desc,
981 				       void *context, int error))
982 {
983 	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
984 	struct talitos_ctx *ctx = crypto_aead_ctx(aead);
985 	struct device *dev = ctx->dev;
986 	struct talitos_desc *desc = &edesc->desc;
987 	unsigned int cryptlen = areq->cryptlen;
988 	unsigned int authsize = ctx->authsize;
989 	unsigned int ivsize = crypto_aead_ivsize(aead);
990 	int sg_count, ret;
991 	int sg_link_tbl_len;
992 
993 	/* hmac key */
994 	map_single_talitos_ptr(dev, &desc->ptr[0], ctx->authkeylen, &ctx->key,
995 			       0, DMA_TO_DEVICE);
996 	/* hmac data */
997 	map_single_talitos_ptr(dev, &desc->ptr[1], areq->assoclen + ivsize,
998 			       sg_virt(areq->assoc), 0, DMA_TO_DEVICE);
999 	/* cipher iv */
1000 	map_single_talitos_ptr(dev, &desc->ptr[2], ivsize, giv ?: areq->iv, 0,
1001 			       DMA_TO_DEVICE);
1002 
1003 	/* cipher key */
1004 	map_single_talitos_ptr(dev, &desc->ptr[3], ctx->enckeylen,
1005 			       (char *)&ctx->key + ctx->authkeylen, 0,
1006 			       DMA_TO_DEVICE);
1007 
1008 	/*
1009 	 * cipher in
1010 	 * map and adjust cipher len to aead request cryptlen.
1011 	 * extent is bytes of HMAC postpended to ciphertext,
1012 	 * typically 12 for ipsec
1013 	 */
1014 	desc->ptr[4].len = cpu_to_be16(cryptlen);
1015 	desc->ptr[4].j_extent = authsize;
1016 
1017 	sg_count = talitos_map_sg(dev, areq->src, edesc->src_nents ? : 1,
1018 				  (areq->src == areq->dst) ? DMA_BIDIRECTIONAL
1019 							   : DMA_TO_DEVICE,
1020 				  edesc->src_is_chained);
1021 
1022 	if (sg_count == 1) {
1023 		to_talitos_ptr(&desc->ptr[4], sg_dma_address(areq->src));
1024 	} else {
1025 		sg_link_tbl_len = cryptlen;
1026 
1027 		if (edesc->desc.hdr & DESC_HDR_MODE1_MDEU_CICV)
1028 			sg_link_tbl_len = cryptlen + authsize;
1029 
1030 		sg_count = sg_to_link_tbl(areq->src, sg_count, sg_link_tbl_len,
1031 					  &edesc->link_tbl[0]);
1032 		if (sg_count > 1) {
1033 			desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP;
1034 			to_talitos_ptr(&desc->ptr[4], edesc->dma_link_tbl);
1035 			dma_sync_single_for_device(dev, edesc->dma_link_tbl,
1036 						   edesc->dma_len,
1037 						   DMA_BIDIRECTIONAL);
1038 		} else {
1039 			/* Only one segment now, so no link tbl needed */
1040 			to_talitos_ptr(&desc->ptr[4],
1041 				       sg_dma_address(areq->src));
1042 		}
1043 	}
1044 
1045 	/* cipher out */
1046 	desc->ptr[5].len = cpu_to_be16(cryptlen);
1047 	desc->ptr[5].j_extent = authsize;
1048 
1049 	if (areq->src != areq->dst)
1050 		sg_count = talitos_map_sg(dev, areq->dst,
1051 					  edesc->dst_nents ? : 1,
1052 					  DMA_FROM_DEVICE,
1053 					  edesc->dst_is_chained);
1054 
1055 	if (sg_count == 1) {
1056 		to_talitos_ptr(&desc->ptr[5], sg_dma_address(areq->dst));
1057 	} else {
1058 		struct talitos_ptr *link_tbl_ptr =
1059 			&edesc->link_tbl[edesc->src_nents + 1];
1060 
1061 		to_talitos_ptr(&desc->ptr[5], edesc->dma_link_tbl +
1062 			       (edesc->src_nents + 1) *
1063 			       sizeof(struct talitos_ptr));
1064 		sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen,
1065 					  link_tbl_ptr);
1066 
1067 		/* Add an entry to the link table for ICV data */
1068 		link_tbl_ptr += sg_count - 1;
1069 		link_tbl_ptr->j_extent = 0;
1070 		sg_count++;
1071 		link_tbl_ptr++;
1072 		link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN;
1073 		link_tbl_ptr->len = cpu_to_be16(authsize);
1074 
1075 		/* icv data follows link tables */
1076 		to_talitos_ptr(link_tbl_ptr, edesc->dma_link_tbl +
1077 			       (edesc->src_nents + edesc->dst_nents + 2) *
1078 			       sizeof(struct talitos_ptr));
1079 		desc->ptr[5].j_extent |= DESC_PTR_LNKTBL_JUMP;
1080 		dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl,
1081 					   edesc->dma_len, DMA_BIDIRECTIONAL);
1082 	}
1083 
1084 	/* iv out */
1085 	map_single_talitos_ptr(dev, &desc->ptr[6], ivsize, ctx->iv, 0,
1086 			       DMA_FROM_DEVICE);
1087 
1088 	ret = talitos_submit(dev, desc, callback, areq);
1089 	if (ret != -EINPROGRESS) {
1090 		ipsec_esp_unmap(dev, edesc, areq);
1091 		kfree(edesc);
1092 	}
1093 	return ret;
1094 }
1095 
1096 /*
1097  * derive number of elements in scatterlist
1098  */
1099 static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
1100 {
1101 	struct scatterlist *sg = sg_list;
1102 	int sg_nents = 0;
1103 
1104 	*chained = 0;
