xref: /openbmc/linux/drivers/crypto/stm32/stm32-hash.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of STM32 Crypto driver for Linux.
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/crypto.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23 
24 #include <crypto/engine.h>
25 #include <crypto/hash.h>
26 #include <crypto/md5.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/sha1.h>
29 #include <crypto/sha2.h>
30 #include <crypto/internal/hash.h>
31 
32 #define HASH_CR				0x00
33 #define HASH_DIN			0x04
34 #define HASH_STR			0x08
35 #define HASH_IMR			0x20
36 #define HASH_SR				0x24
37 #define HASH_CSR(x)			(0x0F8 + ((x) * 0x04))
38 #define HASH_HREG(x)			(0x310 + ((x) * 0x04))
39 #define HASH_HWCFGR			0x3F0
40 #define HASH_VER			0x3F4
41 #define HASH_ID				0x3F8
42 
43 /* Control Register */
44 #define HASH_CR_INIT			BIT(2)
45 #define HASH_CR_DMAE			BIT(3)
46 #define HASH_CR_DATATYPE_POS		4
47 #define HASH_CR_MODE			BIT(6)
48 #define HASH_CR_MDMAT			BIT(13)
49 #define HASH_CR_DMAA			BIT(14)
50 #define HASH_CR_LKEY			BIT(16)
51 
52 #define HASH_CR_ALGO_SHA1		0x0
53 #define HASH_CR_ALGO_MD5		0x80
54 #define HASH_CR_ALGO_SHA224		0x40000
55 #define HASH_CR_ALGO_SHA256		0x40080
56 
57 /* Interrupt */
58 #define HASH_DINIE			BIT(0)
59 #define HASH_DCIE			BIT(1)
60 
61 /* Interrupt Mask */
62 #define HASH_MASK_CALC_COMPLETION	BIT(0)
63 #define HASH_MASK_DATA_INPUT		BIT(1)
64 
65 /* Context swap register */
66 #define HASH_CSR_REGISTER_NUMBER	53
67 
68 /* Status Flags */
69 #define HASH_SR_DATA_INPUT_READY	BIT(0)
70 #define HASH_SR_OUTPUT_READY		BIT(1)
71 #define HASH_SR_DMA_ACTIVE		BIT(2)
72 #define HASH_SR_BUSY			BIT(3)
73 
74 /* STR Register */
75 #define HASH_STR_NBLW_MASK		GENMASK(4, 0)
76 #define HASH_STR_DCAL			BIT(8)
77 
78 #define HASH_FLAGS_INIT			BIT(0)
79 #define HASH_FLAGS_OUTPUT_READY		BIT(1)
80 #define HASH_FLAGS_CPU			BIT(2)
81 #define HASH_FLAGS_DMA_READY		BIT(3)
82 #define HASH_FLAGS_DMA_ACTIVE		BIT(4)
83 #define HASH_FLAGS_HMAC_INIT		BIT(5)
84 #define HASH_FLAGS_HMAC_FINAL		BIT(6)
85 #define HASH_FLAGS_HMAC_KEY		BIT(7)
86 
87 #define HASH_FLAGS_FINAL		BIT(15)
88 #define HASH_FLAGS_FINUP		BIT(16)
89 #define HASH_FLAGS_ALGO_MASK		GENMASK(21, 18)
90 #define HASH_FLAGS_MD5			BIT(18)
91 #define HASH_FLAGS_SHA1			BIT(19)
92 #define HASH_FLAGS_SHA224		BIT(20)
93 #define HASH_FLAGS_SHA256		BIT(21)
94 #define HASH_FLAGS_ERRORS		BIT(22)
95 #define HASH_FLAGS_HMAC			BIT(23)
96 
97 #define HASH_OP_UPDATE			1
98 #define HASH_OP_FINAL			2
99 
100 enum stm32_hash_data_format {
101 	HASH_DATA_32_BITS		= 0x0,
102 	HASH_DATA_16_BITS		= 0x1,
103 	HASH_DATA_8_BITS		= 0x2,
104 	HASH_DATA_1_BIT			= 0x3
105 };
106 
107 #define HASH_BUFLEN			256
108 #define HASH_LONG_KEY			64
109 #define HASH_MAX_KEY_SIZE		(SHA256_BLOCK_SIZE * 8)
110 #define HASH_QUEUE_LENGTH		16
111 #define HASH_DMA_THRESHOLD		50
112 
113 #define HASH_AUTOSUSPEND_DELAY		50
114 
115 struct stm32_hash_ctx {
116 	struct crypto_engine_ctx enginectx;
117 	struct stm32_hash_dev	*hdev;
118 	unsigned long		flags;
119 
120 	u8			key[HASH_MAX_KEY_SIZE];
121 	int			keylen;
122 };
123 
124 struct stm32_hash_request_ctx {
125 	struct stm32_hash_dev	*hdev;
126 	unsigned long		flags;
127 	unsigned long		op;
128 
129 	u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
130 	size_t			digcnt;
131 	size_t			bufcnt;
132 	size_t			buflen;
133 
134 	/* DMA */
135 	struct scatterlist	*sg;
136 	unsigned int		offset;
137 	unsigned int		total;
138 	struct scatterlist	sg_key;
139 
140 	dma_addr_t		dma_addr;
141 	size_t			dma_ct;
142 	int			nents;
143 
144 	u8			data_type;
145 
146 	u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
147 
148 	/* Export Context */
149 	u32			*hw_context;
150 };
151 
152 struct stm32_hash_algs_info {
153 	struct ahash_alg	*algs_list;
154 	size_t			size;
155 };
156 
157 struct stm32_hash_pdata {
158 	struct stm32_hash_algs_info	*algs_info;
159 	size_t				algs_info_size;
160 };
161 
162 struct stm32_hash_dev {
163 	struct list_head	list;
164 	struct device		*dev;
165 	struct clk		*clk;
166 	struct reset_control	*rst;
167 	void __iomem		*io_base;
168 	phys_addr_t		phys_base;
169 	u32			dma_mode;
170 	u32			dma_maxburst;
171 
172 	struct ahash_request	*req;
173 	struct crypto_engine	*engine;
174 
175 	int			err;
176 	unsigned long		flags;
177 
178 	struct dma_chan		*dma_lch;
179 	struct completion	dma_completion;
180 
181 	const struct stm32_hash_pdata	*pdata;
182 };
183 
184 struct stm32_hash_drv {
185 	struct list_head	dev_list;
186 	spinlock_t		lock; /* List protection access */
187 };
188 
189 static struct stm32_hash_drv stm32_hash = {
190 	.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
191 	.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
192 };
193 
194 static void stm32_hash_dma_callback(void *param);
195 
196 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
197 {
198 	return readl_relaxed(hdev->io_base + offset);
199 }
200 
201 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
202 				    u32 offset, u32 value)
203 {
204 	writel_relaxed(value, hdev->io_base + offset);
205 }
206 
207 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
208 {
209 	u32 status;
210 
211 	return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
212 				   !(status & HASH_SR_BUSY), 10, 10000);
213 }
214 
215 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
216 {
217 	u32 reg;
218 
219 	reg = stm32_hash_read(hdev, HASH_STR);
220 	reg &= ~(HASH_STR_NBLW_MASK);
221 	reg |= (8U * ((length) % 4U));
222 	stm32_hash_write(hdev, HASH_STR, reg);
223 }
224 
225 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
226 {
