xref: /openbmc/linux/drivers/crypto/stm32/stm32-cryp.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17 
18 #include <crypto/aes.h>
19 #include <crypto/internal/des.h>
20 #include <crypto/engine.h>
21 #include <crypto/scatterwalk.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/skcipher.h>
24 
25 #define DRIVER_NAME             "stm32-cryp"
26 
27 /* Bit [0] encrypt / decrypt */
28 #define FLG_ENCRYPT             BIT(0)
29 /* Bit [8..1] algo & operation mode */
30 #define FLG_AES                 BIT(1)
31 #define FLG_DES                 BIT(2)
32 #define FLG_TDES                BIT(3)
33 #define FLG_ECB                 BIT(4)
34 #define FLG_CBC                 BIT(5)
35 #define FLG_CTR                 BIT(6)
36 #define FLG_GCM                 BIT(7)
37 #define FLG_CCM                 BIT(8)
38 /* Mode mask = bits [15..0] */
39 #define FLG_MODE_MASK           GENMASK(15, 0)
40 /* Bit [31..16] status  */
41 
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65 
66 #define UX500_CRYP_CR		0x00000000
67 #define UX500_CRYP_SR		0x00000004
68 #define UX500_CRYP_DIN		0x00000008
69 #define UX500_CRYP_DINSIZE	0x0000000C
70 #define UX500_CRYP_DOUT		0x00000010
71 #define UX500_CRYP_DOUSIZE	0x00000014
72 #define UX500_CRYP_DMACR	0x00000018
73 #define UX500_CRYP_IMSC		0x0000001C
74 #define UX500_CRYP_RIS		0x00000020
75 #define UX500_CRYP_MIS		0x00000024
76 #define UX500_CRYP_K1L		0x00000028
77 #define UX500_CRYP_K1R		0x0000002C
78 #define UX500_CRYP_K2L		0x00000030
79 #define UX500_CRYP_K2R		0x00000034
80 #define UX500_CRYP_K3L		0x00000038
81 #define UX500_CRYP_K3R		0x0000003C
82 #define UX500_CRYP_K4L		0x00000040
83 #define UX500_CRYP_K4R		0x00000044
84 #define UX500_CRYP_IV0L		0x00000048
85 #define UX500_CRYP_IV0R		0x0000004C
86 #define UX500_CRYP_IV1L		0x00000050
87 #define UX500_CRYP_IV1R		0x00000054
88 
89 /* Registers values */
90 #define CR_DEC_NOT_ENC          0x00000004
91 #define CR_TDES_ECB             0x00000000
92 #define CR_TDES_CBC             0x00000008
93 #define CR_DES_ECB              0x00000010
94 #define CR_DES_CBC              0x00000018
95 #define CR_AES_ECB              0x00000020
96 #define CR_AES_CBC              0x00000028
97 #define CR_AES_CTR              0x00000030
98 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
99 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
100 #define CR_AES_GCM              0x00080000
101 #define CR_AES_CCM              0x00080008
102 #define CR_AES_UNKNOWN          0xFFFFFFFF
103 #define CR_ALGO_MASK            0x00080038
104 #define CR_DATA32               0x00000000
105 #define CR_DATA16               0x00000040
106 #define CR_DATA8                0x00000080
107 #define CR_DATA1                0x000000C0
108 #define CR_KEY128               0x00000000
109 #define CR_KEY192               0x00000100
110 #define CR_KEY256               0x00000200
111 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
112 #define CR_KSE                  0x00000800 /* Only on Ux500 */
113 #define CR_FFLUSH               0x00004000
114 #define CR_CRYPEN               0x00008000
115 #define CR_PH_INIT              0x00000000
116 #define CR_PH_HEADER            0x00010000
117 #define CR_PH_PAYLOAD           0x00020000
118 #define CR_PH_FINAL             0x00030000
119 #define CR_PH_MASK              0x00030000
120 #define CR_NBPBL_SHIFT          20
121 
122 #define SR_BUSY                 0x00000010
123 #define SR_OFNE                 0x00000004
124 
125 #define IMSCR_IN                BIT(0)
126 #define IMSCR_OUT               BIT(1)
127 
128 #define MISR_IN                 BIT(0)
129 #define MISR_OUT                BIT(1)
130 
131 /* Misc */
132 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
133 #define GCM_CTR_INIT            2
134 #define CRYP_AUTOSUSPEND_DELAY	50
135 
136 struct stm32_cryp_caps {
137 	bool			aeads_support;
138 	bool			linear_aes_key;
139 	bool			kp_mode;
140 	bool			iv_protection;
141 	bool			swap_final;
142 	bool			padding_wa;
143 	u32			cr;
144 	u32			sr;
145 	u32			din;
146 	u32			dout;
147 	u32			imsc;
148 	u32			mis;
149 	u32			k1l;
150 	u32			k1r;
151 	u32			k3r;
152 	u32			iv0l;
153 	u32			iv0r;
154 	u32			iv1l;
155 	u32			iv1r;
156 };
157 
158 struct stm32_cryp_ctx {
159 	struct crypto_engine_ctx enginectx;
160 	struct stm32_cryp       *cryp;
161 	int                     keylen;
162 	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
163 	unsigned long           flags;
164 };
165 
166 struct stm32_cryp_reqctx {
167 	unsigned long mode;
168 };
169 
170 struct stm32_cryp {
171 	struct list_head        list;
172 	struct device           *dev;
173 	void __iomem            *regs;
174 	struct clk              *clk;
175 	unsigned long           flags;
176 	u32                     irq_status;
177 	const struct stm32_cryp_caps *caps;
178 	struct stm32_cryp_ctx   *ctx;
179 
180 	struct crypto_engine    *engine;
181 
182 	struct skcipher_request *req;
183 	struct aead_request     *areq;
184 
185 	size_t                  authsize;
186 	size_t                  hw_blocksize;
187 
188 	size_t                  payload_in;