1105 	while (nbytes > 0) {
1106 		sg_nents++;
1107 		nbytes -= sg->length;
1108 		if (!sg_is_last(sg) && (sg + 1)->length == 0)
1109 			*chained = 1;
1110 		sg = scatterwalk_sg_next(sg);
1111 	}
1112 
1113 	return sg_nents;
1114 }
1115 
1116 /*
1117  * allocate and map the extended descriptor
1118  */
1119 static struct talitos_edesc *talitos_edesc_alloc(struct device *dev,
1120 						 struct scatterlist *src,
1121 						 struct scatterlist *dst,
1122 						 unsigned int cryptlen,
1123 						 unsigned int authsize,
1124 						 int icv_stashing,
1125 						 u32 cryptoflags)
1126 {
1127 	struct talitos_edesc *edesc;
1128 	int src_nents, dst_nents, alloc_len, dma_len;
1129 	int src_chained, dst_chained = 0;
1130 	gfp_t flags = cryptoflags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
1131 		      GFP_ATOMIC;
1132 
1133 	if (cryptlen + authsize > TALITOS_MAX_DATA_LEN) {
1134 		dev_err(dev, "length exceeds h/w max limit\n");
1135 		return ERR_PTR(-EINVAL);
1136 	}
1137 
1138 	src_nents = sg_count(src, cryptlen + authsize, &src_chained);
1139 	src_nents = (src_nents == 1) ? 0 : src_nents;
1140 
1141 	if (dst == src) {
1142 		dst_nents = src_nents;
1143 	} else {
1144 		dst_nents = sg_count(dst, cryptlen + authsize, &dst_chained);
1145 		dst_nents = (dst_nents == 1) ? 0 : dst_nents;
1146 	}
1147 
1148 	/*
1149 	 * allocate space for base edesc plus the link tables,
1150 	 * allowing for two separate entries for ICV and generated ICV (+ 2),
1151 	 * and the ICV data itself
1152 	 */
1153 	alloc_len = sizeof(struct talitos_edesc);
1154 	if (src_nents || dst_nents) {
1155 		dma_len = (src_nents + dst_nents + 2) *
1156 				 sizeof(struct talitos_ptr) + authsize;
1157 		alloc_len += dma_len;
1158 	} else {
1159 		dma_len = 0;
1160 		alloc_len += icv_stashing ? authsize : 0;
1161 	}
1162 
1163 	edesc = kmalloc(alloc_len, GFP_DMA | flags);
1164 	if (!edesc) {
1165 		dev_err(dev, "could not allocate edescriptor\n");
1166 		return ERR_PTR(-ENOMEM);
1167 	}
1168 
1169 	edesc->src_nents = src_nents;
1170 	edesc->dst_nents = dst_nents;
1171 	edesc->src_is_chained = src_chained;
1172 	edesc->dst_is_chained = dst_chained;
1173 	edesc->dma_len = dma_len;
1174 	edesc->dma_link_tbl = dma_map_single(dev, &edesc->link_tbl[0],
1175 					     edesc->dma_len, DMA_BIDIRECTIONAL);
1176 
1177 	return edesc;
1178 }
1179 
1180 static struct talitos_edesc *aead_edesc_alloc(struct aead_request *areq,
1181 					      int icv_stashing)
1182 {
1183 	struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
1184 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
1185 
1186 	return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst,
1187 				   areq->cryptlen, ctx->authsize, icv_stashing,
1188 				   areq->base.flags);
1189 }
1190 
1191 static int aead_encrypt(struct aead_request *req)
1192 {
1193 	struct crypto_aead *authenc = crypto_aead_reqtfm(req);
1194 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
1195 	struct talitos_edesc *edesc;
1196 
1197 	/* allocate extended descriptor */
1198 	edesc = aead_edesc_alloc(req, 0);
1199 	if (IS_ERR(edesc))
1200 		return PTR_ERR(edesc);
1201 
1202 	/* set encrypt */
1203 	edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
1204 
1205 	return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_encrypt_done);
1206 }
1207 
1208 static int aead_decrypt(struct aead_request *req)
1209 {
1210 	struct crypto_aead *authenc = crypto_aead_reqtfm(req);
1211 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
1212 	unsigned int authsize = ctx->authsize;
1213 	struct talitos_private *priv = dev_get_drvdata(ctx->dev);
1214 	struct talitos_edesc *edesc;
1215 	struct scatterlist *sg;
1216 	void *icvdata;
1217 
1218 	req->cryptlen -= authsize;
1219 
1220 	/* allocate extended descriptor */
1221 	edesc = aead_edesc_alloc(req, 1);
1222 	if (IS_ERR(edesc))
1223 		return PTR_ERR(edesc);
1224 
1225 	if ((priv->features & TALITOS_FTR_HW_AUTH_CHECK) &&
1226 	    ((!edesc->src_nents && !edesc->dst_nents) ||
1227 	     priv->features & TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT)) {
1228 
1229 		/* decrypt and check the ICV */
1230 		edesc->desc.hdr = ctx->desc_hdr_template |
1231 				  DESC_HDR_DIR_INBOUND |
1232 				  DESC_HDR_MODE1_MDEU_CICV;
1233 
1234 		/* reset integrity check result bits */