227 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
228 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
229 	u32 reg;
230 	int keylen = ctx->keylen;
231 	void *key = ctx->key;
232 
233 	if (keylen) {
234 		stm32_hash_set_nblw(hdev, keylen);
235 
236 		while (keylen > 0) {
237 			stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
238 			keylen -= 4;
239 			key += 4;
240 		}
241 
242 		reg = stm32_hash_read(hdev, HASH_STR);
243 		reg |= HASH_STR_DCAL;
244 		stm32_hash_write(hdev, HASH_STR, reg);
245 
246 		return -EINPROGRESS;
247 	}
248 
249 	return 0;
250 }
251 
252 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
253 {
254 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
255 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
256 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
257 
258 	u32 reg = HASH_CR_INIT;
259 
260 	if (!(hdev->flags & HASH_FLAGS_INIT)) {
261 		switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
262 		case HASH_FLAGS_MD5:
263 			reg |= HASH_CR_ALGO_MD5;
264 			break;
265 		case HASH_FLAGS_SHA1:
266 			reg |= HASH_CR_ALGO_SHA1;
267 			break;
268 		case HASH_FLAGS_SHA224:
269 			reg |= HASH_CR_ALGO_SHA224;
270 			break;
271 		case HASH_FLAGS_SHA256:
272 			reg |= HASH_CR_ALGO_SHA256;
273 			break;
274 		default:
275 			reg |= HASH_CR_ALGO_MD5;
276 		}
277 
278 		reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
279 
280 		if (rctx->flags & HASH_FLAGS_HMAC) {
281 			hdev->flags |= HASH_FLAGS_HMAC;
282 			reg |= HASH_CR_MODE;
283 			if (ctx->keylen > HASH_LONG_KEY)
284 				reg |= HASH_CR_LKEY;
285 		}
286 
287 		stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
288 
289 		stm32_hash_write(hdev, HASH_CR, reg);
290 
291 		hdev->flags |= HASH_FLAGS_INIT;
292 
293 		dev_dbg(hdev->dev, "Write Control %x\n", reg);
294 	}
295 }
296 
297 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
298 {
299 	size_t count;
300 
301 	while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
302 		count = min(rctx->sg->length - rctx->offset, rctx->total);
303 		count = min(count, rctx->buflen - rctx->bufcnt);
304 
305 		if (count <= 0) {
306 			if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
307 				rctx->sg = sg_next(rctx->sg);
308 				continue;
309 			} else {
310 				break;
311 			}
312 		}
313 
314 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
315 					 rctx->offset, count, 0);
316 
317 		rctx->bufcnt += count;
318 		rctx->offset += count;
319 		rctx->total -= count;
320 
321 		if (rctx->offset == rctx->sg->length) {
322 			rctx->sg = sg_next(rctx->sg);
323 			if (rctx->sg)
324 				rctx->offset = 0;
325 			else
326 				rctx->total = 0;
327 		}
328 	}
329 }
330 
331 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
332 			       const u8 *buf, size_t length, int final)
333 {
334 	unsigned int count, len32;
335 	const u32 *buffer = (const u32 *)buf;
336 	u32 reg;
337 
338 	if (final)
339 		hdev->flags |= HASH_FLAGS_FINAL;
340 
341 	len32 = DIV_ROUND_UP(length, sizeof(u32));
342 
343 	dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
344 		__func__, length, final, len32);
345 
346 	hdev->flags |= HASH_FLAGS_CPU;
347 
348 	stm32_hash_write_ctrl(hdev);
349 
350 	if (stm32_hash_wait_busy(hdev))
351 		return -ETIMEDOUT;
352 
353 	if ((hdev->flags & HASH_FLAGS_HMAC) &&
354 	    (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
355 		hdev->flags |= HASH_FLAGS_HMAC_KEY;
356 		stm32_hash_write_key(hdev);
357 		if (stm32_hash_wait_busy(hdev))
358 			return -ETIMEDOUT;
359 	}
360 
361 	for (count = 0; count < len32; count++)
362 		stm32_hash_write(hdev, HASH_DIN, buffer[count]);
363 
364 	if (final) {
365 		stm32_hash_set_nblw(hdev, length);
366 		reg = stm32_hash_read(hdev, HASH_STR);
367 		reg |= HASH_STR_DCAL;
368 		stm32_hash_write(hdev, HASH_STR, reg);
369 		if (hdev->flags & HASH_FLAGS_HMAC) {
370 			if (stm32_hash_wait_busy(hdev))
371 				return -ETIMEDOUT;
372 			stm32_hash_write_key(hdev);
373 		}
374 		return -EINPROGRESS;
375 	}
376 
377 	return 0;
378 }
379 
380 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
381 {
382 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
383 	int bufcnt, err = 0, final;
384 
385 	dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
386 
387 	final = (rctx->flags & HASH_FLAGS_FINUP);
388 
389 	while ((rctx->total >= rctx->buflen) ||
390 	       (rctx->bufcnt + rctx->total >= rctx->buflen)) {
391 		stm32_hash_append_sg(rctx);
392 		bufcnt = rctx->bufcnt;
393 		rctx->bufcnt = 0;
394 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
395 	}
396 
397 	stm32_hash_append_sg(rctx);
398 
399 	if (final) {
400 		bufcnt = rctx->bufcnt;
401 		rctx->bufcnt = 0;
402 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
403 					  (rctx->flags & HASH_FLAGS_FINUP));
404 	}
405 
406 	return err;
407 }
408 
409 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
410 			       struct scatterlist *sg, int length, int mdma)
411 {
412 	struct dma_async_tx_descriptor *in_desc;
413 	dma_cookie_t cookie;
414 	u32 reg;
415 	int err;
416 
417 	in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
418 					  DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
419 					  DMA_CTRL_ACK);
420 	if (!in_desc) {
421 		dev_err(hdev->dev, "dmaengine_prep_slave error\n");
422 		return -ENOMEM;
423 	}
424 
425 	reinit_completion(&hdev->dma_completion);
426 	in_desc->callback = stm32_hash_dma_callback;
427 	in_desc->callback_param = hdev;
428 
429 	hdev->flags |= HASH_FLAGS_FINAL;
430 	hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
431 
432 	reg = stm32_hash_read(hdev, HASH_CR);
433 
434 	if (mdma)
435 		reg |= HASH_CR_MDMAT;
