1 /*
2  * This file is part of STM32 Crypto driver for Linux.
3  *
4  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
5  * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
6  *
7  * License terms: GPL V2.0.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  * details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program. If not, see <http://www.gnu.org/licenses/>.
20  *
21  */
22 
23 #include <linux/clk.h>
24 #include <linux/crypto.h>
25 #include <linux/delay.h>
26 #include <linux/dmaengine.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 #include <linux/platform_device.h>
34 #include <linux/reset.h>
35 
36 #include <crypto/engine.h>
37 #include <crypto/hash.h>
38 #include <crypto/md5.h>
39 #include <crypto/scatterwalk.h>
40 #include <crypto/sha.h>
41 #include <crypto/internal/hash.h>
42 
43 #define HASH_CR				0x00
44 #define HASH_DIN			0x04
45 #define HASH_STR			0x08
46 #define HASH_IMR			0x20
47 #define HASH_SR				0x24
48 #define HASH_CSR(x)			(0x0F8 + ((x) * 0x04))
49 #define HASH_HREG(x)			(0x310 + ((x) * 0x04))
50 #define HASH_HWCFGR			0x3F0
51 #define HASH_VER			0x3F4
52 #define HASH_ID				0x3F8
53 
54 /* Control Register */
55 #define HASH_CR_INIT			BIT(2)
56 #define HASH_CR_DMAE			BIT(3)
57 #define HASH_CR_DATATYPE_POS		4
58 #define HASH_CR_MODE			BIT(6)
59 #define HASH_CR_MDMAT			BIT(13)
60 #define HASH_CR_DMAA			BIT(14)
61 #define HASH_CR_LKEY			BIT(16)
62 
63 #define HASH_CR_ALGO_SHA1		0x0
64 #define HASH_CR_ALGO_MD5		0x80
65 #define HASH_CR_ALGO_SHA224		0x40000
66 #define HASH_CR_ALGO_SHA256		0x40080
67 
68 /* Interrupt */
69 #define HASH_DINIE			BIT(0)
70 #define HASH_DCIE			BIT(1)
71 
72 /* Interrupt Mask */
73 #define HASH_MASK_CALC_COMPLETION	BIT(0)
74 #define HASH_MASK_DATA_INPUT		BIT(1)
75 
76 /* Context swap register */
77 #define HASH_CSR_REGISTER_NUMBER	53
78 
79 /* Status Flags */
80 #define HASH_SR_DATA_INPUT_READY	BIT(0)
81 #define HASH_SR_OUTPUT_READY		BIT(1)
82 #define HASH_SR_DMA_ACTIVE		BIT(2)
83 #define HASH_SR_BUSY			BIT(3)
84 
85 /* STR Register */
86 #define HASH_STR_NBLW_MASK		GENMASK(4, 0)
87 #define HASH_STR_DCAL			BIT(8)
88 
89 #define HASH_FLAGS_INIT			BIT(0)
90 #define HASH_FLAGS_OUTPUT_READY		BIT(1)
91 #define HASH_FLAGS_CPU			BIT(2)
92 #define HASH_FLAGS_DMA_READY		BIT(3)
93 #define HASH_FLAGS_DMA_ACTIVE		BIT(4)
94 #define HASH_FLAGS_HMAC_INIT		BIT(5)
95 #define HASH_FLAGS_HMAC_FINAL		BIT(6)
96 #define HASH_FLAGS_HMAC_KEY		BIT(7)
97 
98 #define HASH_FLAGS_FINAL		BIT(15)
99 #define HASH_FLAGS_FINUP		BIT(16)
100 #define HASH_FLAGS_ALGO_MASK		GENMASK(21, 18)
101 #define HASH_FLAGS_MD5			BIT(18)
102 #define HASH_FLAGS_SHA1			BIT(19)
103 #define HASH_FLAGS_SHA224		BIT(20)
104 #define HASH_FLAGS_SHA256		BIT(21)
105 #define HASH_FLAGS_ERRORS		BIT(22)
106 #define HASH_FLAGS_HMAC			BIT(23)
107 
108 #define HASH_OP_UPDATE			1
109 #define HASH_OP_FINAL			2
110 
111 enum stm32_hash_data_format {
112 	HASH_DATA_32_BITS		= 0x0,
113 	HASH_DATA_16_BITS		= 0x1,
114 	HASH_DATA_8_BITS		= 0x2,
115 	HASH_DATA_1_BIT			= 0x3
116 };
117 
118 #define HASH_BUFLEN			256
119 #define HASH_LONG_KEY			64
120 #define HASH_MAX_KEY_SIZE		(SHA256_BLOCK_SIZE * 8)
121 #define HASH_QUEUE_LENGTH		16
122 #define HASH_DMA_THRESHOLD		50
123 
124 struct stm32_hash_ctx {
125 	struct stm32_hash_dev	*hdev;
126 	unsigned long		flags;
127 
128 	u8			key[HASH_MAX_KEY_SIZE];
129 	int			keylen;
130 };
131 
132 struct stm32_hash_request_ctx {
133 	struct stm32_hash_dev	*hdev;
134 	unsigned long		flags;
135 	unsigned long		op;
136 
137 	u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
138 	size_t			digcnt;
139 	size_t			bufcnt;
140 	size_t			buflen;
141 
142 	/* DMA */
143 	struct scatterlist	*sg;
144 	unsigned int		offset;
145 	unsigned int		total;
146 	struct scatterlist	sg_key;
147 
148 	dma_addr_t		dma_addr;
149 	size_t			dma_ct;
150 	int			nents;
151 
152 	u8			data_type;
153 
154 	u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
155 
156 	/* Export Context */
157 	u32			*hw_context;
158 };
159 
160 struct stm32_hash_algs_info {
161 	struct ahash_alg	*algs_list;
162 	size_t			size;
163 };
164 
165 struct stm32_hash_pdata {
166 	struct stm32_hash_algs_info	*algs_info;
167 	size_t				algs_info_size;
168 };
169 
170 struct stm32_hash_dev {
171 	struct list_head	list;
172 	struct device		*dev;
173 	struct clk		*clk;
174 	struct reset_control	*rst;
175 	void __iomem		*io_base;
176 	phys_addr_t		phys_base;
177 	u32			dma_mode;
178 	u32			dma_maxburst;
179 
180 	spinlock_t		lock; /* lock to protect queue */
181 
182 	struct ahash_request	*req;
183 	struct crypto_engine	*engine;
184 
185 	int			err;
186 	unsigned long		flags;
187 
188 	struct dma_chan		*dma_lch;
189 	struct completion	dma_completion;
190 
191 	const struct stm32_hash_pdata	*pdata;
192 };
193 
194 struct stm32_hash_drv {
195 	struct list_head	dev_list;
196 	spinlock_t		lock; /* List protection access */
197 };
198 
199 static struct stm32_hash_drv stm32_hash = {
200 	.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
201 	.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
202 };
203 
204 static void stm32_hash_dma_callback(void *param);
205 
206 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
207 {
208 	return readl_relaxed(hdev->io_base + offset);
209 }
210 
211 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
212 				    u32 offset, u32 value)
213 {
214 	writel_relaxed(value, hdev->io_base + offset);
215 }