1235 		edesc->desc.hdr_lo = 0;
1236 
1237 		return ipsec_esp(edesc, req, NULL, 0,
1238 				 ipsec_esp_decrypt_hwauth_done);
1239 
1240 	}
1241 
1242 	/* Have to check the ICV with software */
1243 	edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
1244 
1245 	/* stash incoming ICV for later cmp with ICV generated by the h/w */
1246 	if (edesc->dma_len)
1247 		icvdata = &edesc->link_tbl[edesc->src_nents +
1248 					   edesc->dst_nents + 2];
1249 	else
1250 		icvdata = &edesc->link_tbl[0];
1251 
1252 	sg = sg_last(req->src, edesc->src_nents ? : 1);
1253 
1254 	memcpy(icvdata, (char *)sg_virt(sg) + sg->length - ctx->authsize,
1255 	       ctx->authsize);
1256 
1257 	return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_decrypt_swauth_done);
1258 }
1259 
1260 static int aead_givencrypt(struct aead_givcrypt_request *req)
1261 {
1262 	struct aead_request *areq = &req->areq;
1263 	struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
1264 	struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
1265 	struct talitos_edesc *edesc;
1266 
1267 	/* allocate extended descriptor */
1268 	edesc = aead_edesc_alloc(areq, 0);
1269 	if (IS_ERR(edesc))
1270 		return PTR_ERR(edesc);
1271 
1272 	/* set encrypt */
1273 	edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
1274 
1275 	memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
1276 	/* avoid consecutive packets going out with same IV */
1277 	*(__be64 *)req->giv ^= cpu_to_be64(req->seq);
1278 
1279 	return ipsec_esp(edesc, areq, req->giv, req->seq,
1280 			 ipsec_esp_encrypt_done);
1281 }
1282 
1283 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1284 			     const u8 *key, unsigned int keylen)
1285 {
1286 	struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1287 	struct ablkcipher_alg *alg = crypto_ablkcipher_alg(cipher);
1288 
1289 	if (keylen > TALITOS_MAX_KEY_SIZE)
1290 		goto badkey;
1291 
1292 	if (keylen < alg->min_keysize || keylen > alg->max_keysize)
1293 		goto badkey;
1294 
1295 	memcpy(&ctx->key, key, keylen);
1296 	ctx->keylen = keylen;
1297 
1298 	return 0;
1299 
1300 badkey:
1301 	crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1302 	return -EINVAL;
1303 }
1304 
1305 static void common_nonsnoop_unmap(struct device *dev,
1306 				  struct talitos_edesc *edesc,
1307 				  struct ablkcipher_request *areq)
1308 {
1309 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[5], DMA_FROM_DEVICE);
1310 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE);
1311 	unmap_single_talitos_ptr(dev, &edesc->desc.ptr[1], DMA_TO_DEVICE);
1312 
1313 	talitos_sg_unmap(dev, edesc, areq->src, areq->dst);
1314 
1315 	if (edesc->dma_len)
1316 		dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
1317 				 DMA_BIDIRECTIONAL);
1318 }
1319 
1320 static void ablkcipher_done(struct device *dev,
1321 			    struct talitos_desc *desc, void *context,
1322 			    int err)
1323 {
1324 	struct ablkcipher_request *areq = context;
1325 	struct talitos_edesc *edesc;
1326 
1327 	edesc = container_of(desc, struct talitos_edesc, desc);
1328 
1329 	common_nonsnoop_unmap(dev, edesc, areq);
1330 
1331 	kfree(edesc);
1332 
1333 	areq->base.complete(&areq->base, err);
1334 }
1335 
1336 static int common_nonsnoop(struct talitos_edesc *edesc,
1337 			   struct ablkcipher_request *areq,
1338 			   u8 *giv,
1339 			   void (*callback) (struct device *dev,
1340 					     struct talitos_desc *desc,
1341 					     void *context, int error))
1342 {
1343 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1344 	struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1345 	struct device *dev = ctx->dev;
1346 	struct talitos_desc *desc = &edesc->desc;
1347 	unsigned int cryptlen = areq->nbytes;
1348 	unsigned int ivsize;
1349 	int sg_count, ret;
1350 
1351 	/* first DWORD empty */
1352 	desc->ptr[0].len = 0;
1353 	to_talitos_ptr(&desc->ptr[0], 0);
1354 	desc->ptr[0].j_extent = 0;
1355 
1356 	/* cipher iv */
1357 	ivsize = crypto_ablkcipher_ivsize(cipher);
1358 	map_single_talitos_ptr(dev, &desc->ptr[1], ivsize, giv ?: areq->info, 0,
1359 			       DMA_TO_DEVICE);
1360 
1361 	/* cipher key */
1362 	map_single_talitos_ptr(dev, &desc->ptr[2], ctx->keylen,
1363 			       (char *)&ctx->key, 0, DMA_TO_DEVICE);
1364 
1365 	/*
1366 	 * cipher in
1367 	 */
1368 	desc->ptr[3].len = cpu_to_be16(cryptlen);