436 	else
437 		reg &= ~HASH_CR_MDMAT;
438 
439 	reg |= HASH_CR_DMAE;
440 
441 	stm32_hash_write(hdev, HASH_CR, reg);
442 
443 	stm32_hash_set_nblw(hdev, length);
444 
445 	cookie = dmaengine_submit(in_desc);
446 	err = dma_submit_error(cookie);
447 	if (err)
448 		return -ENOMEM;
449 
450 	dma_async_issue_pending(hdev->dma_lch);
451 
452 	if (!wait_for_completion_timeout(&hdev->dma_completion,
453 					 msecs_to_jiffies(100)))
454 		err = -ETIMEDOUT;
455 
456 	if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
457 				     NULL, NULL) != DMA_COMPLETE)
458 		err = -ETIMEDOUT;
459 
460 	if (err) {
461 		dev_err(hdev->dev, "DMA Error %i\n", err);
462 		dmaengine_terminate_all(hdev->dma_lch);
463 		return err;
464 	}
465 
466 	return -EINPROGRESS;
467 }
468 
469 static void stm32_hash_dma_callback(void *param)
470 {
471 	struct stm32_hash_dev *hdev = param;
472 
473 	complete(&hdev->dma_completion);
474 
475 	hdev->flags |= HASH_FLAGS_DMA_READY;
476 }
477 
478 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
479 {
480 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
481 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
482 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
483 	int err;
484 
485 	if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
486 		err = stm32_hash_write_key(hdev);
487 		if (stm32_hash_wait_busy(hdev))
488 			return -ETIMEDOUT;
489 	} else {
490 		if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
491 			sg_init_one(&rctx->sg_key, ctx->key,
492 				    ALIGN(ctx->keylen, sizeof(u32)));
493 
494 		rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
495 					  DMA_TO_DEVICE);
496 		if (rctx->dma_ct == 0) {
497 			dev_err(hdev->dev, "dma_map_sg error\n");
498 			return -ENOMEM;
499 		}
500 
501 		err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
502 
503 		dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
504 	}
505 
506 	return err;
507 }
508 
509 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
510 {
511 	struct dma_slave_config dma_conf;
512 	struct dma_chan *chan;
513 	int err;
514 
515 	memset(&dma_conf, 0, sizeof(dma_conf));
516 
517 	dma_conf.direction = DMA_MEM_TO_DEV;
518 	dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
519 	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
520 	dma_conf.src_maxburst = hdev->dma_maxburst;
521 	dma_conf.dst_maxburst = hdev->dma_maxburst;
522 	dma_conf.device_fc = false;
523 
524 	chan = dma_request_chan(hdev->dev, "in");
525 	if (IS_ERR(chan))
526 		return PTR_ERR(chan);
527 
528 	hdev->dma_lch = chan;
529 
530 	err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
531 	if (err) {
532 		dma_release_channel(hdev->dma_lch);
533 		hdev->dma_lch = NULL;
534 		dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
535 		return err;
536 	}
537 
538 	init_completion(&hdev->dma_completion);
539 
540 	return 0;
541 }
542 
543 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
544 {
545 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
546 	struct scatterlist sg[1], *tsg;
547 	int err = 0, len = 0, reg, ncp = 0;
548 	unsigned int i;
549 	u32 *buffer = (void *)rctx->buffer;
550 
551 	rctx->sg = hdev->req->src;
552 	rctx->total = hdev->req->nbytes;
553 
554 	rctx->nents = sg_nents(rctx->sg);
555 
556 	if (rctx->nents < 0)
557 		return -EINVAL;
558 
559 	stm32_hash_write_ctrl(hdev);
560 
561 	if (hdev->flags & HASH_FLAGS_HMAC) {
562 		err = stm32_hash_hmac_dma_send(hdev);
563 		if (err != -EINPROGRESS)
564 			return err;
565 	}
566 
567 	for_each_sg(rctx->sg, tsg, rctx->nents, i) {
568 		len = sg->length;
569 
570 		sg[0] = *tsg;
571 		if (sg_is_last(sg)) {
572 			if (hdev->dma_mode == 1) {
573 				len = (ALIGN(sg->length, 16) - 16);
574 
575 				ncp = sg_pcopy_to_buffer(
576 					rctx->sg, rctx->nents,
577 					rctx->buffer, sg->length - len,
578 					rctx->total - sg->length + len);
579 
580 				sg->length = len;
581 			} else {
582 				if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
583 					len = sg->length;
584 					sg->length = ALIGN(sg->length,
585 							   sizeof(u32));
586 				}
587 			}
588 		}
589 
590 		rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
591 					  DMA_TO_DEVICE);
592 		if (rctx->dma_ct == 0) {
593 			dev_err(hdev->dev, "dma_map_sg error\n");
594 			return -ENOMEM;
595 		}
596 
597 		err = stm32_hash_xmit_dma(hdev, sg, len,
598 					  !sg_is_last(sg));
599 
600 		dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
601 
602 		if (err == -ENOMEM)
603 			return err;
604 	}
605 
606 	if (hdev->dma_mode == 1) {
607 		if (stm32_hash_wait_busy(hdev))
608 			return -ETIMEDOUT;
609 		reg = stm32_hash_read(hdev, HASH_CR);
610 		reg &= ~HASH_CR_DMAE;
611 		reg |= HASH_CR_DMAA;
612 		stm32_hash_write(hdev, HASH_CR, reg);
613 
614 		if (ncp) {
615 			memset(buffer + ncp, 0,
616 			       DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
617 			writesl(hdev->io_base + HASH_DIN, buffer,
618 				DIV_ROUND_UP(ncp, sizeof(u32)));
619 		}
620 		stm32_hash_set_nblw(hdev, ncp);
621 		reg = stm32_hash_read(hdev, HASH_STR);
622 		reg |= HASH_STR_DCAL;
623 		stm32_hash_write(hdev, HASH_STR, reg);
624 		err = -EINPROGRESS;
625 	}
626 
627 	if (hdev->flags & HASH_FLAGS_HMAC) {
628 		if (stm32_hash_wait_busy(hdev))
629 			return -ETIMEDOUT;
630 		err = stm32_hash_hmac_dma_send(hdev);
631 	}
632 
633 	return err;
634 }
635 
636 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
637 {
638 	struct stm32_hash_dev *hdev = NULL, *tmp;
639 
640 	spin_lock_bh(&stm32_hash.lock);
641 	if (!ctx->hdev) {
642 		list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
643 			hdev = tmp;