216 
217 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
218 {
219 	u32 status;
220 
221 	return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
222 				   !(status & HASH_SR_BUSY), 10, 10000);
223 }
224 
225 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
226 {
227 	u32 reg;
228 
229 	reg = stm32_hash_read(hdev, HASH_STR);
230 	reg &= ~(HASH_STR_NBLW_MASK);
231 	reg |= (8U * ((length) % 4U));
232 	stm32_hash_write(hdev, HASH_STR, reg);
233 }
234 
235 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
236 {
237 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
238 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
239 	u32 reg;
240 	int keylen = ctx->keylen;
241 	void *key = ctx->key;
242 
243 	if (keylen) {
244 		stm32_hash_set_nblw(hdev, keylen);
245 
246 		while (keylen > 0) {
247 			stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
248 			keylen -= 4;
249 			key += 4;
250 		}
251 
252 		reg = stm32_hash_read(hdev, HASH_STR);
253 		reg |= HASH_STR_DCAL;
254 		stm32_hash_write(hdev, HASH_STR, reg);
255 
256 		return -EINPROGRESS;
257 	}
258 
259 	return 0;
260 }
261 
262 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
263 {
264 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
265 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
266 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
267 
268 	u32 reg = HASH_CR_INIT;
269 
270 	if (!(hdev->flags & HASH_FLAGS_INIT)) {
271 		switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
272 		case HASH_FLAGS_MD5:
273 			reg |= HASH_CR_ALGO_MD5;
274 			break;
275 		case HASH_FLAGS_SHA1:
276 			reg |= HASH_CR_ALGO_SHA1;
277 			break;
278 		case HASH_FLAGS_SHA224:
279 			reg |= HASH_CR_ALGO_SHA224;
280 			break;
281 		case HASH_FLAGS_SHA256:
282 			reg |= HASH_CR_ALGO_SHA256;
283 			break;
284 		default:
285 			reg |= HASH_CR_ALGO_MD5;
286 		}
287 
288 		reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
289 
290 		if (rctx->flags & HASH_FLAGS_HMAC) {
291 			hdev->flags |= HASH_FLAGS_HMAC;
292 			reg |= HASH_CR_MODE;
293 			if (ctx->keylen > HASH_LONG_KEY)
294 				reg |= HASH_CR_LKEY;
295 		}
296 
297 		stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
298 
299 		stm32_hash_write(hdev, HASH_CR, reg);
300 
301 		hdev->flags |= HASH_FLAGS_INIT;
302 
303 		dev_dbg(hdev->dev, "Write Control %x\n", reg);
304 	}
305 }
306 
307 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
308 {
309 	size_t count;
310 
311 	while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
312 		count = min(rctx->sg->length - rctx->offset, rctx->total);
313 		count = min(count, rctx->buflen - rctx->bufcnt);
314 
315 		if (count <= 0) {
316 			if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
317 				rctx->sg = sg_next(rctx->sg);
318 				continue;
319 			} else {
320 				break;
321 			}
322 		}
323 
324 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
325 					 rctx->offset, count, 0);
326 
327 		rctx->bufcnt += count;
328 		rctx->offset += count;
329 		rctx->total -= count;
330 
331 		if (rctx->offset == rctx->sg->length) {
332 			rctx->sg = sg_next(rctx->sg);
333 			if (rctx->sg)
334 				rctx->offset = 0;
335 			else
336 				rctx->total = 0;
337 		}
338 	}
339 }
340 
341 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
342 			       const u8 *buf, size_t length, int final)
343 {
344 	unsigned int count, len32;
345 	const u32 *buffer = (const u32 *)buf;
346 	u32 reg;
347 
348 	if (final)
349 		hdev->flags |= HASH_FLAGS_FINAL;
350 
351 	len32 = DIV_ROUND_UP(length, sizeof(u32));
352 
353 	dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
354 		__func__, length, final, len32);
355 
356 	hdev->flags |= HASH_FLAGS_CPU;
357 
358 	stm32_hash_write_ctrl(hdev);
359 
360 	if (stm32_hash_wait_busy(hdev))
361 		return -ETIMEDOUT;
362 
363 	if ((hdev->flags & HASH_FLAGS_HMAC) &&
364 	    (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
365 		hdev->flags |= HASH_FLAGS_HMAC_KEY;
366 		stm32_hash_write_key(hdev);
367 		if (stm32_hash_wait_busy(hdev))
368 			return -ETIMEDOUT;
369 	}
370 
371 	for (count = 0; count < len32; count++)
372 		stm32_hash_write(hdev, HASH_DIN, buffer[count]);
373 
374 	if (final) {
375 		stm32_hash_set_nblw(hdev, length);
376 		reg = stm32_hash_read(hdev, HASH_STR);
377 		reg |= HASH_STR_DCAL;
378 		stm32_hash_write(hdev, HASH_STR, reg);
379 		if (hdev->flags & HASH_FLAGS_HMAC) {
380 			if (stm32_hash_wait_busy(hdev))
381 				return -ETIMEDOUT;
382 			stm32_hash_write_key(hdev);
383 		}
384 		return -EINPROGRESS;
385 	}
386 
387 	return 0;
388 }
389 
390 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
391 {
392 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
393 	int bufcnt, err = 0, final;
394 
395 	dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
396 
397 	final = (rctx->flags & HASH_FLAGS_FINUP);
398 
399 	while ((rctx->total >= rctx->buflen) ||
400 	       (rctx->bufcnt + rctx->total >= rctx->buflen)) {
401 		stm32_hash_append_sg(rctx);
402 		bufcnt = rctx->bufcnt;
403 		rctx->bufcnt = 0;
404 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
405 	}
406 
407 	stm32_hash_append_sg(rctx);
408 
409 	if (final) {
410 		bufcnt = rctx->bufcnt;
411 		rctx->bufcnt = 0;
412 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
413 					  (rctx->flags & HASH_FLAGS_FINUP));
414 	}
415 
416 	return err;
417 }
418 
419 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