1369 	desc->ptr[3].j_extent = 0;
1370 
1371 	sg_count = talitos_map_sg(dev, areq->src, edesc->src_nents ? : 1,
1372 				  (areq->src == areq->dst) ? DMA_BIDIRECTIONAL
1373 							   : DMA_TO_DEVICE,
1374 				  edesc->src_is_chained);
1375 
1376 	if (sg_count == 1) {
1377 		to_talitos_ptr(&desc->ptr[3], sg_dma_address(areq->src));
1378 	} else {
1379 		sg_count = sg_to_link_tbl(areq->src, sg_count, cryptlen,
1380 					  &edesc->link_tbl[0]);
1381 		if (sg_count > 1) {
1382 			to_talitos_ptr(&desc->ptr[3], edesc->dma_link_tbl);
1383 			desc->ptr[3].j_extent |= DESC_PTR_LNKTBL_JUMP;
1384 			dma_sync_single_for_device(dev, edesc->dma_link_tbl,
1385 						   edesc->dma_len,
1386 						   DMA_BIDIRECTIONAL);
1387 		} else {
1388 			/* Only one segment now, so no link tbl needed */
1389 			to_talitos_ptr(&desc->ptr[3],
1390 				       sg_dma_address(areq->src));
1391 		}
1392 	}
1393 
1394 	/* cipher out */
1395 	desc->ptr[4].len = cpu_to_be16(cryptlen);
1396 	desc->ptr[4].j_extent = 0;
1397 
1398 	if (areq->src != areq->dst)
1399 		sg_count = talitos_map_sg(dev, areq->dst,
1400 					  edesc->dst_nents ? : 1,
1401 					  DMA_FROM_DEVICE,
1402 					  edesc->dst_is_chained);
1403 
1404 	if (sg_count == 1) {
1405 		to_talitos_ptr(&desc->ptr[4], sg_dma_address(areq->dst));
1406 	} else {
1407 		struct talitos_ptr *link_tbl_ptr =
1408 			&edesc->link_tbl[edesc->src_nents + 1];
1409 
1410 		to_talitos_ptr(&desc->ptr[4], edesc->dma_link_tbl +
1411 					      (edesc->src_nents + 1) *
1412 					      sizeof(struct talitos_ptr));
1413 		desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP;
1414 		sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen,
1415 					  link_tbl_ptr);
1416 		dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl,
1417 					   edesc->dma_len, DMA_BIDIRECTIONAL);
1418 	}
1419 
1420 	/* iv out */
1421 	map_single_talitos_ptr(dev, &desc->ptr[5], ivsize, ctx->iv, 0,
1422 			       DMA_FROM_DEVICE);
1423 
1424 	/* last DWORD empty */
1425 	desc->ptr[6].len = 0;
1426 	to_talitos_ptr(&desc->ptr[6], 0);
1427 	desc->ptr[6].j_extent = 0;
1428 
1429 	ret = talitos_submit(dev, desc, callback, areq);
1430 	if (ret != -EINPROGRESS) {
1431 		common_nonsnoop_unmap(dev, edesc, areq);
1432 		kfree(edesc);
1433 	}
1434 	return ret;
1435 }
1436 
1437 static struct talitos_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request *
1438 						    areq)
1439 {
1440 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1441 	struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1442 
1443 	return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst, areq->nbytes,
1444 				   0, 0, areq->base.flags);
1445 }
1446 
1447 static int ablkcipher_encrypt(struct ablkcipher_request *areq)
1448 {
1449 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1450 	struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1451 	struct talitos_edesc *edesc;
1452 
1453 	/* allocate extended descriptor */
1454 	edesc = ablkcipher_edesc_alloc(areq);
1455 	if (IS_ERR(edesc))
1456 		return PTR_ERR(edesc);
1457 
1458 	/* set encrypt */
1459 	edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
1460 
1461 	return common_nonsnoop(edesc, areq, NULL, ablkcipher_done);
1462 }
1463 
1464 static int ablkcipher_decrypt(struct ablkcipher_request *areq)
1465 {
1466 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1467 	struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1468 	struct talitos_edesc *edesc;
1469 
1470 	/* allocate extended descriptor */
1471 	edesc = ablkcipher_edesc_alloc(areq);
1472 	if (IS_ERR(edesc))
1473 		return PTR_ERR(edesc);
1474 
1475 	edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
1476 
1477 	return common_nonsnoop(edesc, areq, NULL, ablkcipher_done);
1478 }
1479 
1480 struct talitos_alg_template {
1481 	struct crypto_alg alg;
1482 	__be32 desc_hdr_template;
1483 };
1484 
1485 static struct talitos_alg_template driver_algs[] = {
1486 	/* AEAD algorithms.  These use a single-pass ipsec_esp descriptor */
1487 	{
1488 		.alg = {
1489 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
1490 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-talitos",
1491 			.cra_blocksize = AES_BLOCK_SIZE,
1492 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1493 			.cra_type = &crypto_aead_type,
1494 			.cra_aead = {
1495 				.setkey = aead_setkey,