644 			break;
645 		}
646 		ctx->hdev = hdev;
647 	} else {
648 		hdev = ctx->hdev;
649 	}
650 
651 	spin_unlock_bh(&stm32_hash.lock);
652 
653 	return hdev;
654 }
655 
656 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
657 {
658 	struct scatterlist *sg;
659 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
660 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
661 	int i;
662 
663 	if (req->nbytes <= HASH_DMA_THRESHOLD)
664 		return false;
665 
666 	if (sg_nents(req->src) > 1) {
667 		if (hdev->dma_mode == 1)
668 			return false;
669 		for_each_sg(req->src, sg, sg_nents(req->src), i) {
670 			if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
671 			    (!sg_is_last(sg)))
672 				return false;
673 		}
674 	}
675 
676 	if (req->src->offset % 4)
677 		return false;
678 
679 	return true;
680 }
681 
682 static int stm32_hash_init(struct ahash_request *req)
683 {
684 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
685 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
686 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
687 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
688 
689 	rctx->hdev = hdev;
690 
691 	rctx->flags = HASH_FLAGS_CPU;
692 
693 	rctx->digcnt = crypto_ahash_digestsize(tfm);
694 	switch (rctx->digcnt) {
695 	case MD5_DIGEST_SIZE:
696 		rctx->flags |= HASH_FLAGS_MD5;
697 		break;
698 	case SHA1_DIGEST_SIZE:
699 		rctx->flags |= HASH_FLAGS_SHA1;
700 		break;
701 	case SHA224_DIGEST_SIZE:
702 		rctx->flags |= HASH_FLAGS_SHA224;
703 		break;
704 	case SHA256_DIGEST_SIZE:
705 		rctx->flags |= HASH_FLAGS_SHA256;
706 		break;
707 	default:
708 		return -EINVAL;
709 	}
710 
711 	rctx->bufcnt = 0;
712 	rctx->buflen = HASH_BUFLEN;
713 	rctx->total = 0;
714 	rctx->offset = 0;
715 	rctx->data_type = HASH_DATA_8_BITS;
716 
717 	memset(rctx->buffer, 0, HASH_BUFLEN);
718 
719 	if (ctx->flags & HASH_FLAGS_HMAC)
720 		rctx->flags |= HASH_FLAGS_HMAC;
721 
722 	dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
723 
724 	return 0;
725 }
726 
727 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
728 {
729 	return stm32_hash_update_cpu(hdev);
730 }
731 
732 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
733 {
734 	struct ahash_request *req = hdev->req;
735 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
736 	int err;
737 	int buflen = rctx->bufcnt;
738 
739 	rctx->bufcnt = 0;
740 
741 	if (!(rctx->flags & HASH_FLAGS_CPU))
742 		err = stm32_hash_dma_send(hdev);
743 	else
744 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
745 
746 
747 	return err;
748 }
749 
750 static void stm32_hash_copy_hash(struct ahash_request *req)
751 {
752 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
753 	__be32 *hash = (void *)rctx->digest;
754 	unsigned int i, hashsize;
755 
756 	switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
757 	case HASH_FLAGS_MD5:
758 		hashsize = MD5_DIGEST_SIZE;
759 		break;
760 	case HASH_FLAGS_SHA1:
761 		hashsize = SHA1_DIGEST_SIZE;
762 		break;
763 	case HASH_FLAGS_SHA224:
764 		hashsize = SHA224_DIGEST_SIZE;
765 		break;
766 	case HASH_FLAGS_SHA256:
767 		hashsize = SHA256_DIGEST_SIZE;
768 		break;
769 	default:
770 		return;
771 	}
772 
773 	for (i = 0; i < hashsize / sizeof(u32); i++)
774 		hash[i] = cpu_to_be32(stm32_hash_read(rctx->hdev,
775 						      HASH_HREG(i)));
776 }
777 
778 static int stm32_hash_finish(struct ahash_request *req)
779 {
780 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
781 
782 	if (!req->result)
783 		return -EINVAL;
784 
785 	memcpy(req->result, rctx->digest, rctx->digcnt);
786 
787 	return 0;
788 }
789 
790 static void stm32_hash_finish_req(struct ahash_request *req, int err)
791 {
792 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
793 	struct stm32_hash_dev *hdev = rctx->hdev;
794 
795 	if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
796 		stm32_hash_copy_hash(req);
797 		err = stm32_hash_finish(req);
798 		hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
799 				 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
800 				 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
801 				 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
802 				 HASH_FLAGS_HMAC_KEY);
803 	} else {
804 		rctx->flags |= HASH_FLAGS_ERRORS;
805 	}
806 
807 	pm_runtime_mark_last_busy(hdev->dev);
808 	pm_runtime_put_autosuspend(hdev->dev);
809 
810 	crypto_finalize_hash_request(hdev->engine, req, err);
811 }
812 
813 static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
814 			      struct stm32_hash_request_ctx *rctx)
815 {
816 	pm_runtime_get_sync(hdev->dev);
817 
818 	if (!(HASH_FLAGS_INIT & hdev->flags)) {
819 		stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
820 		stm32_hash_write(hdev, HASH_STR, 0);
821 		stm32_hash_write(hdev, HASH_DIN, 0);
822 		stm32_hash_write(hdev, HASH_IMR, 0);
823 		hdev->err = 0;
824 	}
825 
826 	return 0;
827 }
828 
829 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
830 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
831 
832 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
833 				   struct ahash_request *req)
834 {
835 	return crypto_transfer_hash_request_to_engine(hdev->engine, req);
836 }
837 
838 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
839 {
840 	struct ahash_request *req = container_of(areq, struct ahash_request,
841 						 base);
842 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
843 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
844 	struct stm32_hash_request_ctx *rctx;
845 
846 	if (!hdev)
847 		return -ENODEV;
848 
849 	hdev->req = req;
850 
851 	rctx = ahash_request_ctx(req);
852 
