1 /*
2  * This file is part of STM32 Crypto driver for Linux.
3  *
4  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
5  * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
6  *
7  * License terms: GPL V2.0.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  * details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program. If not, see <http://www.gnu.org/licenses/>.
20  *
21  */
22 
23 #include <linux/clk.h>
24 #include <linux/crypto.h>
25 #include <linux/delay.h>
26 #include <linux/dmaengine.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 #include <linux/platform_device.h>
34 #include <linux/reset.h>
35 
36 #include <crypto/engine.h>
37 #include <crypto/hash.h>
38 #include <crypto/md5.h>
39 #include <crypto/scatterwalk.h>
40 #include <crypto/sha.h>
41 #include <crypto/internal/hash.h>
42 
43 #define HASH_CR				0x00
44 #define HASH_DIN			0x04
45 #define HASH_STR			0x08
46 #define HASH_IMR			0x20
47 #define HASH_SR				0x24
48 #define HASH_CSR(x)			(0x0F8 + ((x) * 0x04))
49 #define HASH_HREG(x)			(0x310 + ((x) * 0x04))
50 #define HASH_HWCFGR			0x3F0
51 #define HASH_VER			0x3F4
52 #define HASH_ID				0x3F8
53 
54 /* Control Register */
55 #define HASH_CR_INIT			BIT(2)
56 #define HASH_CR_DMAE			BIT(3)
57 #define HASH_CR_DATATYPE_POS		4
58 #define HASH_CR_MODE			BIT(6)
59 #define HASH_CR_MDMAT			BIT(13)
60 #define HASH_CR_DMAA			BIT(14)
61 #define HASH_CR_LKEY			BIT(16)
62 
63 #define HASH_CR_ALGO_SHA1		0x0
64 #define HASH_CR_ALGO_MD5		0x80
65 #define HASH_CR_ALGO_SHA224		0x40000
66 #define HASH_CR_ALGO_SHA256		0x40080
67 
68 /* Interrupt */
69 #define HASH_DINIE			BIT(0)
70 #define HASH_DCIE			BIT(1)
71 
72 /* Interrupt Mask */
73 #define HASH_MASK_CALC_COMPLETION	BIT(0)
74 #define HASH_MASK_DATA_INPUT		BIT(1)
75 
76 /* Context swap register */
77 #define HASH_CSR_REGISTER_NUMBER	53
78 
79 /* Status Flags */
80 #define HASH_SR_DATA_INPUT_READY	BIT(0)
81 #define HASH_SR_OUTPUT_READY		BIT(1)
82 #define HASH_SR_DMA_ACTIVE		BIT(2)
83 #define HASH_SR_BUSY			BIT(3)
84 
85 /* STR Register */
86 #define HASH_STR_NBLW_MASK		GENMASK(4, 0)
87 #define HASH_STR_DCAL			BIT(8)
88 
89 #define HASH_FLAGS_INIT			BIT(0)
90 #define HASH_FLAGS_OUTPUT_READY		BIT(1)
91 #define HASH_FLAGS_CPU			BIT(2)
92 #define HASH_FLAGS_DMA_READY		BIT(3)
93 #define HASH_FLAGS_DMA_ACTIVE		BIT(4)
94 #define HASH_FLAGS_HMAC_INIT		BIT(5)
95 #define HASH_FLAGS_HMAC_FINAL		BIT(6)
96 #define HASH_FLAGS_HMAC_KEY		BIT(7)
97 
98 #define HASH_FLAGS_FINAL		BIT(15)
99 #define HASH_FLAGS_FINUP		BIT(16)
100 #define HASH_FLAGS_ALGO_MASK		GENMASK(21, 18)
101 #define HASH_FLAGS_MD5			BIT(18)
102 #define HASH_FLAGS_SHA1			BIT(19)
103 #define HASH_FLAGS_SHA224		BIT(20)
104 #define HASH_FLAGS_SHA256		BIT(21)
105 #define HASH_FLAGS_ERRORS		BIT(22)
106 #define HASH_FLAGS_HMAC			BIT(23)
107 
108 #define HASH_OP_UPDATE			1
109 #define HASH_OP_FINAL			2
110 
111 enum stm32_hash_data_format {
112 	HASH_DATA_32_BITS		= 0x0,
113 	HASH_DATA_16_BITS		= 0x1,
114 	HASH_DATA_8_BITS		= 0x2,
115 	HASH_DATA_1_BIT			= 0x3
116 };
117 
118 #define HASH_BUFLEN			256
119 #define HASH_LONG_KEY			64
120 #define HASH_MAX_KEY_SIZE		(SHA256_BLOCK_SIZE * 8)
121 #define HASH_QUEUE_LENGTH		16
122 #define HASH_DMA_THRESHOLD		50
123 
124 struct stm32_hash_ctx {
125 	struct stm32_hash_dev	*hdev;
126 	unsigned long		flags;
127 
128 	u8			key[HASH_MAX_KEY_SIZE];
129 	int			keylen;
130 };
131 
132 struct stm32_hash_request_ctx {
133 	struct stm32_hash_dev	*hdev;
134 	unsigned long		flags;
135 	unsigned long		op;
136 
137 	u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
138 	size_t			digcnt;
139 	size_t			bufcnt;
140 	size_t			buflen;
141 
142 	/* DMA */
143 	struct scatterlist	*sg;
144 	unsigned int		offset;
145 	unsigned int		total;
146 	struct scatterlist	sg_key;
147 
148 	dma_addr_t		dma_addr;
149 	size_t			dma_ct;
150 	int			nents;
151 
152 	u8			data_type;
153 
154 	u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
155 
156 	/* Export Context */
157 	u32			*hw_context;
158 };
159 
160 struct stm32_hash_algs_info {
161 	struct ahash_alg	*algs_list;
162 	size_t			size;
163 };
164 
165 struct stm32_hash_pdata {
166 	struct stm32_hash_algs_info	*algs_info;
167 	size_t				algs_info_size;
168 };
169 
170 struct stm32_hash_dev {
171 	struct list_head	list;
172 	struct device		*dev;
173 	struct clk		*clk;
174 	struct reset_control	*rst;
175 	void __iomem		*io_base;
176 	phys_addr_t		phys_base;
177 	u32			dma_mode;
178 	u32			dma_maxburst;
179 
180 	spinlock_t		lock; /* lock to protect queue */
181 
182 	struct ahash_request	*req;
183 	struct crypto_engine	*engine;
184 
185 	int			err;
186 	unsigned long		flags;
187 
188 	struct dma_chan		*dma_lch;
189 	struct completion	dma_completion;
190 
191 	const struct stm32_hash_pdata	*pdata;
192 };
193 
194 struct stm32_hash_drv {
195 	struct list_head	dev_list;
196 	spinlock_t		lock; /* List protection access */
197 };
198 
199 static struct stm32_hash_drv stm32_hash = {
200 	.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
201 	.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
202 };
203 
204 static void stm32_hash_dma_callback(void *param);
205 
206 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
207 {
208 	return readl_relaxed(hdev->io_base + offset);
209 }
210 
211 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
212 				    u32 offset, u32 value)
213 {
214 	writel_relaxed(value, hdev->io_base + offset);
215 }