1496 				.setauthsize = aead_setauthsize,
1497 				.encrypt = aead_encrypt,
1498 				.decrypt = aead_decrypt,
1499 				.givencrypt = aead_givencrypt,
1500 				.geniv = "<built-in>",
1501 				.ivsize = AES_BLOCK_SIZE,
1502 				.maxauthsize = SHA1_DIGEST_SIZE,
1503 			}
1504 		},
1505 		.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
1506 			             DESC_HDR_SEL0_AESU |
1507 		                     DESC_HDR_MODE0_AESU_CBC |
1508 		                     DESC_HDR_SEL1_MDEUA |
1509 		                     DESC_HDR_MODE1_MDEU_INIT |
1510 		                     DESC_HDR_MODE1_MDEU_PAD |
1511 		                     DESC_HDR_MODE1_MDEU_SHA1_HMAC,
1512 	},
1513 	{
1514 		.alg = {
1515 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1516 			.cra_driver_name = "authenc-hmac-sha1-cbc-3des-talitos",
1517 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1518 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1519 			.cra_type = &crypto_aead_type,
1520 			.cra_aead = {
1521 				.setkey = aead_setkey,
1522 				.setauthsize = aead_setauthsize,
1523 				.encrypt = aead_encrypt,
1524 				.decrypt = aead_decrypt,
1525 				.givencrypt = aead_givencrypt,
1526 				.geniv = "<built-in>",
1527 				.ivsize = DES3_EDE_BLOCK_SIZE,
1528 				.maxauthsize = SHA1_DIGEST_SIZE,
1529 			}
1530 		},
1531 		.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
1532 			             DESC_HDR_SEL0_DEU |
1533 		                     DESC_HDR_MODE0_DEU_CBC |
1534 		                     DESC_HDR_MODE0_DEU_3DES |
1535 		                     DESC_HDR_SEL1_MDEUA |
1536 		                     DESC_HDR_MODE1_MDEU_INIT |
1537 		                     DESC_HDR_MODE1_MDEU_PAD |
1538 		                     DESC_HDR_MODE1_MDEU_SHA1_HMAC,
1539 	},
1540 	{
1541 		.alg = {
1542 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
1543 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-talitos",
1544 			.cra_blocksize = AES_BLOCK_SIZE,
1545 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1546 			.cra_type = &crypto_aead_type,
1547 			.cra_aead = {
1548 				.setkey = aead_setkey,
1549 				.setauthsize = aead_setauthsize,
1550 				.encrypt = aead_encrypt,
1551 				.decrypt = aead_decrypt,
1552 				.givencrypt = aead_givencrypt,
1553 				.geniv = "<built-in>",
1554 				.ivsize = AES_BLOCK_SIZE,
1555 				.maxauthsize = SHA256_DIGEST_SIZE,
1556 			}
1557 		},
1558 		.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
1559 			             DESC_HDR_SEL0_AESU |
1560 		                     DESC_HDR_MODE0_AESU_CBC |
1561 		                     DESC_HDR_SEL1_MDEUA |
1562 		                     DESC_HDR_MODE1_MDEU_INIT |
1563 		                     DESC_HDR_MODE1_MDEU_PAD |
1564 		                     DESC_HDR_MODE1_MDEU_SHA256_HMAC,
1565 	},
1566 	{
1567 		.alg = {
1568 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1569 			.cra_driver_name = "authenc-hmac-sha256-cbc-3des-talitos",
1570 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1571 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1572 			.cra_type = &crypto_aead_type,
1573 			.cra_aead = {
1574 				.setkey = aead_setkey,
1575 				.setauthsize = aead_setauthsize,
1576 				.encrypt = aead_encrypt,
1577 				.decrypt = aead_decrypt,
1578 				.givencrypt = aead_givencrypt,
1579 				.geniv = "<built-in>",
1580 				.ivsize = DES3_EDE_BLOCK_SIZE,
1581 				.maxauthsize = SHA256_DIGEST_SIZE,
1582 			}
1583 		},
1584 		.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
1585 			             DESC_HDR_SEL0_DEU |
1586 		                     DESC_HDR_MODE0_DEU_CBC |
1587 		                     DESC_HDR_MODE0_DEU_3DES |
1588 		                     DESC_HDR_SEL1_MDEUA |
1589 		                     DESC_HDR_MODE1_MDEU_INIT |
1590 		                     DESC_HDR_MODE1_MDEU_PAD |
1591 		                     DESC_HDR_MODE1_MDEU_SHA256_HMAC,
1592 	},
1593 	{
1594 		.alg = {
1595 			.cra_name = "authenc(hmac(md5),cbc(aes))",
1596 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-talitos",
1597 			.cra_blocksize = AES_BLOCK_SIZE,
1598 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1599 			.cra_type = &crypto_aead_type,
1600 			.cra_aead = {
1601 				.setkey = aead_setkey,
1602 				.setauthsize = aead_setauthsize,
1603 				.encrypt = aead_encrypt,
1604 				.decrypt = aead_decrypt,