189 	size_t                  header_in;
190 	size_t                  payload_out;
191 
192 	struct scatterlist      *out_sg;
193 
194 	struct scatter_walk     in_walk;
195 	struct scatter_walk     out_walk;
196 
197 	__be32                  last_ctr[4];
198 	u32                     gcm_ctr;
199 };
200 
201 struct stm32_cryp_list {
202 	struct list_head        dev_list;
203 	spinlock_t              lock; /* protect dev_list */
204 };
205 
206 static struct stm32_cryp_list cryp_list = {
207 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209 };
210 
211 static inline bool is_aes(struct stm32_cryp *cryp)
212 {
213 	return cryp->flags & FLG_AES;
214 }
215 
216 static inline bool is_des(struct stm32_cryp *cryp)
217 {
218 	return cryp->flags & FLG_DES;
219 }
220 
221 static inline bool is_tdes(struct stm32_cryp *cryp)
222 {
223 	return cryp->flags & FLG_TDES;
224 }
225 
226 static inline bool is_ecb(struct stm32_cryp *cryp)
227 {
228 	return cryp->flags & FLG_ECB;
229 }
230 
231 static inline bool is_cbc(struct stm32_cryp *cryp)
232 {
233 	return cryp->flags & FLG_CBC;
234 }
235 
236 static inline bool is_ctr(struct stm32_cryp *cryp)
237 {
238 	return cryp->flags & FLG_CTR;
239 }
240 
241 static inline bool is_gcm(struct stm32_cryp *cryp)
242 {
243 	return cryp->flags & FLG_GCM;
244 }
245 
246 static inline bool is_ccm(struct stm32_cryp *cryp)
247 {
248 	return cryp->flags & FLG_CCM;
249 }
250 
251 static inline bool is_encrypt(struct stm32_cryp *cryp)
252 {
253 	return cryp->flags & FLG_ENCRYPT;
254 }
255 
256 static inline bool is_decrypt(struct stm32_cryp *cryp)
257 {
258 	return !is_encrypt(cryp);
259 }
260 
261 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262 {
263 	return readl_relaxed(cryp->regs + ofst);
264 }
265 
266 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267 {
268 	writel_relaxed(val, cryp->regs + ofst);
269 }
270 
271 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272 {
273 	u32 status;
274 
275 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276 			!(status & SR_BUSY), 10, 100000);
277 }
278 
279 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280 {
281 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282 		       cryp->regs + cryp->caps->cr);
283 }
284 
285 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286 {
287 	u32 status;
288 
289 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290 			!(status & CR_CRYPEN), 10, 100000);
291 }
292 
293 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294 {
295 	u32 status;
296 
297 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298 			status & SR_OFNE, 10, 100000);
299 }
300 
301 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302 {
303 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304 		       cryp->regs + cryp->caps->cr);
305 }
306 
307 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308 {
309 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310 		       cryp->regs + cryp->caps->cr);
311 }
312 
313 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315 
316 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317 {
318 	struct stm32_cryp *tmp, *cryp = NULL;
319 
320 	spin_lock_bh(&cryp_list.lock);
321 	if (!ctx->cryp) {
322 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323 			cryp = tmp;
324 			break;
325 		}
326 		ctx->cryp = cryp;
327 	} else {
328 		cryp = ctx->cryp;
329 	}
330 
331 	spin_unlock_bh(&cryp_list.lock);
332 
333 	return cryp;
334 }
335 
336 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337 {
338 	if (!iv)
339 		return;
340 
341 	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342 	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343 
344 	if (is_aes(cryp)) {
345 		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346 		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347 	}
348 }
349 
350 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351 {
352 	struct skcipher_request *req = cryp->req;
353 	__be32 *tmp = (void *)req->iv;
354 
355 	if (!tmp)
356 		return;
357 
358 	if (cryp->caps->iv_protection)
359 		stm32_cryp_key_read_enable(cryp);
360 
361 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363 
364 	if (is_aes(cryp)) {
365 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367 	}
368 
369 	if (cryp->caps->iv_protection)
370 		stm32_cryp_key_read_disable(cryp);
371 }
372 
373 /**
374  * ux500_swap_bits_in_byte() - mirror the bits in a byte
375  * @b: the byte to be mirrored
376  *
377  * The bits are swapped the following way:
378  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379  *  nibble 2 (n2) bits 4-7.
380  *
381  *  Nibble 1 (n1):
382  *  (The "old" (moved) bit is replaced with a zero)
383  *  1. Move bit 6 and 7, 4 positions to the left.
384  *  2. Move bit 3 and 5, 2 positions to the left.
385  *  3. Move bit 1-4, 1 position to the left.
386  *
387  *  Nibble 2 (n2):
388  *  1. Move bit 0 and 1, 4 positions to the right.
389  *  2. Move bit 2 and 4, 2 positions to the right.
390  *  3. Move bit 3-6, 1 position to the right.
391  *
392  *  Combine the two nibbles to a complete and swapped byte.