216 
217 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
218 {
219 	u32 status;
220 
221 	return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
222 				   !(status & HASH_SR_BUSY), 10, 10000);
223 }
224 
225 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
226 {
227 	u32 reg;
228 
229 	reg = stm32_hash_read(hdev, HASH_STR);
230 	reg &= ~(HASH_STR_NBLW_MASK);
231 	reg |= (8U * ((length) % 4U));
232 	stm32_hash_write(hdev, HASH_STR, reg);
233 }
234 
235 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
236 {
237 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
238 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
239 	u32 reg;
240 	int keylen = ctx->keylen;
241 	void *key = ctx->key;
242 
243 	if (keylen) {
244 		stm32_hash_set_nblw(hdev, keylen);
245 
246 		while (keylen > 0) {
247 			stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
248 			keylen -= 4;
249 			key += 4;
250 		}
251 
252 		reg = stm32_hash_read(hdev, HASH_STR);
253 		reg |= HASH_STR_DCAL;
254 		stm32_hash_write(hdev, HASH_STR, reg);
255 
256 		return -EINPROGRESS;
257 	}
258 
259 	return 0;
260 }
261 
262 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
263 {
264 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
265 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
266 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
267 
268 	u32 reg = HASH_CR_INIT;
269 
270 	if (!(hdev->flags & HASH_FLAGS_INIT)) {
271 		switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
272 		case HASH_FLAGS_MD5:
273 			reg |= HASH_CR_ALGO_MD5;
274 			break;
275 		case HASH_FLAGS_SHA1:
276 			reg |= HASH_CR_ALGO_SHA1;
277 			break;
278 		case HASH_FLAGS_SHA224:
279 			reg |= HASH_CR_ALGO_SHA224;
280 			break;
281 		case HASH_FLAGS_SHA256:
282 			reg |= HASH_CR_ALGO_SHA256;
283 			break;
284 		default:
285 			reg |= HASH_CR_ALGO_MD5;
286 		}
287 
288 		reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
289 
290 		if (rctx->flags & HASH_FLAGS_HMAC) {
291 			hdev->flags |= HASH_FLAGS_HMAC;
292 			reg |= HASH_CR_MODE;
293 			if (ctx->keylen > HASH_LONG_KEY)
294 				reg |= HASH_CR_LKEY;
295 		}
296 
297 		stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
298 
299 		stm32_hash_write(hdev, HASH_CR, reg);
300 
301 		hdev->flags |= HASH_FLAGS_INIT;
302 
303 		dev_dbg(hdev->dev, "Write Control %x\n", reg);
304 	}
305 }
306 
307 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
308 {
309 	size_t count;
310 
311 	while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
312 		count = min(rctx->sg->length - rctx->offset, rctx->total);
313 		count = min(count, rctx->buflen - rctx->bufcnt);
314 
315 		if (count <= 0) {
316 			if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
317 				rctx->sg = sg_next(rctx->sg);
318 				continue;
319 			} else {
320 				break;
321 			}
322 		}
323 
324 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
325 					 rctx->offset, count, 0);
326 
327 		rctx->bufcnt += count;
328 		rctx->offset += count;
329 		rctx->total -= count;
330 
331 		if (rctx->offset == rctx->sg->length) {
332 			rctx->sg = sg_next(rctx->sg);
333 			if (rctx->sg)
334 				rctx->offset = 0;
335 			else
336 				rctx->total = 0;
337 		}
338 	}
339 }
340 
341 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
342 			       const u8 *buf, size_t length, int final)
343 {
344 	unsigned int count, len32;
345 	const u32 *buffer = (const u32 *)buf;
346 	u32 reg;
347 
348 	if (final)
349 		hdev->flags |= HASH_FLAGS_FINAL;
350 
351 	len32 = DIV_ROUND_UP(length, sizeof(u32));
352 
353 	dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
354 		__func__, length, final, len32);
355 
356 	hdev->flags |= HASH_FLAGS_CPU;
357 
358 	stm32_hash_write_ctrl(hdev);
359 
360 	if (stm32_hash_wait_busy(hdev))
361 		return -ETIMEDOUT;
362 
363 	if ((hdev->flags & HASH_FLAGS_HMAC) &&
364 	    (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
365 		hdev->flags |= HASH_FLAGS_HMAC_KEY;
366 		stm32_hash_write_key(hdev);
367 		if (stm32_hash_wait_busy(hdev))
368 			return -ETIMEDOUT;
369 	}
370 
371 	for (count = 0; count < len32; count++)
372 		stm32_hash_write(hdev, HASH_DIN, buffer[count]);
373 
374 	if (final) {
375 		stm32_hash_set_nblw(hdev, length);
376 		reg = stm32_hash_read(hdev, HASH_STR);
377 		reg |= HASH_STR_DCAL;
378 		stm32_hash_write(hdev, HASH_STR, reg);
379 		if (hdev->flags & HASH_FLAGS_HMAC) {
380 			if (stm32_hash_wait_busy(hdev))
381 				return -ETIMEDOUT;
382 			stm32_hash_write_key(hdev);
383 		}
384 		return -EINPROGRESS;
385 	}
386 
387 	return 0;
388 }
389 
390 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
391 {
392 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
393 	int bufcnt, err = 0, final;
394 
395 	dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
396 
397 	final = (rctx->flags & HASH_FLAGS_FINUP);
398 
399 	while ((rctx->total >= rctx->buflen) ||
400 	       (rctx->bufcnt + rctx->total >= rctx->buflen)) {
401 		stm32_hash_append_sg(rctx);
402 		bufcnt = rctx->bufcnt;
403 		rctx->bufcnt = 0;
404 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
405 	}
406 
407 	stm32_hash_append_sg(rctx);
408 
409 	if (final) {
410 		bufcnt = rctx->bufcnt;
411 		rctx->bufcnt = 0;
412 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
413 					  (rctx->flags & HASH_FLAGS_FINUP));
414 	}
415 
416 	return err;
417 }
418 
419 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