1605 				.givencrypt = aead_givencrypt,
1606 				.geniv = "<built-in>",
1607 				.ivsize = AES_BLOCK_SIZE,
1608 				.maxauthsize = MD5_DIGEST_SIZE,
1609 			}
1610 		},
1611 		.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
1612 			             DESC_HDR_SEL0_AESU |
1613 		                     DESC_HDR_MODE0_AESU_CBC |
1614 		                     DESC_HDR_SEL1_MDEUA |
1615 		                     DESC_HDR_MODE1_MDEU_INIT |
1616 		                     DESC_HDR_MODE1_MDEU_PAD |
1617 		                     DESC_HDR_MODE1_MDEU_MD5_HMAC,
1618 	},
1619 	{
1620 		.alg = {
1621 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1622 			.cra_driver_name = "authenc-hmac-md5-cbc-3des-talitos",
1623 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1624 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1625 			.cra_type = &crypto_aead_type,
1626 			.cra_aead = {
1627 				.setkey = aead_setkey,
1628 				.setauthsize = aead_setauthsize,
1629 				.encrypt = aead_encrypt,
1630 				.decrypt = aead_decrypt,
1631 				.givencrypt = aead_givencrypt,
1632 				.geniv = "<built-in>",
1633 				.ivsize = DES3_EDE_BLOCK_SIZE,
1634 				.maxauthsize = MD5_DIGEST_SIZE,
1635 			}
1636 		},
1637 		.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
1638 			             DESC_HDR_SEL0_DEU |
1639 		                     DESC_HDR_MODE0_DEU_CBC |
1640 		                     DESC_HDR_MODE0_DEU_3DES |
1641 		                     DESC_HDR_SEL1_MDEUA |
1642 		                     DESC_HDR_MODE1_MDEU_INIT |
1643 		                     DESC_HDR_MODE1_MDEU_PAD |
1644 		                     DESC_HDR_MODE1_MDEU_MD5_HMAC,
1645 	},
1646 	/* ABLKCIPHER algorithms. */
1647 	{
1648 		.alg = {
1649 			.cra_name = "cbc(aes)",
1650 			.cra_driver_name = "cbc-aes-talitos",
1651 			.cra_blocksize = AES_BLOCK_SIZE,
1652 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1653                                      CRYPTO_ALG_ASYNC,
1654 			.cra_type = &crypto_ablkcipher_type,
1655 			.cra_ablkcipher = {
1656 				.setkey = ablkcipher_setkey,
1657 				.encrypt = ablkcipher_encrypt,
1658 				.decrypt = ablkcipher_decrypt,
1659 				.geniv = "eseqiv",
1660 				.min_keysize = AES_MIN_KEY_SIZE,
1661 				.max_keysize = AES_MAX_KEY_SIZE,
1662 				.ivsize = AES_BLOCK_SIZE,
1663 			}
1664 		},
1665 		.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
1666 				     DESC_HDR_SEL0_AESU |
1667 				     DESC_HDR_MODE0_AESU_CBC,
1668 	},
1669 	{
1670 		.alg = {
1671 			.cra_name = "cbc(des3_ede)",
1672 			.cra_driver_name = "cbc-3des-talitos",
1673 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1674 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1675                                      CRYPTO_ALG_ASYNC,
1676 			.cra_type = &crypto_ablkcipher_type,
1677 			.cra_ablkcipher = {
1678 				.setkey = ablkcipher_setkey,
1679 				.encrypt = ablkcipher_encrypt,
1680 				.decrypt = ablkcipher_decrypt,
1681 				.geniv = "eseqiv",
1682 				.min_keysize = DES3_EDE_KEY_SIZE,
1683 				.max_keysize = DES3_EDE_KEY_SIZE,
1684 				.ivsize = DES3_EDE_BLOCK_SIZE,
1685 			}
1686 		},
1687 		.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
1688 			             DESC_HDR_SEL0_DEU |
1689 		                     DESC_HDR_MODE0_DEU_CBC |
1690 		                     DESC_HDR_MODE0_DEU_3DES,
1691 	}
1692 };
1693 
1694 struct talitos_crypto_alg {
1695 	struct list_head entry;
1696 	struct device *dev;
1697 	__be32 desc_hdr_template;
1698 	struct crypto_alg crypto_alg;
1699 };
1700 
1701 static int talitos_cra_init(struct crypto_tfm *tfm)
1702 {
1703 	struct crypto_alg *alg = tfm->__crt_alg;
1704 	struct talitos_crypto_alg *talitos_alg;
1705 	struct talitos_ctx *ctx = crypto_tfm_ctx(tfm);
1706 
1707 	talitos_alg =  container_of(alg, struct talitos_crypto_alg, crypto_alg);
1708 
1709 	/* update context with ptr to dev */
1710 	ctx->dev = talitos_alg->dev;
1711 
1712 	/* copy descriptor header template value */
1713 	ctx->desc_hdr_template = talitos_alg->desc_hdr_template;
1714 
1715 	/* random first IV */
1716 	get_random_bytes(ctx->iv, TALITOS_MAX_IV_LENGTH);
1717 
1718 	return 0;
1719 }
1720 
1721 /*
1722  * given the alg's descriptor header template, determine whether descriptor
1723  * type and primary/secondary execution units required match the hw
1724  * capabilities description provided in the device tree node.