420 			       struct scatterlist *sg, int length, int mdma)
421 {
422 	struct dma_async_tx_descriptor *in_desc;
423 	dma_cookie_t cookie;
424 	u32 reg;
425 	int err;
426 
427 	in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
428 					  DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
429 					  DMA_CTRL_ACK);
430 	if (!in_desc) {
431 		dev_err(hdev->dev, "dmaengine_prep_slave error\n");
432 		return -ENOMEM;
433 	}
434 
435 	reinit_completion(&hdev->dma_completion);
436 	in_desc->callback = stm32_hash_dma_callback;
437 	in_desc->callback_param = hdev;
438 
439 	hdev->flags |= HASH_FLAGS_FINAL;
440 	hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
441 
442 	reg = stm32_hash_read(hdev, HASH_CR);
443 
444 	if (mdma)
445 		reg |= HASH_CR_MDMAT;
446 	else
447 		reg &= ~HASH_CR_MDMAT;
448 
449 	reg |= HASH_CR_DMAE;
450 
451 	stm32_hash_write(hdev, HASH_CR, reg);
452 
453 	stm32_hash_set_nblw(hdev, length);
454 
455 	cookie = dmaengine_submit(in_desc);
456 	err = dma_submit_error(cookie);
457 	if (err)
458 		return -ENOMEM;
459 
460 	dma_async_issue_pending(hdev->dma_lch);
461 
462 	if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
463 						       msecs_to_jiffies(100)))
464 		err = -ETIMEDOUT;
465 
466 	if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
467 				     NULL, NULL) != DMA_COMPLETE)
468 		err = -ETIMEDOUT;
469 
470 	if (err) {
471 		dev_err(hdev->dev, "DMA Error %i\n", err);
472 		dmaengine_terminate_all(hdev->dma_lch);
473 		return err;
474 	}
475 
476 	return -EINPROGRESS;
477 }
478 
479 static void stm32_hash_dma_callback(void *param)
480 {
481 	struct stm32_hash_dev *hdev = param;
482 
483 	complete(&hdev->dma_completion);
484 
485 	hdev->flags |= HASH_FLAGS_DMA_READY;
486 }
487 
488 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
489 {
490 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
492 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
493 	int err;
494 
495 	if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
496 		err = stm32_hash_write_key(hdev);
497 		if (stm32_hash_wait_busy(hdev))
498 			return -ETIMEDOUT;
499 	} else {
500 		if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
501 			sg_init_one(&rctx->sg_key, ctx->key,
502 				    ALIGN(ctx->keylen, sizeof(u32)));
503 
504 		rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
505 					  DMA_TO_DEVICE);
506 		if (rctx->dma_ct == 0) {
507 			dev_err(hdev->dev, "dma_map_sg error\n");
508 			return -ENOMEM;
509 		}
510 
511 		err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
512 
513 		dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
514 	}
515 
516 	return err;
517 }
518 
519 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
520 {
521 	struct dma_slave_config dma_conf;
522 	int err;
523 
524 	memset(&dma_conf, 0, sizeof(dma_conf));
525 
526 	dma_conf.direction = DMA_MEM_TO_DEV;
527 	dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
528 	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
529 	dma_conf.src_maxburst = hdev->dma_maxburst;
530 	dma_conf.dst_maxburst = hdev->dma_maxburst;
531 	dma_conf.device_fc = false;
532 
533 	hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
534 	if (!hdev->dma_lch) {
535 		dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
536 		return -EBUSY;
537 	}
538 
539 	err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
540 	if (err) {
541 		dma_release_channel(hdev->dma_lch);
542 		hdev->dma_lch = NULL;
543 		dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
544 		return err;
545 	}
546 
547 	init_completion(&hdev->dma_completion);
548 
549 	return 0;
550 }
551 
552 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
553 {
554 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
555 	struct scatterlist sg[1], *tsg;
556 	int err = 0, len = 0, reg, ncp;
557 	unsigned int i;
558 	const u32 *buffer = (const u32 *)rctx->buffer;
559 
560 	rctx->sg = hdev->req->src;
561 	rctx->total = hdev->req->nbytes;
562 
563 	rctx->nents = sg_nents(rctx->sg);
564 
565 	if (rctx->nents < 0)
566 		return -EINVAL;
567 
568 	stm32_hash_write_ctrl(hdev);
569 
570 	if (hdev->flags & HASH_FLAGS_HMAC) {
571 		err = stm32_hash_hmac_dma_send(hdev);
572 		if (err != -EINPROGRESS)
573 			return err;
574 	}
575 
576 	for_each_sg(rctx->sg, tsg, rctx->nents, i) {
577 		len = sg->length;
578 
579 		sg[0] = *tsg;
580 		if (sg_is_last(sg)) {
581 			if (hdev->dma_mode == 1) {
582 				len = (ALIGN(sg->length, 16) - 16);
583 
584 				ncp = sg_pcopy_to_buffer(
585 					rctx->sg, rctx->nents,
586 					rctx->buffer, sg->length - len,
587 					rctx->total - sg->length + len);
588 
589 				sg->length = len;
590 			} else {
591 				if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
592 					len = sg->length;
593 					sg->length = ALIGN(sg->length,
594 							   sizeof(u32));
595 				}
596 			}
597 		}
598 
599 		rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
600 					  DMA_TO_DEVICE);
601 		if (rctx->dma_ct == 0) {
602 			dev_err(hdev->dev, "dma_map_sg error\n");
603 			return -ENOMEM;
604 		}
605 
606 		err = stm32_hash_xmit_dma(hdev, sg, len,
607 					  !sg_is_last(sg));
608 
609 		dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
610 
611 		if (err == -ENOMEM)
612 			return err;
613 	}
614 
615 	if (hdev->dma_mode == 1) {
616 		if (stm32_hash_wait_busy(hdev))
617 			return -ETIMEDOUT;
618 		reg = stm32_hash_read(hdev, HASH_CR);
619 		reg &= ~HASH_CR_DMAE;