420 			       struct scatterlist *sg, int length, int mdma)
421 {
422 	struct dma_async_tx_descriptor *in_desc;
423 	dma_cookie_t cookie;
424 	u32 reg;
425 	int err;
426 
427 	in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
428 					  DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
429 					  DMA_CTRL_ACK);
430 	if (!in_desc) {
431 		dev_err(hdev->dev, "dmaengine_prep_slave error\n");
432 		return -ENOMEM;
433 	}
434 
435 	reinit_completion(&hdev->dma_completion);
436 	in_desc->callback = stm32_hash_dma_callback;
437 	in_desc->callback_param = hdev;
438 
439 	hdev->flags |= HASH_FLAGS_FINAL;
440 	hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
441 
442 	reg = stm32_hash_read(hdev, HASH_CR);
443 
444 	if (mdma)
445 		reg |= HASH_CR_MDMAT;
446 	else
447 		reg &= ~HASH_CR_MDMAT;
448 
449 	reg |= HASH_CR_DMAE;
450 
451 	stm32_hash_write(hdev, HASH_CR, reg);
452 
453 	stm32_hash_set_nblw(hdev, length);
454 
455 	cookie = dmaengine_submit(in_desc);
456 	err = dma_submit_error(cookie);
457 	if (err)
458 		return -ENOMEM;
459 
460 	dma_async_issue_pending(hdev->dma_lch);
461 
462 	if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
463 						       msecs_to_jiffies(100)))
464 		err = -ETIMEDOUT;
465 
466 	if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
467 				     NULL, NULL) != DMA_COMPLETE)
468 		err = -ETIMEDOUT;
469 
470 	if (err) {
471 		dev_err(hdev->dev, "DMA Error %i\n", err);
472 		dmaengine_terminate_all(hdev->dma_lch);
473 		return err;
474 	}
475 
476 	return -EINPROGRESS;
477 }
478 
479 static void stm32_hash_dma_callback(void *param)
480 {
481 	struct stm32_hash_dev *hdev = param;
482 
483 	complete(&hdev->dma_completion);
484 
485 	hdev->flags |= HASH_FLAGS_DMA_READY;
486 }
487 
488 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
489 {
490 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
492 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
493 	int err;
494 
495 	if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
496 		err = stm32_hash_write_key(hdev);
497 		if (stm32_hash_wait_busy(hdev))
498 			return -ETIMEDOUT;
499 	} else {
500 		if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
501 			sg_init_one(&rctx->sg_key, ctx->key,
502 				    ALIGN(ctx->keylen, sizeof(u32)));
503 
504 		rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
505 					  DMA_TO_DEVICE);
506 		if (rctx->dma_ct == 0) {
507 			dev_err(hdev->dev, "dma_map_sg error\n");
508 			return -ENOMEM;
509 		}
510 
511 		err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
512 
513 		dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
514 	}
515 
516 	return err;
517 }
518 
519 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
520 {
521 	struct dma_slave_config dma_conf;
522 	int err;
523 
524 	memset(&dma_conf, 0, sizeof(dma_conf));
525 
526 	dma_conf.direction = DMA_MEM_TO_DEV;
527 	dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
528 	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
529 	dma_conf.src_maxburst = hdev->dma_maxburst;
530 	dma_conf.dst_maxburst = hdev->dma_maxburst;
531 	dma_conf.device_fc = false;
532 
533 	hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
534 	if (!hdev->dma_lch) {
535 		dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
536 		return -EBUSY;
537 	}
538 
539 	err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
540 	if (err) {
541 		dma_release_channel(hdev->dma_lch);
542 		hdev->dma_lch = NULL;
543 		dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
544 		return err;
545 	}
546 
547 	init_completion(&hdev->dma_completion);
548 
549 	return 0;
550 }
551 
552 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
553 {
554 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
555 	struct scatterlist sg[1], *tsg;
556 	int err = 0, len = 0, reg, ncp = 0;
557 	unsigned int i;
558 	u32 *buffer = (void *)rctx->buffer;
559 
560 	rctx->sg = hdev->req->src;
561 	rctx->total = hdev->req->nbytes;
562 
563 	rctx->nents = sg_nents(rctx->sg);
564 
565 	if (rctx->nents < 0)
566 		return -EINVAL;
567 
568 	stm32_hash_write_ctrl(hdev);
569 
570 	if (hdev->flags & HASH_FLAGS_HMAC) {
571 		err = stm32_hash_hmac_dma_send(hdev);
572 		if (err != -EINPROGRESS)
573 			return err;
574 	}
575 
576 	for_each_sg(rctx->sg, tsg, rctx->nents, i) {
577 		len = sg->length;
578 
579 		sg[0] = *tsg;
580 		if (sg_is_last(sg)) {
581 			if (hdev->dma_mode == 1) {
582 				len = (ALIGN(sg->length, 16) - 16);
583 
584 				ncp = sg_pcopy_to_buffer(
585 					rctx->sg, rctx->nents,
586 					rctx->buffer, sg->length - len,
587 					rctx->total - sg->length + len);
588 
589 				sg->length = len;
590 			} else {
591 				if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
592 					len = sg->length;
593 					sg->length = ALIGN(sg->length,
594 							   sizeof(u32));
595 				}
596 			}
597 		}
598 
599 		rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
600 					  DMA_TO_DEVICE);
601 		if (rctx->dma_ct == 0) {
602 			dev_err(hdev->dev, "dma_map_sg error\n");
603 			return -ENOMEM;
604 		}
605 
606 		err = stm32_hash_xmit_dma(hdev, sg, len,
607 					  !sg_is_last(sg));
608 
609 		dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
610 
611 		if (err == -ENOMEM)
612 			return err;
613 	}
614 
615 	if (hdev->dma_mode == 1) {
616 		if (stm32_hash_wait_busy(hdev))
617 			return -ETIMEDOUT;
618 		reg = stm32_hash_read(hdev, HASH_CR);
619 		reg &= ~HASH_CR_DMAE;