393  */
394 static inline u8 ux500_swap_bits_in_byte(u8 b)
395 {
396 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
397 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
398 				  right shift 2 */
399 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
400 				  right shift 1 */
401 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
402 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
403 				  left shift 2 */
404 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
405 				  left shift 1 */
406 
407 	u8 n1;
408 	u8 n2;
409 
410 	/* Swap most significant nibble */
411 	/* Right shift 4, bits 6 and 7 */
412 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
413 	/* Right shift 2, bits 3 and 5 */
414 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415 	/* Right shift 1, bits 1-4 */
416 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
417 
418 	/* Swap least significant nibble */
419 	/* Left shift 4, bits 0 and 1 */
420 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
421 	/* Left shift 2, bits 2 and 4 */
422 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423 	/* Left shift 1, bits 3-6 */
424 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
425 
426 	return n1 | n2;
427 }
428 
429 /**
430  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431  * @in: key to swizzle
432  * @out: swizzled key
433  * @len: length of key, in bytes
434  *
435  * This "key swizzling procedure" is described in the examples in the
436  * DB8500 design specification. There is no real description of why
437  * the bits have been arranged like this in the hardware.
438  */
439 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440 {
441 	int i = 0;
442 	int bpw = sizeof(u32);
443 	int j;
444 	int index = 0;
445 
446 	j = len - bpw;
447 	while (j >= 0) {
448 		for (i = 0; i < bpw; i++) {
449 			index = len - j - bpw + i;
450 			out[j + i] =
451 				ux500_swap_bits_in_byte(in[index]);
452 		}
453 		j -= bpw;
454 	}
455 }
456 
457 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458 {
459 	unsigned int i;
460 	int r_id;
461 
462 	if (is_des(c)) {
463 		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464 		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465 		return;
466 	}
467 
468 	/*
469 	 * On the Ux500 the AES key is considered as a single bit sequence
470 	 * of 128, 192 or 256 bits length. It is written linearly into the
471 	 * registers from K1L and down, and need to be processed to become
472 	 * a proper big-endian bit sequence.
473 	 */
474 	if (is_aes(c) && c->caps->linear_aes_key) {
475 		u32 tmpkey[8];
476 
477 		ux500_swizzle_key((u8 *)c->ctx->key,
478 				  (u8 *)tmpkey, c->ctx->keylen);
479 
480 		r_id = c->caps->k1l;
481 		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482 			stm32_cryp_write(c, r_id, tmpkey[i]);
483 
484 		return;
485 	}
486 
487 	r_id = c->caps->k3r;
488 	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489 		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490 }
491 
492 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493 {
494 	if (is_aes(cryp) && is_ecb(cryp))
495 		return CR_AES_ECB;
496 
497 	if (is_aes(cryp) && is_cbc(cryp))
498 		return CR_AES_CBC;
499 
500 	if (is_aes(cryp) && is_ctr(cryp))
501 		return CR_AES_CTR;
502 
503 	if (is_aes(cryp) && is_gcm(cryp))
504 		return CR_AES_GCM;
505 
506 	if (is_aes(cryp) && is_ccm(cryp))
507 		return CR_AES_CCM;
508 
509 	if (is_des(cryp) && is_ecb(cryp))
510 		return CR_DES_ECB;
511 
512 	if (is_des(cryp) && is_cbc(cryp))
513 		return CR_DES_CBC;
514 
515 	if (is_tdes(cryp) && is_ecb(cryp))
516 		return CR_TDES_ECB;
517 
518 	if (is_tdes(cryp) && is_cbc(cryp))
519 		return CR_TDES_CBC;
520 
521 	dev_err(cryp->dev, "Unknown mode\n");
522 	return CR_AES_UNKNOWN;
523 }
524 
525 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526 {
527 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
528 				  cryp->areq->cryptlen - cryp->authsize;
529 }
530 
531 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532 {
533 	int ret;
534 	__be32 iv[4];
535 
536 	/* Phase 1 : init */
537 	memcpy(iv, cryp->areq->iv, 12);
538 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
539 	cryp->gcm_ctr = GCM_CTR_INIT;
540 	stm32_cryp_hw_write_iv(cryp, iv);
541 
542 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543 
544 	/* Wait for end of processing */
545 	ret = stm32_cryp_wait_enable(cryp);
546 	if (ret) {
547 		dev_err(cryp->dev, "Timeout (gcm init)\n");
548 		return ret;
549 	}
550 
551 	/* Prepare next phase */
552 	if (cryp->areq->assoclen) {
553 		cfg |= CR_PH_HEADER;
554 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555 	} else if (stm32_cryp_get_input_text_len(cryp)) {
556 		cfg |= CR_PH_PAYLOAD;
557 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558 	}
559 
560 	return 0;
561 }
562 
563 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564 {
565 	u32 cfg;
566 	int err;
567 
568 	/* Check if whole header written */
569 	if (!cryp->header_in) {
570 		/* Wait for completion */
571 		err = stm32_cryp_wait_busy(cryp);
572 		if (err) {
573 			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574 			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575 			stm32_cryp_finish_req(cryp, err);
576 			return;
577 		}
578 
579 		if (stm32_cryp_get_input_text_len(cryp)) {
580 			/* Phase 3 : payload */
581 			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582 			cfg &= ~CR_CRYPEN;
583 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584 
585 			cfg &= ~CR_PH_MASK;
586 			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588 		} else {
589 			/*
590 			 * Phase 4 : tag.