620 		reg |= HASH_CR_DMAA;
621 		stm32_hash_write(hdev, HASH_CR, reg);
622 
623 		for (i = 0; i < DIV_ROUND_UP(ncp, sizeof(u32)); i++)
624 			stm32_hash_write(hdev, HASH_DIN, buffer[i]);
625 
626 		stm32_hash_set_nblw(hdev, ncp);
627 		reg = stm32_hash_read(hdev, HASH_STR);
628 		reg |= HASH_STR_DCAL;
629 		stm32_hash_write(hdev, HASH_STR, reg);
630 		err = -EINPROGRESS;
631 	}
632 
633 	if (hdev->flags & HASH_FLAGS_HMAC) {
634 		if (stm32_hash_wait_busy(hdev))
635 			return -ETIMEDOUT;
636 		err = stm32_hash_hmac_dma_send(hdev);
637 	}
638 
639 	return err;
640 }
641 
642 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
643 {
644 	struct stm32_hash_dev *hdev = NULL, *tmp;
645 
646 	spin_lock_bh(&stm32_hash.lock);
647 	if (!ctx->hdev) {
648 		list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
649 			hdev = tmp;
650 			break;
651 		}
652 		ctx->hdev = hdev;
653 	} else {
654 		hdev = ctx->hdev;
655 	}
656 
657 	spin_unlock_bh(&stm32_hash.lock);
658 
659 	return hdev;
660 }
661 
662 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
663 {
664 	struct scatterlist *sg;
665 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
666 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
667 	int i;
668 
669 	if (req->nbytes <= HASH_DMA_THRESHOLD)
670 		return false;
671 
672 	if (sg_nents(req->src) > 1) {
673 		if (hdev->dma_mode == 1)
674 			return false;
675 		for_each_sg(req->src, sg, sg_nents(req->src), i) {
676 			if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
677 			    (!sg_is_last(sg)))
678 				return false;
679 		}
680 	}
681 
682 	if (req->src->offset % 4)
683 		return false;
684 
685 	return true;
686 }
687 
688 static int stm32_hash_init(struct ahash_request *req)
689 {
690 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
691 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
692 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
693 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
694 
695 	rctx->hdev = hdev;
696 
697 	rctx->flags = HASH_FLAGS_CPU;
698 
699 	rctx->digcnt = crypto_ahash_digestsize(tfm);
700 	switch (rctx->digcnt) {
701 	case MD5_DIGEST_SIZE:
702 		rctx->flags |= HASH_FLAGS_MD5;
703 		break;
704 	case SHA1_DIGEST_SIZE:
705 		rctx->flags |= HASH_FLAGS_SHA1;
706 		break;
707 	case SHA224_DIGEST_SIZE:
708 		rctx->flags |= HASH_FLAGS_SHA224;
709 		break;
710 	case SHA256_DIGEST_SIZE:
711 		rctx->flags |= HASH_FLAGS_SHA256;
712 		break;
713 	default:
714 		return -EINVAL;
715 	}
716 
717 	rctx->bufcnt = 0;
718 	rctx->buflen = HASH_BUFLEN;
719 	rctx->total = 0;
720 	rctx->offset = 0;
721 	rctx->data_type = HASH_DATA_8_BITS;
722 
723 	memset(rctx->buffer, 0, HASH_BUFLEN);
724 
725 	if (ctx->flags & HASH_FLAGS_HMAC)
726 		rctx->flags |= HASH_FLAGS_HMAC;
727 
728 	dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
729 
730 	return 0;
731 }
732 
733 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
734 {
735 	return stm32_hash_update_cpu(hdev);
736 }
737 
738 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
739 {
740 	struct ahash_request *req = hdev->req;
741 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
742 	int err;
743 
744 	if (!(rctx->flags & HASH_FLAGS_CPU))
745 		err = stm32_hash_dma_send(hdev);
746 	else
747 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, rctx->bufcnt, 1);
748 
749 	rctx->bufcnt = 0;
750 
751 	return err;
752 }
753 
754 static void stm32_hash_copy_hash(struct ahash_request *req)
755 {
756 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
757 	u32 *hash = (u32 *)rctx->digest;
758 	unsigned int i, hashsize;
759 
760 	switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
761 	case HASH_FLAGS_MD5:
762 		hashsize = MD5_DIGEST_SIZE;
763 		break;
764 	case HASH_FLAGS_SHA1:
765 		hashsize = SHA1_DIGEST_SIZE;
766 		break;
767 	case HASH_FLAGS_SHA224:
768 		hashsize = SHA224_DIGEST_SIZE;
769 		break;
770 	case HASH_FLAGS_SHA256:
771 		hashsize = SHA256_DIGEST_SIZE;
772 		break;
773 	default:
774 		return;
775 	}
776 
777 	for (i = 0; i < hashsize / sizeof(u32); i++)
778 		hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
779 						      HASH_HREG(i)));
780 }
781 
782 static int stm32_hash_finish(struct ahash_request *req)
783 {
784 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
785 
786 	if (!req->result)
787 		return -EINVAL;
788 
789 	memcpy(req->result, rctx->digest, rctx->digcnt);
790 
791 	return 0;
792 }
793 
794 static void stm32_hash_finish_req(struct ahash_request *req, int err)
795 {
796 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
797 	struct stm32_hash_dev *hdev = rctx->hdev;
798 
799 	if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
800 		stm32_hash_copy_hash(req);
801 		err = stm32_hash_finish(req);
802 		hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
803 				 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
804 				 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
805 				 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
806 				 HASH_FLAGS_HMAC_KEY);
807 	} else {
808 		rctx->flags |= HASH_FLAGS_ERRORS;
809 	}
810 
811 	crypto_finalize_hash_request(hdev->engine, req, err);
812 }
813 
814 static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
815 			      struct stm32_hash_request_ctx *rctx)
816 {
817 	if (!(HASH_FLAGS_INIT & hdev->flags)) {
818 		stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
819 		stm32_hash_write(hdev, HASH_STR, 0);