620 		reg |= HASH_CR_DMAA;
621 		stm32_hash_write(hdev, HASH_CR, reg);
622 
623 		if (ncp) {
624 			memset(buffer + ncp, 0,
625 			       DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
626 			writesl(hdev->io_base + HASH_DIN, buffer,
627 				DIV_ROUND_UP(ncp, sizeof(u32)));
628 		}
629 		stm32_hash_set_nblw(hdev, DIV_ROUND_UP(ncp, sizeof(u32)));
630 		reg = stm32_hash_read(hdev, HASH_STR);
631 		reg |= HASH_STR_DCAL;
632 		stm32_hash_write(hdev, HASH_STR, reg);
633 		err = -EINPROGRESS;
634 	}
635 
636 	if (hdev->flags & HASH_FLAGS_HMAC) {
637 		if (stm32_hash_wait_busy(hdev))
638 			return -ETIMEDOUT;
639 		err = stm32_hash_hmac_dma_send(hdev);
640 	}
641 
642 	return err;
643 }
644 
645 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
646 {
647 	struct stm32_hash_dev *hdev = NULL, *tmp;
648 
649 	spin_lock_bh(&stm32_hash.lock);
650 	if (!ctx->hdev) {
651 		list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
652 			hdev = tmp;
653 			break;
654 		}
655 		ctx->hdev = hdev;
656 	} else {
657 		hdev = ctx->hdev;
658 	}
659 
660 	spin_unlock_bh(&stm32_hash.lock);
661 
662 	return hdev;
663 }
664 
665 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
666 {
667 	struct scatterlist *sg;
668 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
669 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
670 	int i;
671 
672 	if (req->nbytes <= HASH_DMA_THRESHOLD)
673 		return false;
674 
675 	if (sg_nents(req->src) > 1) {
676 		if (hdev->dma_mode == 1)
677 			return false;
678 		for_each_sg(req->src, sg, sg_nents(req->src), i) {
679 			if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
680 			    (!sg_is_last(sg)))
681 				return false;
682 		}
683 	}
684 
685 	if (req->src->offset % 4)
686 		return false;
687 
688 	return true;
689 }
690 
691 static int stm32_hash_init(struct ahash_request *req)
692 {
693 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
694 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
695 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
696 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
697 
698 	rctx->hdev = hdev;
699 
700 	rctx->flags = HASH_FLAGS_CPU;
701 
702 	rctx->digcnt = crypto_ahash_digestsize(tfm);
703 	switch (rctx->digcnt) {
704 	case MD5_DIGEST_SIZE:
705 		rctx->flags |= HASH_FLAGS_MD5;
706 		break;
707 	case SHA1_DIGEST_SIZE:
708 		rctx->flags |= HASH_FLAGS_SHA1;
709 		break;
710 	case SHA224_DIGEST_SIZE:
711 		rctx->flags |= HASH_FLAGS_SHA224;
712 		break;
713 	case SHA256_DIGEST_SIZE:
714 		rctx->flags |= HASH_FLAGS_SHA256;
715 		break;
716 	default:
717 		return -EINVAL;
718 	}
719 
720 	rctx->bufcnt = 0;
721 	rctx->buflen = HASH_BUFLEN;
722 	rctx->total = 0;
723 	rctx->offset = 0;
724 	rctx->data_type = HASH_DATA_8_BITS;
725 
726 	memset(rctx->buffer, 0, HASH_BUFLEN);
727 
728 	if (ctx->flags & HASH_FLAGS_HMAC)
729 		rctx->flags |= HASH_FLAGS_HMAC;
730 
731 	dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
732 
733 	return 0;
734 }
735 
736 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
737 {
738 	return stm32_hash_update_cpu(hdev);
739 }
740 
741 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
742 {
743 	struct ahash_request *req = hdev->req;
744 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
745 	int err;
746 
747 	if (!(rctx->flags & HASH_FLAGS_CPU))
748 		err = stm32_hash_dma_send(hdev);
749 	else
750 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, rctx->bufcnt, 1);
751 
752 	rctx->bufcnt = 0;
753 
754 	return err;
755 }
756 
757 static void stm32_hash_copy_hash(struct ahash_request *req)
758 {
759 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
760 	u32 *hash = (u32 *)rctx->digest;
761 	unsigned int i, hashsize;
762 
763 	switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
764 	case HASH_FLAGS_MD5:
765 		hashsize = MD5_DIGEST_SIZE;
766 		break;
767 	case HASH_FLAGS_SHA1:
768 		hashsize = SHA1_DIGEST_SIZE;
769 		break;
770 	case HASH_FLAGS_SHA224:
771 		hashsize = SHA224_DIGEST_SIZE;
772 		break;
773 	case HASH_FLAGS_SHA256:
774 		hashsize = SHA256_DIGEST_SIZE;
775 		break;
776 	default:
777 		return;
778 	}
779 
780 	for (i = 0; i < hashsize / sizeof(u32); i++)
781 		hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
782 						      HASH_HREG(i)));
783 }
784 
785 static int stm32_hash_finish(struct ahash_request *req)
786 {
787 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
788 
789 	if (!req->result)
790 		return -EINVAL;
791 
792 	memcpy(req->result, rctx->digest, rctx->digcnt);
793 
794 	return 0;
795 }
796 
797 static void stm32_hash_finish_req(struct ahash_request *req, int err)
798 {
799 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
800 	struct stm32_hash_dev *hdev = rctx->hdev;
801 
802 	if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
803 		stm32_hash_copy_hash(req);
804 		err = stm32_hash_finish(req);
805 		hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
806 				 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
807 				 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
808 				 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
809 				 HASH_FLAGS_HMAC_KEY);
810 	} else {
811 		rctx->flags |= HASH_FLAGS_ERRORS;
812 	}
813 
814 	crypto_finalize_hash_request(hdev->engine, req, err);
815 }
816 
817 static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
818 			      struct stm32_hash_request_ctx *rctx)
819 {