591 			 * Nothing to read, nothing to write, caller have to
592 			 * end request
593 			 */
594 		}
595 	}
596 }
597 
598 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599 {
600 	unsigned int i;
601 	size_t written;
602 	size_t len;
603 	u32 alen = cryp->areq->assoclen;
604 	u32 block[AES_BLOCK_32] = {0};
605 	u8 *b8 = (u8 *)block;
606 
607 	if (alen <= 65280) {
608 		/* Write first u32 of B1 */
609 		b8[0] = (alen >> 8) & 0xFF;
610 		b8[1] = alen & 0xFF;
611 		len = 2;
612 	} else {
613 		/* Build the two first u32 of B1 */
614 		b8[0] = 0xFF;
615 		b8[1] = 0xFE;
616 		b8[2] = (alen & 0xFF000000) >> 24;
617 		b8[3] = (alen & 0x00FF0000) >> 16;
618 		b8[4] = (alen & 0x0000FF00) >> 8;
619 		b8[5] = alen & 0x000000FF;
620 		len = 6;
621 	}
622 
623 	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
624 
625 	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
626 	for (i = 0; i < AES_BLOCK_32; i++)
627 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
628 
629 	cryp->header_in -= written;
630 
631 	stm32_crypt_gcmccm_end_header(cryp);
632 }
633 
634 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
635 {
636 	int ret;
637 	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
638 	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
639 	__be32 *bd;
640 	u32 *d;
641 	unsigned int i, textlen;
642 
643 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
644 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
645 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
646 	iv[AES_BLOCK_SIZE - 1] = 1;
647 	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
648 
649 	/* Build B0 */
650 	memcpy(b0, iv, AES_BLOCK_SIZE);
651 
652 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
653 
654 	if (cryp->areq->assoclen)
655 		b0[0] |= 0x40;
656 
657 	textlen = stm32_cryp_get_input_text_len(cryp);
658 
659 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
660 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
661 
662 	/* Enable HW */
663 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
664 
665 	/* Write B0 */
666 	d = (u32 *)b0;
667 	bd = (__be32 *)b0;
668 
669 	for (i = 0; i < AES_BLOCK_32; i++) {
670 		u32 xd = d[i];
671 
672 		if (!cryp->caps->padding_wa)
673 			xd = be32_to_cpu(bd[i]);
674 		stm32_cryp_write(cryp, cryp->caps->din, xd);
675 	}
676 
677 	/* Wait for end of processing */
678 	ret = stm32_cryp_wait_enable(cryp);
679 	if (ret) {
680 		dev_err(cryp->dev, "Timeout (ccm init)\n");
681 		return ret;
682 	}
683 
684 	/* Prepare next phase */
685 	if (cryp->areq->assoclen) {
686 		cfg |= CR_PH_HEADER | CR_CRYPEN;
687 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
688 
689 		/* Write first (special) block (may move to next phase [payload]) */
690 		stm32_cryp_write_ccm_first_header(cryp);
691 	} else if (stm32_cryp_get_input_text_len(cryp)) {
692 		cfg |= CR_PH_PAYLOAD;
693 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
694 	}
695 
696 	return 0;
697 }
698 
699 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
700 {
701 	int ret;
702 	u32 cfg, hw_mode;
703 
704 	pm_runtime_get_sync(cryp->dev);
705 
706 	/* Disable interrupt */
707 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
708 
709 	/* Set configuration */
710 	cfg = CR_DATA8 | CR_FFLUSH;
711 
712 	switch (cryp->ctx->keylen) {
713 	case AES_KEYSIZE_128:
714 		cfg |= CR_KEY128;
715 		break;
716 
717 	case AES_KEYSIZE_192:
718 		cfg |= CR_KEY192;
719 		break;
720 
721 	default:
722 	case AES_KEYSIZE_256:
723 		cfg |= CR_KEY256;
724 		break;
725 	}
726 
727 	hw_mode = stm32_cryp_get_hw_mode(cryp);
728 	if (hw_mode == CR_AES_UNKNOWN)
729 		return -EINVAL;
730 
731 	/* AES ECB/CBC decrypt: run key preparation first */
732 	if (is_decrypt(cryp) &&
733 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
734 		/* Configure in key preparation mode */
735 		if (cryp->caps->kp_mode)
736 			stm32_cryp_write(cryp, cryp->caps->cr,
737 				cfg | CR_AES_KP);
738 		else
739 			stm32_cryp_write(cryp,
740 				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
741 
742 		/* Set key only after full configuration done */
743 		stm32_cryp_hw_write_key(cryp);
744 
745 		/* Start prepare key */
746 		stm32_cryp_enable(cryp);
747 		/* Wait for end of processing */
748 		ret = stm32_cryp_wait_busy(cryp);
749 		if (ret) {
750 			dev_err(cryp->dev, "Timeout (key preparation)\n");
751 			return ret;
752 		}
753 
754 		cfg |= hw_mode | CR_DEC_NOT_ENC;
755 
756 		/* Apply updated config (Decrypt + algo) and flush */
757 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
758 	} else {
759 		cfg |= hw_mode;
760 		if (is_decrypt(cryp))
761 			cfg |= CR_DEC_NOT_ENC;
762 
763 		/* Apply config and flush */
764 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
765 
766 		/* Set key only after configuration done */
767 		stm32_cryp_hw_write_key(cryp);
768 	}
769 
770 	switch (hw_mode) {
771 	case CR_AES_GCM:
772 	case CR_AES_CCM:
773 		/* Phase 1 : init */
774 		if (hw_mode == CR_AES_CCM)
775 			ret = stm32_cryp_ccm_init(cryp, cfg);
776 		else
777 			ret = stm32_cryp_gcm_init(cryp, cfg);
778 
779 		if (ret)
780 			return ret;
781 
782 		break;
783 
784 	case CR_DES_CBC:
785 	case CR_TDES_CBC:
786 	case CR_AES_CBC:
787 	case CR_AES_CTR:
788 		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
789 		break;
790 
791 	default:
792 		break;
793 	}
794 
795 	/* Enable now */
796 	stm32_cryp_enable(cryp);
797 
798 	return 0;
799 }
800 
801 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
802 {
803 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
804 		/* Phase 4 : output tag */
805 		err = stm32_cryp_read_auth_tag(cryp);
806 
807 	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
808 		stm32_cryp_get_iv(cryp);
809 
810 	pm_runtime_mark_last_busy(cryp->dev);
811 	pm_runtime_put_autosuspend(cryp->dev);
812 
813 	if (is_gcm(cryp) || is_ccm(cryp))
814 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
815 	else
816 		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
817 						   err);
818 }
819 
820 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
821 {
822 	/* Enable interrupt and let the IRQ handler do everything */