1725  */
1726 static int hw_supports(struct device *dev, __be32 desc_hdr_template)
1727 {
1728 	struct talitos_private *priv = dev_get_drvdata(dev);
1729 	int ret;
1730 
1731 	ret = (1 << DESC_TYPE(desc_hdr_template) & priv->desc_types) &&
1732 	      (1 << PRIMARY_EU(desc_hdr_template) & priv->exec_units);
1733 
1734 	if (SECONDARY_EU(desc_hdr_template))
1735 		ret = ret && (1 << SECONDARY_EU(desc_hdr_template)
1736 		              & priv->exec_units);
1737 
1738 	return ret;
1739 }
1740 
1741 static int talitos_remove(struct of_device *ofdev)
1742 {
1743 	struct device *dev = &ofdev->dev;
1744 	struct talitos_private *priv = dev_get_drvdata(dev);
1745 	struct talitos_crypto_alg *t_alg, *n;
1746 	int i;
1747 
1748 	list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
1749 		crypto_unregister_alg(&t_alg->crypto_alg);
1750 		list_del(&t_alg->entry);
1751 		kfree(t_alg);
1752 	}
1753 
1754 	if (hw_supports(dev, DESC_HDR_SEL0_RNG))
1755 		talitos_unregister_rng(dev);
1756 
1757 	for (i = 0; i < priv->num_channels; i++)
1758 		if (priv->chan[i].fifo)
1759 			kfree(priv->chan[i].fifo);
1760 
1761 	kfree(priv->chan);
1762 
1763 	if (priv->irq != NO_IRQ) {
1764 		free_irq(priv->irq, dev);
1765 		irq_dispose_mapping(priv->irq);
1766 	}
1767 
1768 	tasklet_kill(&priv->done_task);
1769 
1770 	iounmap(priv->reg);
1771 
1772 	dev_set_drvdata(dev, NULL);
1773 
1774 	kfree(priv);
1775 
1776 	return 0;
1777 }
1778 
1779 static struct talitos_crypto_alg *talitos_alg_alloc(struct device *dev,
1780 						    struct talitos_alg_template
1781 						           *template)
1782 {
1783 	struct talitos_crypto_alg *t_alg;
1784 	struct crypto_alg *alg;
1785 
1786 	t_alg = kzalloc(sizeof(struct talitos_crypto_alg), GFP_KERNEL);
1787 	if (!t_alg)
1788 		return ERR_PTR(-ENOMEM);
1789 
1790 	alg = &t_alg->crypto_alg;
1791 	*alg = template->alg;
1792 
1793 	alg->cra_module = THIS_MODULE;
1794 	alg->cra_init = talitos_cra_init;
1795 	alg->cra_priority = TALITOS_CRA_PRIORITY;
1796 	alg->cra_alignmask = 0;
1797 	alg->cra_ctxsize = sizeof(struct talitos_ctx);
1798 
1799 	t_alg->desc_hdr_template = template->desc_hdr_template;
1800 	t_alg->dev = dev;
1801 
1802 	return t_alg;
1803 }
1804 
1805 static int talitos_probe(struct of_device *ofdev,
1806 			 const struct of_device_id *match)
1807 {
1808 	struct device *dev = &ofdev->dev;
1809 	struct device_node *np = ofdev->node;
1810 	struct talitos_private *priv;
1811 	const unsigned int *prop;
1812 	int i, err;
1813 
1814 	priv = kzalloc(sizeof(struct talitos_private), GFP_KERNEL);
1815 	if (!priv)
1816 		return -ENOMEM;
1817 
1818 	dev_set_drvdata(dev, priv);
1819 
1820 	priv->ofdev = ofdev;
1821 
1822 	tasklet_init(&priv->done_task, talitos_done, (unsigned long)dev);
1823 
1824 	INIT_LIST_HEAD(&priv->alg_list);
1825 
1826 	priv->irq = irq_of_parse_and_map(np, 0);
1827 
1828 	if (priv->irq == NO_IRQ) {
1829 		dev_err(dev, "failed to map irq\n");
1830 		err = -EINVAL;
1831 		goto err_out;
1832 	}
1833 
1834 	/* get the irq line */
1835 	err = request_irq(priv->irq, talitos_interrupt, 0,
1836 			  dev_driver_string(dev), dev);
1837 	if (err) {
1838 		dev_err(dev, "failed to request irq %d\n", priv->irq);
1839 		irq_dispose_mapping(priv->irq);
1840 		priv->irq = NO_IRQ;
1841 		goto err_out;
1842 	}
1843 
1844 	priv->reg = of_iomap(np, 0);
1845 	if (!priv->reg) {
1846 		dev_err(dev, "failed to of_iomap\n");
1847 		err = -ENOMEM;
1848 		goto err_out;
1849 	}
1850 
1851 	/* get SEC version capabilities from device tree */
1852 	prop = of_get_property(np, "fsl,num-channels", NULL);
1853 	if (prop)
1854 		priv->num_channels = *prop;
1855 
1856 	prop = of_get_property(np, "fsl,channel-fifo-len", NULL);
1857 	if (prop)
1858 		priv->chfifo_len = *prop;
1859 
1860 	prop = of_get_property(np, "fsl,exec-units-mask", NULL);
1861 	if (prop)
1862 		priv->exec_units = *prop;