820 	if (!(HASH_FLAGS_INIT & hdev->flags)) {
821 		stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
822 		stm32_hash_write(hdev, HASH_STR, 0);
823 		stm32_hash_write(hdev, HASH_DIN, 0);
824 		stm32_hash_write(hdev, HASH_IMR, 0);
825 		hdev->err = 0;
826 	}
827 
828 	return 0;
829 }
830 
831 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
832 				   struct ahash_request *req)
833 {
834 	return crypto_transfer_hash_request_to_engine(hdev->engine, req);
835 }
836 
837 static int stm32_hash_prepare_req(struct crypto_engine *engine,
838 				  struct ahash_request *req)
839 {
840 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
841 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
842 	struct stm32_hash_request_ctx *rctx;
843 
844 	if (!hdev)
845 		return -ENODEV;
846 
847 	hdev->req = req;
848 
849 	rctx = ahash_request_ctx(req);
850 
851 	dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
852 		rctx->op, req->nbytes);
853 
854 	return stm32_hash_hw_init(hdev, rctx);
855 }
856 
857 static int stm32_hash_one_request(struct crypto_engine *engine,
858 				  struct ahash_request *req)
859 {
860 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
861 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
862 	struct stm32_hash_request_ctx *rctx;
863 	int err = 0;
864 
865 	if (!hdev)
866 		return -ENODEV;
867 
868 	hdev->req = req;
869 
870 	rctx = ahash_request_ctx(req);
871 
872 	if (rctx->op == HASH_OP_UPDATE)
873 		err = stm32_hash_update_req(hdev);
874 	else if (rctx->op == HASH_OP_FINAL)
875 		err = stm32_hash_final_req(hdev);
876 
877 	if (err != -EINPROGRESS)
878 	/* done task will not finish it, so do it here */
879 		stm32_hash_finish_req(req, err);
880 
881 	return 0;
882 }
883 
884 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
885 {
886 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
888 	struct stm32_hash_dev *hdev = ctx->hdev;
889 
890 	rctx->op = op;
891 
892 	return stm32_hash_handle_queue(hdev, req);
893 }
894 
895 static int stm32_hash_update(struct ahash_request *req)
896 {
897 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
898 
899 	if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
900 		return 0;
901 
902 	rctx->total = req->nbytes;
903 	rctx->sg = req->src;
904 	rctx->offset = 0;
905 
906 	if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
907 		stm32_hash_append_sg(rctx);
908 		return 0;
909 	}
910 
911 	return stm32_hash_enqueue(req, HASH_OP_UPDATE);
912 }
913 
914 static int stm32_hash_final(struct ahash_request *req)
915 {
916 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
917 
918 	rctx->flags |= HASH_FLAGS_FINUP;
919 
920 	return stm32_hash_enqueue(req, HASH_OP_FINAL);
921 }
922 
923 static int stm32_hash_finup(struct ahash_request *req)
924 {
925 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
926 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
927 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
928 	int err1, err2;
929 
930 	rctx->flags |= HASH_FLAGS_FINUP;
931 
932 	if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
933 		rctx->flags &= ~HASH_FLAGS_CPU;
934 
935 	err1 = stm32_hash_update(req);
936 
937 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
938 		return err1;
939 
940 	/*
941 	 * final() has to be always called to cleanup resources
942 	 * even if update() failed, except EINPROGRESS
943 	 */
944 	err2 = stm32_hash_final(req);
945 
946 	return err1 ?: err2;
947 }
948 
949 static int stm32_hash_digest(struct ahash_request *req)
950 {
951 	return stm32_hash_init(req) ?: stm32_hash_finup(req);
952 }
953 
954 static int stm32_hash_export(struct ahash_request *req, void *out)
955 {
956 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
957 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
958 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
959 	u32 *preg;
960 	unsigned int i;
961 
962 	while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
963 		cpu_relax();
964 
965 	rctx->hw_context = kmalloc(sizeof(u32) * (3 + HASH_CSR_REGISTER_NUMBER),
966 				   GFP_KERNEL);
967 
968 	preg = rctx->hw_context;
969 
970 	*preg++ = stm32_hash_read(hdev, HASH_IMR);
971 	*preg++ = stm32_hash_read(hdev, HASH_STR);
972 	*preg++ = stm32_hash_read(hdev, HASH_CR);
973 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
974 		*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
975 
976 	memcpy(out, rctx, sizeof(*rctx));
977 
978 	return 0;
979 }
980 
981 static int stm32_hash_import(struct ahash_request *req, const void *in)
982 {
983 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
984 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
985 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
986 	const u32 *preg = in;
987 	u32 reg;
988 	unsigned int i;
989 
990 	memcpy(rctx, in, sizeof(*rctx));
991 
992 	preg = rctx->hw_context;
993 
994 	stm32_hash_write(hdev, HASH_IMR, *preg++);
995 	stm32_hash_write(hdev, HASH_STR, *preg++);
996 	stm32_hash_write(hdev, HASH_CR, *preg);
997 	reg = *preg++ | HASH_CR_INIT;
998 	stm32_hash_write(hdev, HASH_CR, reg);
999 
1000 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1001 		stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1002 
1003 	kfree(rctx->hw_context);
1004 
1005 	return 0;
1006 }
1007 
1008 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1009 			     const u8 *key, unsigned int keylen)
1010 {
1011 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1012 