823 	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
824 
825 	return 0;
826 }
827 
828 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
829 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
830 					 void *areq);
831 
832 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
833 {
834 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
835 
836 	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
837 
838 	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
839 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
840 	ctx->enginectx.op.unprepare_request = NULL;
841 	return 0;
842 }
843 
844 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
845 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
846 				       void *areq);
847 
848 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
849 {
850 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
851 
852 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
853 
854 	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
855 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
856 	ctx->enginectx.op.unprepare_request = NULL;
857 
858 	return 0;
859 }
860 
861 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
862 {
863 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
864 			crypto_skcipher_reqtfm(req));
865 	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
866 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
867 
868 	if (!cryp)
869 		return -ENODEV;
870 
871 	rctx->mode = mode;
872 
873 	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
874 }
875 
876 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
877 {
878 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
879 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
880 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
881 
882 	if (!cryp)
883 		return -ENODEV;
884 
885 	rctx->mode = mode;
886 
887 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
888 }
889 
890 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
891 			     unsigned int keylen)
892 {
893 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
894 
895 	memcpy(ctx->key, key, keylen);
896 	ctx->keylen = keylen;
897 
898 	return 0;
899 }
900 
901 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
902 				 unsigned int keylen)
903 {
904 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
905 	    keylen != AES_KEYSIZE_256)
906 		return -EINVAL;
907 	else
908 		return stm32_cryp_setkey(tfm, key, keylen);
909 }
910 
911 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
912 				 unsigned int keylen)
913 {
914 	return verify_skcipher_des_key(tfm, key) ?:
915 	       stm32_cryp_setkey(tfm, key, keylen);
916 }
917 
918 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
919 				  unsigned int keylen)
920 {
921 	return verify_skcipher_des3_key(tfm, key) ?:
922 	       stm32_cryp_setkey(tfm, key, keylen);
923 }
924 
925 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
926 				      unsigned int keylen)
927 {
928 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
929 
930 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
931 	    keylen != AES_KEYSIZE_256)
932 		return -EINVAL;
933 
934 	memcpy(ctx->key, key, keylen);
935 	ctx->keylen = keylen;
936 
937 	return 0;
938 }
939 
940 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
941 					  unsigned int authsize)
942 {
943 	switch (authsize) {
944 	case 4:
945 	case 8:
946 	case 12:
947 	case 13:
948 	case 14:
949 	case 15:
950 	case 16:
951 		break;
952 	default:
953 		return -EINVAL;
954 	}
955 
956 	return 0;
957 }
958 
959 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
960 					  unsigned int authsize)
961 {
962 	switch (authsize) {
963 	case 4:
964 	case 6:
965 	case 8:
966 	case 10:
967 	case 12:
968 	case 14:
969 	case 16:
970 		break;
971 	default:
972 		return -EINVAL;
973 	}
974 
975 	return 0;
976 }
977 
978 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
979 {
980 	if (req->cryptlen % AES_BLOCK_SIZE)
981 		return -EINVAL;
982 
983 	if (req->cryptlen == 0)
984 		return 0;
985 
986 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
987 }
988 
989 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
990 {
991 	if (req->cryptlen % AES_BLOCK_SIZE)
992 		return -EINVAL;
993 
994 	if (req->cryptlen == 0)
995 		return 0;
996 
997 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
998 }
999 
1000 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1001 {
1002 	if (req->cryptlen % AES_BLOCK_SIZE)
1003 		return -EINVAL;
1004 
1005 	if (req->cryptlen == 0)
1006 		return 0;
1007 
1008 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1009 }
1010 
1011 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1012 {
1013 	if (req->cryptlen % AES_BLOCK_SIZE)
1014 		return -EINVAL;
1015 
1016 	if (req->cryptlen == 0)
1017 		return 0;
1018 
1019 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1020 }
1021 
1022 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1023 {
1024 	if (req->cryptlen == 0)
1025 		return 0;
1026 
1027 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1028 }
1029 
1030 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1031 {
1032 	if (req->cryptlen == 0)
1033 		return 0;
1034 
1035 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1036 }
1037 
1038 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1039 {
1040 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1041 }
1042 
1043 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1044 {
1045 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1046 }
1047 
1048 static inline int crypto_ccm_check_iv(const u8 *iv)
1049 {
1050 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1051 	if (iv[0] < 1 || iv[0] > 7)
1052 		return -EINVAL;
1053 
1054 	return 0;
1055 }
1056 
1057 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1058 {
1059 	int err;
1060 
1061 	err = crypto_ccm_check_iv(req->iv);
1062 	if (err)
1063 		return err;
1064 
1065 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1066 }
1067 
1068 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1069 {
1070 	int err;
1071 
1072 	err = crypto_ccm_check_iv(req->iv);
1073 	if (err)
1074 		return err;
1075 