853 	dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
854 		rctx->op, req->nbytes);
855 
856 	return stm32_hash_hw_init(hdev, rctx);
857 }
858 
859 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
860 {
861 	struct ahash_request *req = container_of(areq, struct ahash_request,
862 						 base);
863 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
864 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
865 	struct stm32_hash_request_ctx *rctx;
866 	int err = 0;
867 
868 	if (!hdev)
869 		return -ENODEV;
870 
871 	hdev->req = req;
872 
873 	rctx = ahash_request_ctx(req);
874 
875 	if (rctx->op == HASH_OP_UPDATE)
876 		err = stm32_hash_update_req(hdev);
877 	else if (rctx->op == HASH_OP_FINAL)
878 		err = stm32_hash_final_req(hdev);
879 
880 	if (err != -EINPROGRESS)
881 	/* done task will not finish it, so do it here */
882 		stm32_hash_finish_req(req, err);
883 
884 	return 0;
885 }
886 
887 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
888 {
889 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
890 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
891 	struct stm32_hash_dev *hdev = ctx->hdev;
892 
893 	rctx->op = op;
894 
895 	return stm32_hash_handle_queue(hdev, req);
896 }
897 
898 static int stm32_hash_update(struct ahash_request *req)
899 {
900 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
901 
902 	if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
903 		return 0;
904 
905 	rctx->total = req->nbytes;
906 	rctx->sg = req->src;
907 	rctx->offset = 0;
908 
909 	if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
910 		stm32_hash_append_sg(rctx);
911 		return 0;
912 	}
913 
914 	return stm32_hash_enqueue(req, HASH_OP_UPDATE);
915 }
916 
917 static int stm32_hash_final(struct ahash_request *req)
918 {
919 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
920 
921 	rctx->flags |= HASH_FLAGS_FINUP;
922 
923 	return stm32_hash_enqueue(req, HASH_OP_FINAL);
924 }
925 
926 static int stm32_hash_finup(struct ahash_request *req)
927 {
928 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
929 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
930 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
931 	int err1, err2;
932 
933 	rctx->flags |= HASH_FLAGS_FINUP;
934 
935 	if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
936 		rctx->flags &= ~HASH_FLAGS_CPU;
937 
938 	err1 = stm32_hash_update(req);
939 
940 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
941 		return err1;
942 
943 	/*
944 	 * final() has to be always called to cleanup resources
945 	 * even if update() failed, except EINPROGRESS
946 	 */
947 	err2 = stm32_hash_final(req);
948 
949 	return err1 ?: err2;
950 }
951 
952 static int stm32_hash_digest(struct ahash_request *req)
953 {
954 	return stm32_hash_init(req) ?: stm32_hash_finup(req);
955 }
956 
957 static int stm32_hash_export(struct ahash_request *req, void *out)
958 {
959 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
961 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
962 	u32 *preg;
963 	unsigned int i;
964 
965 	pm_runtime_get_sync(hdev->dev);
966 
967 	while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
968 		cpu_relax();
969 
970 	rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
971 					 sizeof(u32),
972 					 GFP_KERNEL);
973 
974 	preg = rctx->hw_context;
975 
976 	*preg++ = stm32_hash_read(hdev, HASH_IMR);
977 	*preg++ = stm32_hash_read(hdev, HASH_STR);
978 	*preg++ = stm32_hash_read(hdev, HASH_CR);
979 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
980 		*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
981 
982 	pm_runtime_mark_last_busy(hdev->dev);
983 	pm_runtime_put_autosuspend(hdev->dev);
984 
985 	memcpy(out, rctx, sizeof(*rctx));
986 
987 	return 0;
988 }
989 
990 static int stm32_hash_import(struct ahash_request *req, const void *in)
991 {
992 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
993 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
994 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
995 	const u32 *preg = in;
996 	u32 reg;
997 	unsigned int i;
998 
999 	memcpy(rctx, in, sizeof(*rctx));
1000 
1001 	preg = rctx->hw_context;
1002 
1003 	pm_runtime_get_sync(hdev->dev);
1004 
1005 	stm32_hash_write(hdev, HASH_IMR, *preg++);
1006 	stm32_hash_write(hdev, HASH_STR, *preg++);
1007 	stm32_hash_write(hdev, HASH_CR, *preg);
1008 	reg = *preg++ | HASH_CR_INIT;
1009 	stm32_hash_write(hdev, HASH_CR, reg);
1010 
1011 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1012 		stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1013 
1014 	pm_runtime_mark_last_busy(hdev->dev);
1015 	pm_runtime_put_autosuspend(hdev->dev);
1016 
1017 	kfree(rctx->hw_context);
1018 
1019 	return 0;
1020 }
1021 
1022 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1023 			     const u8 *key, unsigned int keylen)
1024 {
1025 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1026 
1027 	if (keylen <= HASH_MAX_KEY_SIZE) {
1028 		memcpy(ctx->key, key, keylen);
1029 		ctx->keylen = keylen;
1030 	} else {
1031 		return -ENOMEM;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1038 				    const char *algs_hmac_name)
1039 {
1040 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1041 
1042 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1043 				 sizeof(struct stm32_hash_request_ctx));
1044 
1045 	ctx->keylen = 0;
1046 
1047 	if (algs_hmac_name)
1048 		ctx->flags |= HASH_FLAGS_HMAC;
1049 
1050 	ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1051 	ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1052 	ctx->enginectx.op.unprepare_request = NULL;
1053 	return 0;
1054 }
1055 