1013 	if (keylen <= HASH_MAX_KEY_SIZE) {
1014 		memcpy(ctx->key, key, keylen);
1015 		ctx->keylen = keylen;
1016 	} else {
1017 		return -ENOMEM;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1024 				    const char *algs_hmac_name)
1025 {
1026 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1027 
1028 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1029 				 sizeof(struct stm32_hash_request_ctx));
1030 
1031 	ctx->keylen = 0;
1032 
1033 	if (algs_hmac_name)
1034 		ctx->flags |= HASH_FLAGS_HMAC;
1035 
1036 	return 0;
1037 }
1038 
1039 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1040 {
1041 	return stm32_hash_cra_init_algs(tfm, NULL);
1042 }
1043 
1044 static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1045 {
1046 	return stm32_hash_cra_init_algs(tfm, "md5");
1047 }
1048 
1049 static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1050 {
1051 	return stm32_hash_cra_init_algs(tfm, "sha1");
1052 }
1053 
1054 static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1055 {
1056 	return stm32_hash_cra_init_algs(tfm, "sha224");
1057 }
1058 
1059 static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1060 {
1061 	return stm32_hash_cra_init_algs(tfm, "sha256");
1062 }
1063 
1064 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1065 {
1066 	struct stm32_hash_dev *hdev = dev_id;
1067 
1068 	if (HASH_FLAGS_CPU & hdev->flags) {
1069 		if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1070 			hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1071 			goto finish;
1072 		}
1073 	} else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1074 		if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1075 			hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1076 				goto finish;
1077 		}
1078 	}
1079 
1080 	return IRQ_HANDLED;
1081 
1082 finish:
1083 	/* Finish current request */
1084 	stm32_hash_finish_req(hdev->req, 0);
1085 
1086 	return IRQ_HANDLED;
1087 }
1088 
1089 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1090 {
1091 	struct stm32_hash_dev *hdev = dev_id;
1092 	u32 reg;
1093 
1094 	reg = stm32_hash_read(hdev, HASH_SR);
1095 	if (reg & HASH_SR_OUTPUT_READY) {
1096 		reg &= ~HASH_SR_OUTPUT_READY;
1097 		stm32_hash_write(hdev, HASH_SR, reg);
1098 		hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1099 		return IRQ_WAKE_THREAD;
1100 	}
1101 
1102 	return IRQ_NONE;
1103 }
1104 
1105 static struct ahash_alg algs_md5_sha1[] = {
1106 	{
1107 		.init = stm32_hash_init,
1108 		.update = stm32_hash_update,
1109 		.final = stm32_hash_final,
1110 		.finup = stm32_hash_finup,
1111 		.digest = stm32_hash_digest,
1112 		.export = stm32_hash_export,
1113 		.import = stm32_hash_import,
1114 		.halg = {
1115 			.digestsize = MD5_DIGEST_SIZE,
1116 			.statesize = sizeof(struct stm32_hash_request_ctx),
1117 			.base = {
1118 				.cra_name = "md5",
1119 				.cra_driver_name = "stm32-md5",
1120 				.cra_priority = 200,
1121 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1122 					CRYPTO_ALG_ASYNC |
1123 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1124 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1125 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1126 				.cra_alignmask = 3,
1127 				.cra_init = stm32_hash_cra_init,
1128 				.cra_module = THIS_MODULE,
1129 			}
1130 		}
1131 	},
1132 	{
1133 		.init = stm32_hash_init,
1134 		.update = stm32_hash_update,
1135 		.final = stm32_hash_final,
1136 		.finup = stm32_hash_finup,
1137 		.digest = stm32_hash_digest,
1138 		.export = stm32_hash_export,
1139 		.import = stm32_hash_import,
1140 		.setkey = stm32_hash_setkey,
1141 		.halg = {
1142 			.digestsize = MD5_DIGEST_SIZE,
1143 			.statesize = sizeof(struct stm32_hash_request_ctx),
1144 			.base = {
1145 				.cra_name = "hmac(md5)",
1146 				.cra_driver_name = "stm32-hmac-md5",
1147 				.cra_priority = 200,
1148 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1149 					CRYPTO_ALG_ASYNC |
1150 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1151 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1152 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1153 				.cra_alignmask = 3,
1154 				.cra_init = stm32_hash_cra_md5_init,
1155 				.cra_module = THIS_MODULE,
1156 			}
1157 		}
1158 	},
1159 	{
1160 		.init = stm32_hash_init,
1161 		.update = stm32_hash_update,
1162 		.final = stm32_hash_final,
1163 		.finup = stm32_hash_finup,
1164 		.digest = stm32_hash_digest,
1165 		.export = stm32_hash_export,
1166 		.import = stm32_hash_import,
1167 		.halg = {
1168 			.digestsize = SHA1_DIGEST_SIZE,
1169 			.statesize = sizeof(struct stm32_hash_request_ctx),
1170 			.base = {
1171 				.cra_name = "sha1",
1172 				.cra_driver_name = "stm32-sha1",
1173 				.cra_priority = 200,
1174 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1175 					CRYPTO_ALG_ASYNC |
1176 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1177 				.cra_blocksize = SHA1_BLOCK_SIZE,
1178 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1179 				.cra_alignmask = 3,
1180 				.cra_init = stm32_hash_cra_init,
1181 				.cra_module = THIS_MODULE,
1182 			}
1183 		}
1184 	},
1185 	{
1186 		.init = stm32_hash_init,
1187 		.update = stm32_hash_update,
1188 		.final = stm32_hash_final,
1189 		.finup = stm32_hash_finup,
1190 		.digest = stm32_hash_digest,
1191 		.export = stm32_hash_export,
1192 		.import = stm32_hash_import,
1193 		.setkey = stm32_hash_setkey,