820 		stm32_hash_write(hdev, HASH_DIN, 0);
821 		stm32_hash_write(hdev, HASH_IMR, 0);
822 		hdev->err = 0;
823 	}
824 
825 	return 0;
826 }
827 
828 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
829 				   struct ahash_request *req)
830 {
831 	return crypto_transfer_hash_request_to_engine(hdev->engine, req);
832 }
833 
834 static int stm32_hash_prepare_req(struct crypto_engine *engine,
835 				  struct ahash_request *req)
836 {
837 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
838 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
839 	struct stm32_hash_request_ctx *rctx;
840 
841 	if (!hdev)
842 		return -ENODEV;
843 
844 	hdev->req = req;
845 
846 	rctx = ahash_request_ctx(req);
847 
848 	dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
849 		rctx->op, req->nbytes);
850 
851 	return stm32_hash_hw_init(hdev, rctx);
852 }
853 
854 static int stm32_hash_one_request(struct crypto_engine *engine,
855 				  struct ahash_request *req)
856 {
857 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
858 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
859 	struct stm32_hash_request_ctx *rctx;
860 	int err = 0;
861 
862 	if (!hdev)
863 		return -ENODEV;
864 
865 	hdev->req = req;
866 
867 	rctx = ahash_request_ctx(req);
868 
869 	if (rctx->op == HASH_OP_UPDATE)
870 		err = stm32_hash_update_req(hdev);
871 	else if (rctx->op == HASH_OP_FINAL)
872 		err = stm32_hash_final_req(hdev);
873 
874 	if (err != -EINPROGRESS)
875 	/* done task will not finish it, so do it here */
876 		stm32_hash_finish_req(req, err);
877 
878 	return 0;
879 }
880 
881 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
882 {
883 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
884 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
885 	struct stm32_hash_dev *hdev = ctx->hdev;
886 
887 	rctx->op = op;
888 
889 	return stm32_hash_handle_queue(hdev, req);
890 }
891 
892 static int stm32_hash_update(struct ahash_request *req)
893 {
894 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
895 	int ret;
896 
897 	if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
898 		return 0;
899 
900 	rctx->total = req->nbytes;
901 	rctx->sg = req->src;
902 	rctx->offset = 0;
903 
904 	if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
905 		stm32_hash_append_sg(rctx);
906 		return 0;
907 	}
908 
909 	ret = stm32_hash_enqueue(req, HASH_OP_UPDATE);
910 
911 	if (rctx->flags & HASH_FLAGS_FINUP)
912 		return ret;
913 
914 	return 0;
915 }
916 
917 static int stm32_hash_final(struct ahash_request *req)
918 {
919 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
920 
921 	rctx->flags |= HASH_FLAGS_FINUP;
922 
923 	return stm32_hash_enqueue(req, HASH_OP_FINAL);
924 }
925 
926 static int stm32_hash_finup(struct ahash_request *req)
927 {
928 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
929 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
930 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
931 	int err1, err2;
932 
933 	rctx->flags |= HASH_FLAGS_FINUP;
934 
935 	if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
936 		rctx->flags &= ~HASH_FLAGS_CPU;
937 
938 	err1 = stm32_hash_update(req);
939 
940 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
941 		return err1;
942 
943 	/*
944 	 * final() has to be always called to cleanup resources
945 	 * even if update() failed, except EINPROGRESS
946 	 */
947 	err2 = stm32_hash_final(req);
948 
949 	return err1 ?: err2;
950 }
951 
952 static int stm32_hash_digest(struct ahash_request *req)
953 {
954 	return stm32_hash_init(req) ?: stm32_hash_finup(req);
955 }
956 
957 static int stm32_hash_export(struct ahash_request *req, void *out)
958 {
959 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
961 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
962 	u32 *preg;
963 	unsigned int i;
964 
965 	while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
966 		cpu_relax();
967 
968 	rctx->hw_context = kmalloc(sizeof(u32) * (3 + HASH_CSR_REGISTER_NUMBER),
969 				   GFP_KERNEL);
970 
971 	preg = rctx->hw_context;
972 
973 	*preg++ = stm32_hash_read(hdev, HASH_IMR);
974 	*preg++ = stm32_hash_read(hdev, HASH_STR);
975 	*preg++ = stm32_hash_read(hdev, HASH_CR);
976 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
977 		*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
978 
979 	memcpy(out, rctx, sizeof(*rctx));
980 
981 	return 0;
982 }
983 
984 static int stm32_hash_import(struct ahash_request *req, const void *in)
985 {
986 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
987 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
988 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
989 	const u32 *preg = in;
990 	u32 reg;
991 	unsigned int i;
992 
993 	memcpy(rctx, in, sizeof(*rctx));
994 
995 	preg = rctx->hw_context;
996 
997 	stm32_hash_write(hdev, HASH_IMR, *preg++);
998 	stm32_hash_write(hdev, HASH_STR, *preg++);
999 	stm32_hash_write(hdev, HASH_CR, *preg);
1000 	reg = *preg++ | HASH_CR_INIT;
1001 	stm32_hash_write(hdev, HASH_CR, reg);
1002 
1003 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1004 		stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1005 
1006 	kfree(rctx->hw_context);
1007 
1008 	return 0;
1009 }
1010 
1011 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1012 			     const u8 *key, unsigned int keylen)
1013 {
1014 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1015 
1016 	if (keylen <= HASH_MAX_KEY_SIZE) {