1863 
1864 	prop = of_get_property(np, "fsl,descriptor-types-mask", NULL);
1865 	if (prop)
1866 		priv->desc_types = *prop;
1867 
1868 	if (!is_power_of_2(priv->num_channels) || !priv->chfifo_len ||
1869 	    !priv->exec_units || !priv->desc_types) {
1870 		dev_err(dev, "invalid property data in device tree node\n");
1871 		err = -EINVAL;
1872 		goto err_out;
1873 	}
1874 
1875 	if (of_device_is_compatible(np, "fsl,sec3.0"))
1876 		priv->features |= TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT;
1877 
1878 	if (of_device_is_compatible(np, "fsl,sec2.1"))
1879 		priv->features |= TALITOS_FTR_HW_AUTH_CHECK;
1880 
1881 	priv->chan = kzalloc(sizeof(struct talitos_channel) *
1882 			     priv->num_channels, GFP_KERNEL);
1883 	if (!priv->chan) {
1884 		dev_err(dev, "failed to allocate channel management space\n");
1885 		err = -ENOMEM;
1886 		goto err_out;
1887 	}
1888 
1889 	for (i = 0; i < priv->num_channels; i++) {
1890 		spin_lock_init(&priv->chan[i].head_lock);
1891 		spin_lock_init(&priv->chan[i].tail_lock);
1892 	}
1893 
1894 	priv->fifo_len = roundup_pow_of_two(priv->chfifo_len);
1895 
1896 	for (i = 0; i < priv->num_channels; i++) {
1897 		priv->chan[i].fifo = kzalloc(sizeof(struct talitos_request) *
1898 					     priv->fifo_len, GFP_KERNEL);
1899 		if (!priv->chan[i].fifo) {
1900 			dev_err(dev, "failed to allocate request fifo %d\n", i);
1901 			err = -ENOMEM;
1902 			goto err_out;
1903 		}
1904 	}
1905 
1906 	for (i = 0; i < priv->num_channels; i++)
1907 		atomic_set(&priv->chan[i].submit_count,
1908 			   -(priv->chfifo_len - 1));
1909 
1910 	dma_set_mask(dev, DMA_BIT_MASK(36));
1911 
1912 	/* reset and initialize the h/w */
1913 	err = init_device(dev);
1914 	if (err) {
1915 		dev_err(dev, "failed to initialize device\n");
1916 		goto err_out;
1917 	}
1918 
1919 	/* register the RNG, if available */
1920 	if (hw_supports(dev, DESC_HDR_SEL0_RNG)) {
1921 		err = talitos_register_rng(dev);
1922 		if (err) {
1923 			dev_err(dev, "failed to register hwrng: %d\n", err);
1924 			goto err_out;
1925 		} else
1926 			dev_info(dev, "hwrng\n");
1927 	}
1928 
1929 	/* register crypto algorithms the device supports */
1930 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
1931 		if (hw_supports(dev, driver_algs[i].desc_hdr_template)) {
1932 			struct talitos_crypto_alg *t_alg;
1933 
1934 			t_alg = talitos_alg_alloc(dev, &driver_algs[i]);
1935 			if (IS_ERR(t_alg)) {
1936 				err = PTR_ERR(t_alg);
1937 				goto err_out;
1938 			}
1939 
1940 			err = crypto_register_alg(&t_alg->crypto_alg);
1941 			if (err) {
1942 				dev_err(dev, "%s alg registration failed\n",
1943 					t_alg->crypto_alg.cra_driver_name);
1944 				kfree(t_alg);
1945 			} else {
1946 				list_add_tail(&t_alg->entry, &priv->alg_list);
1947 				dev_info(dev, "%s\n",
1948 					 t_alg->crypto_alg.cra_driver_name);
1949 			}
1950 		}
1951 	}
1952 
1953 	return 0;
1954 
1955 err_out:
1956 	talitos_remove(ofdev);
1957 
1958 	return err;
1959 }
1960 
1961 static struct of_device_id talitos_match[] = {
1962 	{
1963 		.compatible = "fsl,sec2.0",
1964 	},
1965 	{},
1966 };
1967 MODULE_DEVICE_TABLE(of, talitos_match);
1968 
1969 static struct of_platform_driver talitos_driver = {
1970 	.name = "talitos",
1971 	.match_table = talitos_match,
1972 	.probe = talitos_probe,
1973 	.remove = talitos_remove,
1974 };
1975 
1976 static int __init talitos_init(void)
1977 {
1978 	return of_register_platform_driver(&talitos_driver);
1979 }
1980 module_init(talitos_init);
1981 
1982 static void __exit talitos_exit(void)
1983 {
1984 	of_unregister_platform_driver(&talitos_driver);
1985 }
1986 module_exit(talitos_exit);
1987 
1988 MODULE_LICENSE("GPL");
1989 MODULE_AUTHOR("Kim Phillips <kim.phillips@freescale.com>");
1990 MODULE_DESCRIPTION("Freescale integrated security engine (SEC) driver");
1991