1076 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1077 }
1078 
1079 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1080 {
1081 	if (req->cryptlen % DES_BLOCK_SIZE)
1082 		return -EINVAL;
1083 
1084 	if (req->cryptlen == 0)
1085 		return 0;
1086 
1087 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1088 }
1089 
1090 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1091 {
1092 	if (req->cryptlen % DES_BLOCK_SIZE)
1093 		return -EINVAL;
1094 
1095 	if (req->cryptlen == 0)
1096 		return 0;
1097 
1098 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1099 }
1100 
1101 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1102 {
1103 	if (req->cryptlen % DES_BLOCK_SIZE)
1104 		return -EINVAL;
1105 
1106 	if (req->cryptlen == 0)
1107 		return 0;
1108 
1109 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1110 }
1111 
1112 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1113 {
1114 	if (req->cryptlen % DES_BLOCK_SIZE)
1115 		return -EINVAL;
1116 
1117 	if (req->cryptlen == 0)
1118 		return 0;
1119 
1120 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1121 }
1122 
1123 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1124 {
1125 	if (req->cryptlen % DES_BLOCK_SIZE)
1126 		return -EINVAL;
1127 
1128 	if (req->cryptlen == 0)
1129 		return 0;
1130 
1131 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1132 }
1133 
1134 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1135 {
1136 	if (req->cryptlen % DES_BLOCK_SIZE)
1137 		return -EINVAL;
1138 
1139 	if (req->cryptlen == 0)
1140 		return 0;
1141 
1142 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1143 }
1144 
1145 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1146 {
1147 	if (req->cryptlen % DES_BLOCK_SIZE)
1148 		return -EINVAL;
1149 
1150 	if (req->cryptlen == 0)
1151 		return 0;
1152 
1153 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1154 }
1155 
1156 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1157 {
1158 	if (req->cryptlen % DES_BLOCK_SIZE)
1159 		return -EINVAL;
1160 
1161 	if (req->cryptlen == 0)
1162 		return 0;
1163 
1164 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1165 }
1166 
1167 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1168 				  struct aead_request *areq)
1169 {
1170 	struct stm32_cryp_ctx *ctx;
1171 	struct stm32_cryp *cryp;
1172 	struct stm32_cryp_reqctx *rctx;
1173 	struct scatterlist *in_sg;
1174 	int ret;
1175 
1176 	if (!req && !areq)
1177 		return -EINVAL;
1178 
1179 	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1180 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1181 
1182 	cryp = ctx->cryp;
1183 
1184 	if (!cryp)
1185 		return -ENODEV;
1186 
1187 	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1188 	rctx->mode &= FLG_MODE_MASK;
1189 
1190 	ctx->cryp = cryp;
1191 
1192 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1193 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1194 	cryp->ctx = ctx;
1195 
1196 	if (req) {
1197 		cryp->req = req;
1198 		cryp->areq = NULL;
1199 		cryp->header_in = 0;
1200 		cryp->payload_in = req->cryptlen;
1201 		cryp->payload_out = req->cryptlen;
1202 		cryp->authsize = 0;
1203 	} else {
1204 		/*
1205 		 * Length of input and output data:
1206 		 * Encryption case:
1207 		 *  INPUT  = AssocData   ||     PlainText
1208 		 *          <- assoclen ->  <- cryptlen ->
1209 		 *
1210 		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1211 		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1212 		 *
1213 		 * Decryption case:
1214 		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1215 		 *          <- assoclen --->  <---------- cryptlen ---------->
1216 		 *
1217 		 *  OUTPUT = AssocData    ||               PlainText
1218 		 *          <- assoclen ->  <- cryptlen - authsize ->
1219 		 */
1220 		cryp->areq = areq;
1221 		cryp->req = NULL;
1222 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1223 		if (is_encrypt(cryp)) {
1224 			cryp->payload_in = areq->cryptlen;
1225 			cryp->header_in = areq->assoclen;
1226 			cryp->payload_out = areq->cryptlen;
1227 		} else {
1228 			cryp->payload_in = areq->cryptlen - cryp->authsize;
1229 			cryp->header_in = areq->assoclen;
1230 			cryp->payload_out = cryp->payload_in;
1231 		}
1232 	}
1233 
1234 	in_sg = req ? req->src : areq->src;
1235 	scatterwalk_start(&cryp->in_walk, in_sg);
1236 
1237 	cryp->out_sg = req ? req->dst : areq->dst;
1238 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1239 
1240 	if (is_gcm(cryp) || is_ccm(cryp)) {
1241 		/* In output, jump after assoc data */
1242 		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1243 	}
1244 
1245 	if (is_ctr(cryp))
1246 		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1247 
1248 	ret = stm32_cryp_hw_init(cryp);
1249 	return ret;
1250 }
1251 
1252 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1253 					 void *areq)
1254 {
1255 	struct skcipher_request *req = container_of(areq,
1256 						      struct skcipher_request,
1257 						      base);
1258 
1259 	return stm32_cryp_prepare_req(req, NULL);
1260 }
1261 
1262 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1263 {
1264 	struct skcipher_request *req = container_of(areq,
1265 						      struct skcipher_request,
1266 						      base);
1267 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1268 			crypto_skcipher_reqtfm(req));
1269 	struct stm32_cryp *cryp = ctx->cryp;
1270 
1271 	if (!cryp)
1272 		return -ENODEV;
1273 
1274 	return stm32_cryp_cpu_start(cryp);
1275 }
1276 
1277 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1278 {
1279 	struct aead_request *req = container_of(areq, struct aead_request,
1280 						base);
1281 
1282 	return stm32_cryp_prepare_req(NULL, req);
1283 }
1284 
1285 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1286 {
1287 	struct aead_request *req = container_of(areq, struct aead_request,
1288 						base);
1289 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1290 	struct stm32_cryp *cryp = ctx->cryp;
1291 
1292 	if (!cryp)
1293 		return -ENODEV;
1294 
1295 	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1296 		/* No input data to process: get tag and finish */
1297 		stm32_cryp_finish_req(cryp, 0);
1298 		return 0;