1017 		memcpy(ctx->key, key, keylen);
1018 		ctx->keylen = keylen;
1019 	} else {
1020 		return -ENOMEM;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1027 				    const char *algs_hmac_name)
1028 {
1029 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1030 
1031 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1032 				 sizeof(struct stm32_hash_request_ctx));
1033 
1034 	ctx->keylen = 0;
1035 
1036 	if (algs_hmac_name)
1037 		ctx->flags |= HASH_FLAGS_HMAC;
1038 
1039 	return 0;
1040 }
1041 
1042 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1043 {
1044 	return stm32_hash_cra_init_algs(tfm, NULL);
1045 }
1046 
1047 static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1048 {
1049 	return stm32_hash_cra_init_algs(tfm, "md5");
1050 }
1051 
1052 static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1053 {
1054 	return stm32_hash_cra_init_algs(tfm, "sha1");
1055 }
1056 
1057 static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1058 {
1059 	return stm32_hash_cra_init_algs(tfm, "sha224");
1060 }
1061 
1062 static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1063 {
1064 	return stm32_hash_cra_init_algs(tfm, "sha256");
1065 }
1066 
1067 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1068 {
1069 	struct stm32_hash_dev *hdev = dev_id;
1070 	int err;
1071 
1072 	if (HASH_FLAGS_CPU & hdev->flags) {
1073 		if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1074 			hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1075 			goto finish;
1076 		}
1077 	} else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1078 		if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1079 			hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1080 				goto finish;
1081 		}
1082 	}
1083 
1084 	return IRQ_HANDLED;
1085 
1086 finish:
1087 	/*Finish current request */
1088 	stm32_hash_finish_req(hdev->req, err);
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1094 {
1095 	struct stm32_hash_dev *hdev = dev_id;
1096 	u32 reg;
1097 
1098 	reg = stm32_hash_read(hdev, HASH_SR);
1099 	if (reg & HASH_SR_OUTPUT_READY) {
1100 		reg &= ~HASH_SR_OUTPUT_READY;
1101 		stm32_hash_write(hdev, HASH_SR, reg);
1102 		hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1103 		return IRQ_WAKE_THREAD;
1104 	}
1105 
1106 	return IRQ_NONE;
1107 }
1108 
1109 static struct ahash_alg algs_md5_sha1[] = {
1110 	{
1111 		.init = stm32_hash_init,
1112 		.update = stm32_hash_update,
1113 		.final = stm32_hash_final,
1114 		.finup = stm32_hash_finup,
1115 		.digest = stm32_hash_digest,
1116 		.export = stm32_hash_export,
1117 		.import = stm32_hash_import,
1118 		.halg = {
1119 			.digestsize = MD5_DIGEST_SIZE,
1120 			.statesize = sizeof(struct stm32_hash_request_ctx),
1121 			.base = {
1122 				.cra_name = "md5",
1123 				.cra_driver_name = "stm32-md5",
1124 				.cra_priority = 200,
1125 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1126 					CRYPTO_ALG_ASYNC |
1127 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1128 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1129 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1130 				.cra_alignmask = 3,
1131 				.cra_init = stm32_hash_cra_init,
1132 				.cra_module = THIS_MODULE,
1133 			}
1134 		}
1135 	},
1136 	{
1137 		.init = stm32_hash_init,
1138 		.update = stm32_hash_update,
1139 		.final = stm32_hash_final,
1140 		.finup = stm32_hash_finup,
1141 		.digest = stm32_hash_digest,
1142 		.export = stm32_hash_export,
1143 		.import = stm32_hash_import,
1144 		.setkey = stm32_hash_setkey,
1145 		.halg = {
1146 			.digestsize = MD5_DIGEST_SIZE,
1147 			.statesize = sizeof(struct stm32_hash_request_ctx),
1148 			.base = {
1149 				.cra_name = "hmac(md5)",
1150 				.cra_driver_name = "stm32-hmac-md5",
1151 				.cra_priority = 200,
1152 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1153 					CRYPTO_ALG_ASYNC |
1154 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1155 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1156 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1157 				.cra_alignmask = 3,
1158 				.cra_init = stm32_hash_cra_md5_init,
1159 				.cra_module = THIS_MODULE,
1160 			}
1161 		}
1162 	},
1163 	{
1164 		.init = stm32_hash_init,
1165 		.update = stm32_hash_update,
1166 		.final = stm32_hash_final,
1167 		.finup = stm32_hash_finup,
1168 		.digest = stm32_hash_digest,
1169 		.export = stm32_hash_export,
1170 		.import = stm32_hash_import,
1171 		.halg = {
1172 			.digestsize = SHA1_DIGEST_SIZE,
1173 			.statesize = sizeof(struct stm32_hash_request_ctx),
1174 			.base = {
1175 				.cra_name = "sha1",
1176 				.cra_driver_name = "stm32-sha1",
1177 				.cra_priority = 200,
1178 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1179 					CRYPTO_ALG_ASYNC |
1180 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1181 				.cra_blocksize = SHA1_BLOCK_SIZE,
1182 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1183 				.cra_alignmask = 3,
1184 				.cra_init = stm32_hash_cra_init,
1185 				.cra_module = THIS_MODULE,
1186 			}
1187 		}
1188 	},
1189 	{
1190 		.init = stm32_hash_init,
1191 		.update = stm32_hash_update,
1192 		.final = stm32_hash_final,
1193 		.finup = stm32_hash_finup,
1194 		.digest = stm32_hash_digest,
1195 		.export = stm32_hash_export,
1196 		.import = stm32_hash_import,
1197 		.setkey = stm32_hash_setkey,
1198 		.halg = {
1199 			.digestsize = SHA1_DIGEST_SIZE,