1056 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1057 {
1058 	return stm32_hash_cra_init_algs(tfm, NULL);
1059 }
1060 
1061 static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1062 {
1063 	return stm32_hash_cra_init_algs(tfm, "md5");
1064 }
1065 
1066 static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1067 {
1068 	return stm32_hash_cra_init_algs(tfm, "sha1");
1069 }
1070 
1071 static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1072 {
1073 	return stm32_hash_cra_init_algs(tfm, "sha224");
1074 }
1075 
1076 static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1077 {
1078 	return stm32_hash_cra_init_algs(tfm, "sha256");
1079 }
1080 
1081 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1082 {
1083 	struct stm32_hash_dev *hdev = dev_id;
1084 
1085 	if (HASH_FLAGS_CPU & hdev->flags) {
1086 		if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1087 			hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1088 			goto finish;
1089 		}
1090 	} else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1091 		if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1092 			hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1093 				goto finish;
1094 		}
1095 	}
1096 
1097 	return IRQ_HANDLED;
1098 
1099 finish:
1100 	/* Finish current request */
1101 	stm32_hash_finish_req(hdev->req, 0);
1102 
1103 	return IRQ_HANDLED;
1104 }
1105 
1106 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1107 {
1108 	struct stm32_hash_dev *hdev = dev_id;
1109 	u32 reg;
1110 
1111 	reg = stm32_hash_read(hdev, HASH_SR);
1112 	if (reg & HASH_SR_OUTPUT_READY) {
1113 		reg &= ~HASH_SR_OUTPUT_READY;
1114 		stm32_hash_write(hdev, HASH_SR, reg);
1115 		hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1116 		/* Disable IT*/
1117 		stm32_hash_write(hdev, HASH_IMR, 0);
1118 		return IRQ_WAKE_THREAD;
1119 	}
1120 
1121 	return IRQ_NONE;
1122 }
1123 
1124 static struct ahash_alg algs_md5_sha1[] = {
1125 	{
1126 		.init = stm32_hash_init,
1127 		.update = stm32_hash_update,
1128 		.final = stm32_hash_final,
1129 		.finup = stm32_hash_finup,
1130 		.digest = stm32_hash_digest,
1131 		.export = stm32_hash_export,
1132 		.import = stm32_hash_import,
1133 		.halg = {
1134 			.digestsize = MD5_DIGEST_SIZE,
1135 			.statesize = sizeof(struct stm32_hash_request_ctx),
1136 			.base = {
1137 				.cra_name = "md5",
1138 				.cra_driver_name = "stm32-md5",
1139 				.cra_priority = 200,
1140 				.cra_flags = CRYPTO_ALG_ASYNC |
1141 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1142 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1143 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1144 				.cra_alignmask = 3,
1145 				.cra_init = stm32_hash_cra_init,
1146 				.cra_module = THIS_MODULE,
1147 			}
1148 		}
1149 	},
1150 	{
1151 		.init = stm32_hash_init,
1152 		.update = stm32_hash_update,
1153 		.final = stm32_hash_final,
1154 		.finup = stm32_hash_finup,
1155 		.digest = stm32_hash_digest,
1156 		.export = stm32_hash_export,
1157 		.import = stm32_hash_import,
1158 		.setkey = stm32_hash_setkey,
1159 		.halg = {
1160 			.digestsize = MD5_DIGEST_SIZE,
1161 			.statesize = sizeof(struct stm32_hash_request_ctx),
1162 			.base = {
1163 				.cra_name = "hmac(md5)",
1164 				.cra_driver_name = "stm32-hmac-md5",
1165 				.cra_priority = 200,
1166 				.cra_flags = CRYPTO_ALG_ASYNC |
1167 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1168 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1169 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1170 				.cra_alignmask = 3,
1171 				.cra_init = stm32_hash_cra_md5_init,
1172 				.cra_module = THIS_MODULE,
1173 			}
1174 		}
1175 	},
1176 	{
1177 		.init = stm32_hash_init,
1178 		.update = stm32_hash_update,
1179 		.final = stm32_hash_final,
1180 		.finup = stm32_hash_finup,
1181 		.digest = stm32_hash_digest,
1182 		.export = stm32_hash_export,
1183 		.import = stm32_hash_import,
1184 		.halg = {
1185 			.digestsize = SHA1_DIGEST_SIZE,
1186 			.statesize = sizeof(struct stm32_hash_request_ctx),
1187 			.base = {
1188 				.cra_name = "sha1",
1189 				.cra_driver_name = "stm32-sha1",
1190 				.cra_priority = 200,
1191 				.cra_flags = CRYPTO_ALG_ASYNC |
1192 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1193 				.cra_blocksize = SHA1_BLOCK_SIZE,
1194 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1195 				.cra_alignmask = 3,
1196 				.cra_init = stm32_hash_cra_init,
1197 				.cra_module = THIS_MODULE,
1198 			}
1199 		}
1200 	},
1201 	{
1202 		.init = stm32_hash_init,
1203 		.update = stm32_hash_update,
1204 		.final = stm32_hash_final,
1205 		.finup = stm32_hash_finup,
1206 		.digest = stm32_hash_digest,
1207 		.export = stm32_hash_export,
1208 		.import = stm32_hash_import,
1209 		.setkey = stm32_hash_setkey,
1210 		.halg = {
1211 			.digestsize = SHA1_DIGEST_SIZE,
1212 			.statesize = sizeof(struct stm32_hash_request_ctx),
1213 			.base = {
1214 				.cra_name = "hmac(sha1)",
1215 				.cra_driver_name = "stm32-hmac-sha1",
1216 				.cra_priority = 200,
1217 				.cra_flags = CRYPTO_ALG_ASYNC |
1218 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1219 				.cra_blocksize = SHA1_BLOCK_SIZE,
1220 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1221 				.cra_alignmask = 3,
1222 				.cra_init = stm32_hash_cra_sha1_init,
1223 				.cra_module = THIS_MODULE,
1224 			}
1225 		}
1226 	},
1227 };
1228 
1229 static struct ahash_alg algs_sha224_sha256[] = {
1230 	{
1231 		.init = stm32_hash_init,
1232 		.update = stm32_hash_update,
1233 		.final = stm32_hash_final,
1234 		.finup = stm32_hash_finup,
1235 		.digest = stm32_hash_digest,