1299 	}
1300 
1301 	return stm32_cryp_cpu_start(cryp);
1302 }
1303 
1304 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1305 {
1306 	u32 cfg, size_bit;
1307 	unsigned int i;
1308 	int ret = 0;
1309 
1310 	/* Update Config */
1311 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1312 
1313 	cfg &= ~CR_PH_MASK;
1314 	cfg |= CR_PH_FINAL;
1315 	cfg &= ~CR_DEC_NOT_ENC;
1316 	cfg |= CR_CRYPEN;
1317 
1318 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1319 
1320 	if (is_gcm(cryp)) {
1321 		/* GCM: write aad and payload size (in bits) */
1322 		size_bit = cryp->areq->assoclen * 8;
1323 		if (cryp->caps->swap_final)
1324 			size_bit = (__force u32)cpu_to_be32(size_bit);
1325 
1326 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1327 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1328 
1329 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1330 				cryp->areq->cryptlen - cryp->authsize;
1331 		size_bit *= 8;
1332 		if (cryp->caps->swap_final)
1333 			size_bit = (__force u32)cpu_to_be32(size_bit);
1334 
1335 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1336 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1337 	} else {
1338 		/* CCM: write CTR0 */
1339 		u32 iv32[AES_BLOCK_32];
1340 		u8 *iv = (u8 *)iv32;
1341 		__be32 *biv = (__be32 *)iv32;
1342 
1343 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1344 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1345 
1346 		for (i = 0; i < AES_BLOCK_32; i++) {
1347 			u32 xiv = iv32[i];
1348 
1349 			if (!cryp->caps->padding_wa)
1350 				xiv = be32_to_cpu(biv[i]);
1351 			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1352 		}
1353 	}
1354 
1355 	/* Wait for output data */
1356 	ret = stm32_cryp_wait_output(cryp);
1357 	if (ret) {
1358 		dev_err(cryp->dev, "Timeout (read tag)\n");
1359 		return ret;
1360 	}
1361 
1362 	if (is_encrypt(cryp)) {
1363 		u32 out_tag[AES_BLOCK_32];
1364 
1365 		/* Get and write tag */
1366 		for (i = 0; i < AES_BLOCK_32; i++)
1367 			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1368 
1369 		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1370 	} else {
1371 		/* Get and check tag */
1372 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1373 
1374 		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1375 
1376 		for (i = 0; i < AES_BLOCK_32; i++)
1377 			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1378 
1379 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1380 			ret = -EBADMSG;
1381 	}
1382 
1383 	/* Disable cryp */
1384 	cfg &= ~CR_CRYPEN;
1385 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1386 
1387 	return ret;
1388 }
1389 
1390 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1391 {
1392 	u32 cr;
1393 
1394 	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1395 		/*
1396 		 * In this case, we need to increment manually the ctr counter,
1397 		 * as HW doesn't handle the U32 carry.
1398 		 */
1399 		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1400 
1401 		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1402 		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1403 
1404 		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1405 
1406 		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1407 	}
1408 
1409 	/* The IV registers are BE  */
1410 	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1411 	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1412 	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1413 	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1414 }
1415 
1416 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1417 {
1418 	unsigned int i;
1419 	u32 block[AES_BLOCK_32];
1420 
1421 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1422 		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1423 
1424 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1425 							     cryp->payload_out), 1);
1426 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1427 				   cryp->payload_out);
1428 }
1429 
1430 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1431 {
1432 	unsigned int i;
1433 	u32 block[AES_BLOCK_32] = {0};
1434 
1435 	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1436 							    cryp->payload_in), 0);
1437 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1438 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1439 
1440 	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1441 }
1442 
1443 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1444 {
1445 	int err;
1446 	u32 cfg, block[AES_BLOCK_32] = {0};
1447 	unsigned int i;
1448 
1449 	/* 'Special workaround' procedure described in the datasheet */
1450 
1451 	/* a) disable ip */
1452 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1453 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1454 	cfg &= ~CR_CRYPEN;
1455 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1456 
1457 	/* b) Update IV1R */
1458 	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1459 
1460 	/* c) change mode to CTR */
1461 	cfg &= ~CR_ALGO_MASK;
1462 	cfg |= CR_AES_CTR;
1463 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1464 
1465 	/* a) enable IP */
1466 	cfg |= CR_CRYPEN;
1467 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1468 
1469 	/* b) pad and write the last block */
1470 	stm32_cryp_irq_write_block(cryp);
1471 	/* wait end of process */
1472 	err = stm32_cryp_wait_output(cryp);
1473 	if (err) {
1474 		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1475 		return stm32_cryp_finish_req(cryp, err);
1476 	}
1477 
1478 	/* c) get and store encrypted data */
1479 	/*
1480 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1481 	 * block value
1482 	 */
1483 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1484 		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1485 
1486 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1487 							     cryp->payload_out), 1);
1488 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1489 				   cryp->payload_out);
1490 
1491 	/* d) change mode back to AES GCM */
1492 	cfg &= ~CR_ALGO_MASK;
1493 	cfg |= CR_AES_GCM;
1494 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495 
1496 	/* e) change phase to Final */