1200 			.statesize = sizeof(struct stm32_hash_request_ctx),
1201 			.base = {
1202 				.cra_name = "hmac(sha1)",
1203 				.cra_driver_name = "stm32-hmac-sha1",
1204 				.cra_priority = 200,
1205 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1206 					CRYPTO_ALG_ASYNC |
1207 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1208 				.cra_blocksize = SHA1_BLOCK_SIZE,
1209 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1210 				.cra_alignmask = 3,
1211 				.cra_init = stm32_hash_cra_sha1_init,
1212 				.cra_module = THIS_MODULE,
1213 			}
1214 		}
1215 	},
1216 };
1217 
1218 static struct ahash_alg algs_sha224_sha256[] = {
1219 	{
1220 		.init = stm32_hash_init,
1221 		.update = stm32_hash_update,
1222 		.final = stm32_hash_final,
1223 		.finup = stm32_hash_finup,
1224 		.digest = stm32_hash_digest,
1225 		.export = stm32_hash_export,
1226 		.import = stm32_hash_import,
1227 		.halg = {
1228 			.digestsize = SHA224_DIGEST_SIZE,
1229 			.statesize = sizeof(struct stm32_hash_request_ctx),
1230 			.base = {
1231 				.cra_name = "sha224",
1232 				.cra_driver_name = "stm32-sha224",
1233 				.cra_priority = 200,
1234 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1235 					CRYPTO_ALG_ASYNC |
1236 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1237 				.cra_blocksize = SHA224_BLOCK_SIZE,
1238 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1239 				.cra_alignmask = 3,
1240 				.cra_init = stm32_hash_cra_init,
1241 				.cra_module = THIS_MODULE,
1242 			}
1243 		}
1244 	},
1245 	{
1246 		.init = stm32_hash_init,
1247 		.update = stm32_hash_update,
1248 		.final = stm32_hash_final,
1249 		.finup = stm32_hash_finup,
1250 		.digest = stm32_hash_digest,
1251 		.setkey = stm32_hash_setkey,
1252 		.export = stm32_hash_export,
1253 		.import = stm32_hash_import,
1254 		.halg = {
1255 			.digestsize = SHA224_DIGEST_SIZE,
1256 			.statesize = sizeof(struct stm32_hash_request_ctx),
1257 			.base = {
1258 				.cra_name = "hmac(sha224)",
1259 				.cra_driver_name = "stm32-hmac-sha224",
1260 				.cra_priority = 200,
1261 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1262 					CRYPTO_ALG_ASYNC |
1263 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1264 				.cra_blocksize = SHA224_BLOCK_SIZE,
1265 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1266 				.cra_alignmask = 3,
1267 				.cra_init = stm32_hash_cra_sha224_init,
1268 				.cra_module = THIS_MODULE,
1269 			}
1270 		}
1271 	},
1272 	{
1273 		.init = stm32_hash_init,
1274 		.update = stm32_hash_update,
1275 		.final = stm32_hash_final,
1276 		.finup = stm32_hash_finup,
1277 		.digest = stm32_hash_digest,
1278 		.export = stm32_hash_export,
1279 		.import = stm32_hash_import,
1280 		.halg = {
1281 			.digestsize = SHA256_DIGEST_SIZE,
1282 			.statesize = sizeof(struct stm32_hash_request_ctx),
1283 			.base = {
1284 				.cra_name = "sha256",
1285 				.cra_driver_name = "stm32-sha256",
1286 				.cra_priority = 200,
1287 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1288 					CRYPTO_ALG_ASYNC |
1289 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1290 				.cra_blocksize = SHA256_BLOCK_SIZE,
1291 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1292 				.cra_alignmask = 3,
1293 				.cra_init = stm32_hash_cra_init,
1294 				.cra_module = THIS_MODULE,
1295 			}
1296 		}
1297 	},
1298 	{
1299 		.init = stm32_hash_init,
1300 		.update = stm32_hash_update,
1301 		.final = stm32_hash_final,
1302 		.finup = stm32_hash_finup,
1303 		.digest = stm32_hash_digest,
1304 		.export = stm32_hash_export,
1305 		.import = stm32_hash_import,
1306 		.setkey = stm32_hash_setkey,
1307 		.halg = {
1308 			.digestsize = SHA256_DIGEST_SIZE,
1309 			.statesize = sizeof(struct stm32_hash_request_ctx),
1310 			.base = {
1311 				.cra_name = "hmac(sha256)",
1312 				.cra_driver_name = "stm32-hmac-sha256",
1313 				.cra_priority = 200,
1314 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
1315 					CRYPTO_ALG_ASYNC |
1316 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1317 				.cra_blocksize = SHA256_BLOCK_SIZE,
1318 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1319 				.cra_alignmask = 3,
1320 				.cra_init = stm32_hash_cra_sha256_init,
1321 				.cra_module = THIS_MODULE,
1322 			}
1323 		}
1324 	},
1325 };
1326 
1327 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1328 {
1329 	unsigned int i, j;
1330 	int err;
1331 
1332 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1333 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1334 			err = crypto_register_ahash(
1335 				&hdev->pdata->algs_info[i].algs_list[j]);
1336 			if (err)
1337 				goto err_algs;
1338 		}
1339 	}
1340 
1341 	return 0;
1342 err_algs:
1343 	dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1344 	for (; i--; ) {
1345 		for (; j--;)
1346 			crypto_unregister_ahash(
1347 				&hdev->pdata->algs_info[i].algs_list[j]);
1348 	}
1349 
1350 	return err;
1351 }
1352 
1353 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1354 {
1355 	unsigned int i, j;
1356 
1357 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1358 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1359 			crypto_unregister_ahash(
1360 				&hdev->pdata->algs_info[i].algs_list[j]);
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1367 	{
1368 		.algs_list	= algs_md5_sha1,
1369 		.size		= ARRAY_SIZE(algs_md5_sha1),
1370 	},
1371 };
1372 
1373 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1374 	.algs_info	= stm32_hash_algs_info_stm32f4,