1236 		.export = stm32_hash_export,
1237 		.import = stm32_hash_import,
1238 		.halg = {
1239 			.digestsize = SHA224_DIGEST_SIZE,
1240 			.statesize = sizeof(struct stm32_hash_request_ctx),
1241 			.base = {
1242 				.cra_name = "sha224",
1243 				.cra_driver_name = "stm32-sha224",
1244 				.cra_priority = 200,
1245 				.cra_flags = CRYPTO_ALG_ASYNC |
1246 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1247 				.cra_blocksize = SHA224_BLOCK_SIZE,
1248 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1249 				.cra_alignmask = 3,
1250 				.cra_init = stm32_hash_cra_init,
1251 				.cra_module = THIS_MODULE,
1252 			}
1253 		}
1254 	},
1255 	{
1256 		.init = stm32_hash_init,
1257 		.update = stm32_hash_update,
1258 		.final = stm32_hash_final,
1259 		.finup = stm32_hash_finup,
1260 		.digest = stm32_hash_digest,
1261 		.setkey = stm32_hash_setkey,
1262 		.export = stm32_hash_export,
1263 		.import = stm32_hash_import,
1264 		.halg = {
1265 			.digestsize = SHA224_DIGEST_SIZE,
1266 			.statesize = sizeof(struct stm32_hash_request_ctx),
1267 			.base = {
1268 				.cra_name = "hmac(sha224)",
1269 				.cra_driver_name = "stm32-hmac-sha224",
1270 				.cra_priority = 200,
1271 				.cra_flags = CRYPTO_ALG_ASYNC |
1272 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1273 				.cra_blocksize = SHA224_BLOCK_SIZE,
1274 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1275 				.cra_alignmask = 3,
1276 				.cra_init = stm32_hash_cra_sha224_init,
1277 				.cra_module = THIS_MODULE,
1278 			}
1279 		}
1280 	},
1281 	{
1282 		.init = stm32_hash_init,
1283 		.update = stm32_hash_update,
1284 		.final = stm32_hash_final,
1285 		.finup = stm32_hash_finup,
1286 		.digest = stm32_hash_digest,
1287 		.export = stm32_hash_export,
1288 		.import = stm32_hash_import,
1289 		.halg = {
1290 			.digestsize = SHA256_DIGEST_SIZE,
1291 			.statesize = sizeof(struct stm32_hash_request_ctx),
1292 			.base = {
1293 				.cra_name = "sha256",
1294 				.cra_driver_name = "stm32-sha256",
1295 				.cra_priority = 200,
1296 				.cra_flags = CRYPTO_ALG_ASYNC |
1297 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1298 				.cra_blocksize = SHA256_BLOCK_SIZE,
1299 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1300 				.cra_alignmask = 3,
1301 				.cra_init = stm32_hash_cra_init,
1302 				.cra_module = THIS_MODULE,
1303 			}
1304 		}
1305 	},
1306 	{
1307 		.init = stm32_hash_init,
1308 		.update = stm32_hash_update,
1309 		.final = stm32_hash_final,
1310 		.finup = stm32_hash_finup,
1311 		.digest = stm32_hash_digest,
1312 		.export = stm32_hash_export,
1313 		.import = stm32_hash_import,
1314 		.setkey = stm32_hash_setkey,
1315 		.halg = {
1316 			.digestsize = SHA256_DIGEST_SIZE,
1317 			.statesize = sizeof(struct stm32_hash_request_ctx),
1318 			.base = {
1319 				.cra_name = "hmac(sha256)",
1320 				.cra_driver_name = "stm32-hmac-sha256",
1321 				.cra_priority = 200,
1322 				.cra_flags = CRYPTO_ALG_ASYNC |
1323 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1324 				.cra_blocksize = SHA256_BLOCK_SIZE,
1325 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1326 				.cra_alignmask = 3,
1327 				.cra_init = stm32_hash_cra_sha256_init,
1328 				.cra_module = THIS_MODULE,
1329 			}
1330 		}
1331 	},
1332 };
1333 
1334 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1335 {
1336 	unsigned int i, j;
1337 	int err;
1338 
1339 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1340 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1341 			err = crypto_register_ahash(
1342 				&hdev->pdata->algs_info[i].algs_list[j]);
1343 			if (err)
1344 				goto err_algs;
1345 		}
1346 	}
1347 
1348 	return 0;
1349 err_algs:
1350 	dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1351 	for (; i--; ) {
1352 		for (; j--;)
1353 			crypto_unregister_ahash(
1354 				&hdev->pdata->algs_info[i].algs_list[j]);
1355 	}
1356 
1357 	return err;
1358 }
1359 
1360 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1361 {
1362 	unsigned int i, j;
1363 
1364 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1365 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1366 			crypto_unregister_ahash(
1367 				&hdev->pdata->algs_info[i].algs_list[j]);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1374 	{
1375 		.algs_list	= algs_md5_sha1,
1376 		.size		= ARRAY_SIZE(algs_md5_sha1),
1377 	},
1378 };
1379 
1380 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1381 	.algs_info	= stm32_hash_algs_info_stm32f4,
1382 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1383 };
1384 
1385 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1386 	{
1387 		.algs_list	= algs_md5_sha1,
1388 		.size		= ARRAY_SIZE(algs_md5_sha1),
1389 	},
1390 	{
1391 		.algs_list	= algs_sha224_sha256,
1392 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1393 	},
1394 };
1395 
1396 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1397 	.algs_info	= stm32_hash_algs_info_stm32f7,
1398 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1399 };
1400 
1401 static const struct of_device_id stm32_hash_of_match[] = {
1402 	{
1403 		.compatible = "st,stm32f456-hash",
1404 		.data = &stm32_hash_pdata_stm32f4,
1405 	},
1406 	{
1407 		.compatible = "st,stm32f756-hash",
1408 		.data = &stm32_hash_pdata_stm32f7,
1409 	},
1410 	{},
1411 };
1412 
1413 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1414 
1415 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1416 				   struct device *dev)
1417 {
1418 	hdev->pdata = of_device_get_match_data(dev);
1419 	if (!hdev->pdata) {
1420 		dev_err(dev, "no compatible OF match\n");
1421 		return -EINVAL;
1422 	}
1423 