1194 		.halg = {
1195 			.digestsize = SHA1_DIGEST_SIZE,
1196 			.statesize = sizeof(struct stm32_hash_request_ctx),
1197 			.base = {
1198 				.cra_name = "hmac(sha1)",
1199 				.cra_driver_name = "stm32-hmac-sha1",
1200 				.cra_priority = 200,
1201 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1202 					CRYPTO_ALG_ASYNC |
1203 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1204 				.cra_blocksize = SHA1_BLOCK_SIZE,
1205 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1206 				.cra_alignmask = 3,
1207 				.cra_init = stm32_hash_cra_sha1_init,
1208 				.cra_module = THIS_MODULE,
1209 			}
1210 		}
1211 	},
1212 };
1213 
1214 static struct ahash_alg algs_sha224_sha256[] = {
1215 	{
1216 		.init = stm32_hash_init,
1217 		.update = stm32_hash_update,
1218 		.final = stm32_hash_final,
1219 		.finup = stm32_hash_finup,
1220 		.digest = stm32_hash_digest,
1221 		.export = stm32_hash_export,
1222 		.import = stm32_hash_import,
1223 		.halg = {
1224 			.digestsize = SHA224_DIGEST_SIZE,
1225 			.statesize = sizeof(struct stm32_hash_request_ctx),
1226 			.base = {
1227 				.cra_name = "sha224",
1228 				.cra_driver_name = "stm32-sha224",
1229 				.cra_priority = 200,
1230 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1231 					CRYPTO_ALG_ASYNC |
1232 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1233 				.cra_blocksize = SHA224_BLOCK_SIZE,
1234 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1235 				.cra_alignmask = 3,
1236 				.cra_init = stm32_hash_cra_init,
1237 				.cra_module = THIS_MODULE,
1238 			}
1239 		}
1240 	},
1241 	{
1242 		.init = stm32_hash_init,
1243 		.update = stm32_hash_update,
1244 		.final = stm32_hash_final,
1245 		.finup = stm32_hash_finup,
1246 		.digest = stm32_hash_digest,
1247 		.setkey = stm32_hash_setkey,
1248 		.export = stm32_hash_export,
1249 		.import = stm32_hash_import,
1250 		.halg = {
1251 			.digestsize = SHA224_DIGEST_SIZE,
1252 			.statesize = sizeof(struct stm32_hash_request_ctx),
1253 			.base = {
1254 				.cra_name = "hmac(sha224)",
1255 				.cra_driver_name = "stm32-hmac-sha224",
1256 				.cra_priority = 200,
1257 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1258 					CRYPTO_ALG_ASYNC |
1259 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1260 				.cra_blocksize = SHA224_BLOCK_SIZE,
1261 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1262 				.cra_alignmask = 3,
1263 				.cra_init = stm32_hash_cra_sha224_init,
1264 				.cra_module = THIS_MODULE,
1265 			}
1266 		}
1267 	},
1268 	{
1269 		.init = stm32_hash_init,
1270 		.update = stm32_hash_update,
1271 		.final = stm32_hash_final,
1272 		.finup = stm32_hash_finup,
1273 		.digest = stm32_hash_digest,
1274 		.export = stm32_hash_export,
1275 		.import = stm32_hash_import,
1276 		.halg = {
1277 			.digestsize = SHA256_DIGEST_SIZE,
1278 			.statesize = sizeof(struct stm32_hash_request_ctx),
1279 			.base = {
1280 				.cra_name = "sha256",
1281 				.cra_driver_name = "stm32-sha256",
1282 				.cra_priority = 200,
1283 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1284 					CRYPTO_ALG_ASYNC |
1285 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1286 				.cra_blocksize = SHA256_BLOCK_SIZE,
1287 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1288 				.cra_alignmask = 3,
1289 				.cra_init = stm32_hash_cra_init,
1290 				.cra_module = THIS_MODULE,
1291 			}
1292 		}
1293 	},
1294 	{
1295 		.init = stm32_hash_init,
1296 		.update = stm32_hash_update,
1297 		.final = stm32_hash_final,
1298 		.finup = stm32_hash_finup,
1299 		.digest = stm32_hash_digest,
1300 		.export = stm32_hash_export,
1301 		.import = stm32_hash_import,
1302 		.setkey = stm32_hash_setkey,
1303 		.halg = {
1304 			.digestsize = SHA256_DIGEST_SIZE,
1305 			.statesize = sizeof(struct stm32_hash_request_ctx),
1306 			.base = {
1307 				.cra_name = "hmac(sha256)",
1308 				.cra_driver_name = "stm32-hmac-sha256",
1309 				.cra_priority = 200,
1310 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1311 					CRYPTO_ALG_ASYNC |
1312 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1313 				.cra_blocksize = SHA256_BLOCK_SIZE,
1314 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1315 				.cra_alignmask = 3,
1316 				.cra_init = stm32_hash_cra_sha256_init,
1317 				.cra_module = THIS_MODULE,
1318 			}
1319 		}
1320 	},
1321 };
1322 
1323 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1324 {
1325 	unsigned int i, j;
1326 	int err;
1327 
1328 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1329 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1330 			err = crypto_register_ahash(
1331 				&hdev->pdata->algs_info[i].algs_list[j]);
1332 			if (err)
1333 				goto err_algs;
1334 		}
1335 	}
1336 
1337 	return 0;
1338 err_algs:
1339 	dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1340 	for (; i--; ) {
1341 		for (; j--;)
1342 			crypto_unregister_ahash(
1343 				&hdev->pdata->algs_info[i].algs_list[j]);
1344 	}
1345 
1346 	return err;
1347 }
1348 
1349 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1350 {
1351 	unsigned int i, j;
1352 
1353 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1354 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1355 			crypto_unregister_ahash(
1356 				&hdev->pdata->algs_info[i].algs_list[j]);
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1363 	{
1364 		.algs_list	= algs_md5_sha1,
1365 		.size		= ARRAY_SIZE(algs_md5_sha1),
1366 	},