1375 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1376 };
1377 
1378 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1379 	{
1380 		.algs_list	= algs_md5_sha1,
1381 		.size		= ARRAY_SIZE(algs_md5_sha1),
1382 	},
1383 	{
1384 		.algs_list	= algs_sha224_sha256,
1385 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1386 	},
1387 };
1388 
1389 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1390 	.algs_info	= stm32_hash_algs_info_stm32f7,
1391 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1392 };
1393 
1394 static const struct of_device_id stm32_hash_of_match[] = {
1395 	{
1396 		.compatible = "st,stm32f456-hash",
1397 		.data = &stm32_hash_pdata_stm32f4,
1398 	},
1399 	{
1400 		.compatible = "st,stm32f756-hash",
1401 		.data = &stm32_hash_pdata_stm32f7,
1402 	},
1403 	{},
1404 };
1405 
1406 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1407 
1408 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1409 				   struct device *dev)
1410 {
1411 	const struct of_device_id *match;
1412 	int err;
1413 
1414 	match = of_match_device(stm32_hash_of_match, dev);
1415 	if (!match) {
1416 		dev_err(dev, "no compatible OF match\n");
1417 		return -EINVAL;
1418 	}
1419 
1420 	err = of_property_read_u32(dev->of_node, "dma-maxburst",
1421 				   &hdev->dma_maxburst);
1422 
1423 	hdev->pdata = match->data;
1424 
1425 	return err;
1426 }
1427 
1428 static int stm32_hash_probe(struct platform_device *pdev)
1429 {
1430 	struct stm32_hash_dev *hdev;
1431 	struct device *dev = &pdev->dev;
1432 	struct resource *res;
1433 	int ret, irq;
1434 
1435 	hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1436 	if (!hdev)
1437 		return -ENOMEM;
1438 
1439 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1440 	hdev->io_base = devm_ioremap_resource(dev, res);
1441 	if (IS_ERR(hdev->io_base))
1442 		return PTR_ERR(hdev->io_base);
1443 
1444 	hdev->phys_base = res->start;
1445 
1446 	ret = stm32_hash_get_of_match(hdev, dev);
1447 	if (ret)
1448 		return ret;
1449 
1450 	irq = platform_get_irq(pdev, 0);
1451 	if (irq < 0) {
1452 		dev_err(dev, "Cannot get IRQ resource\n");
1453 		return irq;
1454 	}
1455 
1456 	ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1457 					stm32_hash_irq_thread, IRQF_ONESHOT,
1458 					dev_name(dev), hdev);
1459 	if (ret) {
1460 		dev_err(dev, "Cannot grab IRQ\n");
1461 		return ret;
1462 	}
1463 
1464 	hdev->clk = devm_clk_get(&pdev->dev, NULL);
1465 	if (IS_ERR(hdev->clk)) {
1466 		dev_err(dev, "failed to get clock for hash (%lu)\n",
1467 			PTR_ERR(hdev->clk));
1468 		return PTR_ERR(hdev->clk);
1469 	}
1470 
1471 	ret = clk_prepare_enable(hdev->clk);
1472 	if (ret) {
1473 		dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1474 		return ret;
1475 	}
1476 
1477 	hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1478 	if (!IS_ERR(hdev->rst)) {
1479 		reset_control_assert(hdev->rst);
1480 		udelay(2);
1481 		reset_control_deassert(hdev->rst);
1482 	}
1483 
1484 	hdev->dev = dev;
1485 
1486 	platform_set_drvdata(pdev, hdev);
1487 
1488 	ret = stm32_hash_dma_init(hdev);
1489 	if (ret)
1490 		dev_dbg(dev, "DMA mode not available\n");
1491 
1492 	spin_lock(&stm32_hash.lock);
1493 	list_add_tail(&hdev->list, &stm32_hash.dev_list);
1494 	spin_unlock(&stm32_hash.lock);
1495 
1496 	/* Initialize crypto engine */
1497 	hdev->engine = crypto_engine_alloc_init(dev, 1);
1498 	if (!hdev->engine) {
1499 		ret = -ENOMEM;
1500 		goto err_engine;
1501 	}
1502 
1503 	hdev->engine->prepare_hash_request = stm32_hash_prepare_req;
1504 	hdev->engine->hash_one_request = stm32_hash_one_request;
1505 
1506 	ret = crypto_engine_start(hdev->engine);
1507 	if (ret)
1508 		goto err_engine_start;
1509 
1510 	hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1511 
1512 	/* Register algos */
1513 	ret = stm32_hash_register_algs(hdev);
1514 	if (ret)
1515 		goto err_algs;
1516 
1517 	dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1518 		 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1519 
1520 	return 0;
1521 
1522 err_algs:
1523 err_engine_start:
1524 	crypto_engine_exit(hdev->engine);
1525 err_engine:
1526 	spin_lock(&stm32_hash.lock);
1527 	list_del(&hdev->list);
1528 	spin_unlock(&stm32_hash.lock);
1529 
1530 	if (hdev->dma_lch)
1531 		dma_release_channel(hdev->dma_lch);
1532 
1533 	clk_disable_unprepare(hdev->clk);
1534 
1535 	return ret;
1536 }
1537 
1538 static int stm32_hash_remove(struct platform_device *pdev)
1539 {
1540 	static struct stm32_hash_dev *hdev;
1541 
1542 	hdev = platform_get_drvdata(pdev);
1543 	if (!hdev)
1544 		return -ENODEV;
1545 
1546 	stm32_hash_unregister_algs(hdev);
1547 
1548 	crypto_engine_exit(hdev->engine);
1549 
1550 	spin_lock(&stm32_hash.lock);
1551 	list_del(&hdev->list);
1552 	spin_unlock(&stm32_hash.lock);
1553 
1554 	if (hdev->dma_lch)
1555 		dma_release_channel(hdev->dma_lch);
1556 
1557 	clk_disable_unprepare(hdev->clk);
1558 
1559 	return 0;
1560 }
1561 
1562 static struct platform_driver stm32_hash_driver = {
1563 	.probe		= stm32_hash_probe,
1564 	.remove		= stm32_hash_remove,
1565 	.driver		= {
1566 		.name	= "stm32-hash",
1567 		.of_match_table	= stm32_hash_of_match,
1568 	}
1569 };
1570 
1571 module_platform_driver(stm32_hash_driver);
1572 
1573 MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1574 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1575 MODULE_LICENSE("GPL v2");
1576