1424 	if (of_property_read_u32(dev->of_node, "dma-maxburst",
1425 				 &hdev->dma_maxburst)) {
1426 		dev_info(dev, "dma-maxburst not specified, using 0\n");
1427 		hdev->dma_maxburst = 0;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int stm32_hash_probe(struct platform_device *pdev)
1434 {
1435 	struct stm32_hash_dev *hdev;
1436 	struct device *dev = &pdev->dev;
1437 	struct resource *res;
1438 	int ret, irq;
1439 
1440 	hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1441 	if (!hdev)
1442 		return -ENOMEM;
1443 
1444 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1445 	hdev->io_base = devm_ioremap_resource(dev, res);
1446 	if (IS_ERR(hdev->io_base))
1447 		return PTR_ERR(hdev->io_base);
1448 
1449 	hdev->phys_base = res->start;
1450 
1451 	ret = stm32_hash_get_of_match(hdev, dev);
1452 	if (ret)
1453 		return ret;
1454 
1455 	irq = platform_get_irq(pdev, 0);
1456 	if (irq < 0)
1457 		return irq;
1458 
1459 	ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1460 					stm32_hash_irq_thread, IRQF_ONESHOT,
1461 					dev_name(dev), hdev);
1462 	if (ret) {
1463 		dev_err(dev, "Cannot grab IRQ\n");
1464 		return ret;
1465 	}
1466 
1467 	hdev->clk = devm_clk_get(&pdev->dev, NULL);
1468 	if (IS_ERR(hdev->clk))
1469 		return dev_err_probe(dev, PTR_ERR(hdev->clk),
1470 				     "failed to get clock for hash\n");
1471 
1472 	ret = clk_prepare_enable(hdev->clk);
1473 	if (ret) {
1474 		dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1475 		return ret;
1476 	}
1477 
1478 	pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1479 	pm_runtime_use_autosuspend(dev);
1480 
1481 	pm_runtime_get_noresume(dev);
1482 	pm_runtime_set_active(dev);
1483 	pm_runtime_enable(dev);
1484 
1485 	hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1486 	if (IS_ERR(hdev->rst)) {
1487 		if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1488 			ret = -EPROBE_DEFER;
1489 			goto err_reset;
1490 		}
1491 	} else {
1492 		reset_control_assert(hdev->rst);
1493 		udelay(2);
1494 		reset_control_deassert(hdev->rst);
1495 	}
1496 
1497 	hdev->dev = dev;
1498 
1499 	platform_set_drvdata(pdev, hdev);
1500 
1501 	ret = stm32_hash_dma_init(hdev);
1502 	switch (ret) {
1503 	case 0:
1504 		break;
1505 	case -ENOENT:
1506 		dev_dbg(dev, "DMA mode not available\n");
1507 		break;
1508 	default:
1509 		goto err_dma;
1510 	}
1511 
1512 	spin_lock(&stm32_hash.lock);
1513 	list_add_tail(&hdev->list, &stm32_hash.dev_list);
1514 	spin_unlock(&stm32_hash.lock);
1515 
1516 	/* Initialize crypto engine */
1517 	hdev->engine = crypto_engine_alloc_init(dev, 1);
1518 	if (!hdev->engine) {
1519 		ret = -ENOMEM;
1520 		goto err_engine;
1521 	}
1522 
1523 	ret = crypto_engine_start(hdev->engine);
1524 	if (ret)
1525 		goto err_engine_start;
1526 
1527 	hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1528 
1529 	/* Register algos */
1530 	ret = stm32_hash_register_algs(hdev);
1531 	if (ret)
1532 		goto err_algs;
1533 
1534 	dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1535 		 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1536 
1537 	pm_runtime_put_sync(dev);
1538 
1539 	return 0;
1540 
1541 err_algs:
1542 err_engine_start:
1543 	crypto_engine_exit(hdev->engine);
1544 err_engine:
1545 	spin_lock(&stm32_hash.lock);
1546 	list_del(&hdev->list);
1547 	spin_unlock(&stm32_hash.lock);
1548 err_dma:
1549 	if (hdev->dma_lch)
1550 		dma_release_channel(hdev->dma_lch);
1551 err_reset:
1552 	pm_runtime_disable(dev);
1553 	pm_runtime_put_noidle(dev);
1554 
1555 	clk_disable_unprepare(hdev->clk);
1556 
1557 	return ret;
1558 }
1559 
1560 static int stm32_hash_remove(struct platform_device *pdev)
1561 {
1562 	struct stm32_hash_dev *hdev;
1563 	int ret;
1564 
1565 	hdev = platform_get_drvdata(pdev);
1566 	if (!hdev)
1567 		return -ENODEV;
1568 
1569 	ret = pm_runtime_resume_and_get(hdev->dev);
1570 	if (ret < 0)
1571 		return ret;
1572 
1573 	stm32_hash_unregister_algs(hdev);
1574 
1575 	crypto_engine_exit(hdev->engine);
1576 
1577 	spin_lock(&stm32_hash.lock);
1578 	list_del(&hdev->list);
1579 	spin_unlock(&stm32_hash.lock);
1580 
1581 	if (hdev->dma_lch)
1582 		dma_release_channel(hdev->dma_lch);
1583 
1584 	pm_runtime_disable(hdev->dev);
1585 	pm_runtime_put_noidle(hdev->dev);
1586 
1587 	clk_disable_unprepare(hdev->clk);
1588 
1589 	return 0;
1590 }
1591 
1592 #ifdef CONFIG_PM
1593 static int stm32_hash_runtime_suspend(struct device *dev)
1594 {
1595 	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1596 
1597 	clk_disable_unprepare(hdev->clk);
1598 
1599 	return 0;
1600 }
1601 
1602 static int stm32_hash_runtime_resume(struct device *dev)
1603 {
1604 	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1605 	int ret;
1606 
1607 	ret = clk_prepare_enable(hdev->clk);
1608 	if (ret) {
1609 		dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1610 		return ret;
1611 	}
1612 
1613 	return 0;
1614 }
1615 #endif
1616 
1617 static const struct dev_pm_ops stm32_hash_pm_ops = {
1618 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1619 				pm_runtime_force_resume)
1620 	SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1621 			   stm32_hash_runtime_resume, NULL)
1622 };
1623 
1624 static struct platform_driver stm32_hash_driver = {
1625 	.probe		= stm32_hash_probe,
1626 	.remove		= stm32_hash_remove,
1627 	.driver		= {
1628 		.name	= "stm32-hash",
1629 		.pm = &stm32_hash_pm_ops,
1630 		.of_match_table	= stm32_hash_of_match,
1631 	}
1632 };
1633 
1634 module_platform_driver(stm32_hash_driver);
1635 
1636 MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1637 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1638 MODULE_LICENSE("GPL v2");
1639