1367 };
1368 
1369 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1370 	.algs_info	= stm32_hash_algs_info_stm32f4,
1371 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1372 };
1373 
1374 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1375 	{
1376 		.algs_list	= algs_md5_sha1,
1377 		.size		= ARRAY_SIZE(algs_md5_sha1),
1378 	},
1379 	{
1380 		.algs_list	= algs_sha224_sha256,
1381 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1382 	},
1383 };
1384 
1385 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1386 	.algs_info	= stm32_hash_algs_info_stm32f7,
1387 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1388 };
1389 
1390 static const struct of_device_id stm32_hash_of_match[] = {
1391 	{
1392 		.compatible = "st,stm32f456-hash",
1393 		.data = &stm32_hash_pdata_stm32f4,
1394 	},
1395 	{
1396 		.compatible = "st,stm32f756-hash",
1397 		.data = &stm32_hash_pdata_stm32f7,
1398 	},
1399 	{},
1400 };
1401 
1402 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1403 
1404 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1405 				   struct device *dev)
1406 {
1407 	int err;
1408 
1409 	hdev->pdata = of_device_get_match_data(dev);
1410 	if (!hdev->pdata) {
1411 		dev_err(dev, "no compatible OF match\n");
1412 		return -EINVAL;
1413 	}
1414 
1415 	err = of_property_read_u32(dev->of_node, "dma-maxburst",
1416 				   &hdev->dma_maxburst);
1417 
1418 	return err;
1419 }
1420 
1421 static int stm32_hash_probe(struct platform_device *pdev)
1422 {
1423 	struct stm32_hash_dev *hdev;
1424 	struct device *dev = &pdev->dev;
1425 	struct resource *res;
1426 	int ret, irq;
1427 
1428 	hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1429 	if (!hdev)
1430 		return -ENOMEM;
1431 
1432 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1433 	hdev->io_base = devm_ioremap_resource(dev, res);
1434 	if (IS_ERR(hdev->io_base))
1435 		return PTR_ERR(hdev->io_base);
1436 
1437 	hdev->phys_base = res->start;
1438 
1439 	ret = stm32_hash_get_of_match(hdev, dev);
1440 	if (ret)
1441 		return ret;
1442 
1443 	irq = platform_get_irq(pdev, 0);
1444 	if (irq < 0) {
1445 		dev_err(dev, "Cannot get IRQ resource\n");
1446 		return irq;
1447 	}
1448 
1449 	ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1450 					stm32_hash_irq_thread, IRQF_ONESHOT,
1451 					dev_name(dev), hdev);
1452 	if (ret) {
1453 		dev_err(dev, "Cannot grab IRQ\n");
1454 		return ret;
1455 	}
1456 
1457 	hdev->clk = devm_clk_get(&pdev->dev, NULL);
1458 	if (IS_ERR(hdev->clk)) {
1459 		dev_err(dev, "failed to get clock for hash (%lu)\n",
1460 			PTR_ERR(hdev->clk));
1461 		return PTR_ERR(hdev->clk);
1462 	}
1463 
1464 	ret = clk_prepare_enable(hdev->clk);
1465 	if (ret) {
1466 		dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1467 		return ret;
1468 	}
1469 
1470 	hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1471 	if (!IS_ERR(hdev->rst)) {
1472 		reset_control_assert(hdev->rst);
1473 		udelay(2);
1474 		reset_control_deassert(hdev->rst);
1475 	}
1476 
1477 	hdev->dev = dev;
1478 
1479 	platform_set_drvdata(pdev, hdev);
1480 
1481 	ret = stm32_hash_dma_init(hdev);
1482 	if (ret)
1483 		dev_dbg(dev, "DMA mode not available\n");
1484 
1485 	spin_lock(&stm32_hash.lock);
1486 	list_add_tail(&hdev->list, &stm32_hash.dev_list);
1487 	spin_unlock(&stm32_hash.lock);
1488 
1489 	/* Initialize crypto engine */
1490 	hdev->engine = crypto_engine_alloc_init(dev, 1);
1491 	if (!hdev->engine) {
1492 		ret = -ENOMEM;
1493 		goto err_engine;
1494 	}
1495 
1496 	hdev->engine->prepare_hash_request = stm32_hash_prepare_req;
1497 	hdev->engine->hash_one_request = stm32_hash_one_request;
1498 
1499 	ret = crypto_engine_start(hdev->engine);
1500 	if (ret)
1501 		goto err_engine_start;
1502 
1503 	hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1504 
1505 	/* Register algos */
1506 	ret = stm32_hash_register_algs(hdev);
1507 	if (ret)
1508 		goto err_algs;
1509 
1510 	dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1511 		 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1512 
1513 	return 0;
1514 
1515 err_algs:
1516 err_engine_start:
1517 	crypto_engine_exit(hdev->engine);
1518 err_engine:
1519 	spin_lock(&stm32_hash.lock);
1520 	list_del(&hdev->list);
1521 	spin_unlock(&stm32_hash.lock);
1522 
1523 	if (hdev->dma_lch)
1524 		dma_release_channel(hdev->dma_lch);
1525 
1526 	clk_disable_unprepare(hdev->clk);
1527 
1528 	return ret;
1529 }
1530 
1531 static int stm32_hash_remove(struct platform_device *pdev)
1532 {
1533 	static struct stm32_hash_dev *hdev;
1534 
1535 	hdev = platform_get_drvdata(pdev);
1536 	if (!hdev)
1537 		return -ENODEV;
1538 
1539 	stm32_hash_unregister_algs(hdev);
1540 
1541 	crypto_engine_exit(hdev->engine);
1542 
1543 	spin_lock(&stm32_hash.lock);
1544 	list_del(&hdev->list);
1545 	spin_unlock(&stm32_hash.lock);
1546 
1547 	if (hdev->dma_lch)
1548 		dma_release_channel(hdev->dma_lch);
1549 
1550 	clk_disable_unprepare(hdev->clk);
1551 
1552 	return 0;
1553 }
1554 
1555 static struct platform_driver stm32_hash_driver = {
1556 	.probe		= stm32_hash_probe,
1557 	.remove		= stm32_hash_remove,
1558 	.driver		= {
1559 		.name	= "stm32-hash",
1560 		.of_match_table	= stm32_hash_of_match,
1561 	}
1562 };
1563 
1564 module_platform_driver(stm32_hash_driver);
1565 
1566 MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1567 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1568 MODULE_LICENSE("GPL v2");
1569