1497 	cfg &= ~CR_PH_MASK;
1498 	cfg |= CR_PH_FINAL;
1499 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1500 
1501 	/* f) write padded data */
1502 	for (i = 0; i < AES_BLOCK_32; i++)
1503 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1504 
1505 	/* g) Empty fifo out */
1506 	err = stm32_cryp_wait_output(cryp);
1507 	if (err) {
1508 		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1509 		return stm32_cryp_finish_req(cryp, err);
1510 	}
1511 
1512 	for (i = 0; i < AES_BLOCK_32; i++)
1513 		stm32_cryp_read(cryp, cryp->caps->dout);
1514 
1515 	/* h) run the he normal Final phase */
1516 	stm32_cryp_finish_req(cryp, 0);
1517 }
1518 
1519 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1520 {
1521 	u32 cfg;
1522 
1523 	/* disable ip, set NPBLB and reneable ip */
1524 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1525 	cfg &= ~CR_CRYPEN;
1526 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1527 
1528 	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1529 	cfg |= CR_CRYPEN;
1530 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1531 }
1532 
1533 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1534 {
1535 	int err = 0;
1536 	u32 cfg, iv1tmp;
1537 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1538 	u32 block[AES_BLOCK_32] = {0};
1539 	unsigned int i;
1540 
1541 	/* 'Special workaround' procedure described in the datasheet */
1542 
1543 	/* a) disable ip */
1544 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1545 
1546 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1547 	cfg &= ~CR_CRYPEN;
1548 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1549 
1550 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1551 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1552 
1553 	/* c) Load CRYP_CSGCMCCMxR */
1554 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1555 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556 
1557 	/* d) Write IV1R */
1558 	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1559 
1560 	/* e) change mode to CTR */
1561 	cfg &= ~CR_ALGO_MASK;
1562 	cfg |= CR_AES_CTR;
1563 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1564 
1565 	/* a) enable IP */
1566 	cfg |= CR_CRYPEN;
1567 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1568 
1569 	/* b) pad and write the last block */
1570 	stm32_cryp_irq_write_block(cryp);
1571 	/* wait end of process */
1572 	err = stm32_cryp_wait_output(cryp);
1573 	if (err) {
1574 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1575 		return stm32_cryp_finish_req(cryp, err);
1576 	}
1577 
1578 	/* c) get and store decrypted data */
1579 	/*
1580 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1581 	 * block value
1582 	 */
1583 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1584 		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1585 
1586 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1587 							     cryp->payload_out), 1);
1588 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1589 
1590 	/* d) Load again CRYP_CSGCMCCMxR */
1591 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1592 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1593 
1594 	/* e) change mode back to AES CCM */
1595 	cfg &= ~CR_ALGO_MASK;
1596 	cfg |= CR_AES_CCM;
1597 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1598 
1599 	/* f) change phase to header */
1600 	cfg &= ~CR_PH_MASK;
1601 	cfg |= CR_PH_HEADER;
1602 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1603 
1604 	/* g) XOR and write padded data */
1605 	for (i = 0; i < ARRAY_SIZE(block); i++) {
1606 		block[i] ^= cstmp1[i];
1607 		block[i] ^= cstmp2[i];
1608 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1609 	}
1610 
1611 	/* h) wait for completion */
1612 	err = stm32_cryp_wait_busy(cryp);
1613 	if (err)
1614 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1615 
1616 	/* i) run the he normal Final phase */
1617 	stm32_cryp_finish_req(cryp, err);
1618 }
1619 
1620 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1621 {
1622 	if (unlikely(!cryp->payload_in)) {
1623 		dev_warn(cryp->dev, "No more data to process\n");
1624 		return;
1625 	}
1626 
1627 	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1628 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1629 		     is_encrypt(cryp))) {
1630 		/* Padding for AES GCM encryption */
1631 		if (cryp->caps->padding_wa) {
1632 			/* Special case 1 */
1633 			stm32_cryp_irq_write_gcm_padded_data(cryp);
1634 			return;
1635 		}
1636 
1637 		/* Setting padding bytes (NBBLB) */
1638 		stm32_cryp_irq_set_npblb(cryp);
1639 	}
1640 
1641 	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1642 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1643 		     is_decrypt(cryp))) {
1644 		/* Padding for AES CCM decryption */
1645 		if (cryp->caps->padding_wa) {
1646 			/* Special case 2 */
1647 			stm32_cryp_irq_write_ccm_padded_data(cryp);
1648 			return;
1649 		}
1650 
1651 		/* Setting padding bytes (NBBLB) */
1652 		stm32_cryp_irq_set_npblb(cryp);
1653 	}
1654 
1655 	if (is_aes(cryp) && is_ctr(cryp))
1656 		stm32_cryp_check_ctr_counter(cryp);
1657 
1658 	stm32_cryp_irq_write_block(cryp);
1659 }
1660 
1661 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1662 {
1663 	unsigned int i;
1664 	u32 block[AES_BLOCK_32] = {0};
1665 	size_t written;
1666 
1667 	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1668 
1669 	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1670 	for (i = 0; i < AES_BLOCK_32; i++)
1671 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1672 
1673 	cryp->header_in -= written;
1674 
1675 	stm32_crypt_gcmccm_end_header(cryp);
1676 }
1677 
1678 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679 {
1680 	struct stm32_cryp *cryp = arg;
1681 	u32 ph;
1682 	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1683 
1684 	if (cryp->irq_status & MISR_OUT)
1685 		/* Output FIFO IRQ: read data */
1686 		stm32_cryp_irq_read_data(cryp);
1687 
1688 	if (cryp->irq_status & MISR_IN) {
1689 		if (is_gcm(cryp) || is_ccm(cryp)) {
1690 			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1691 			if (unlikely(ph == CR_PH_HEADER))
1692 				/* Write Header */
1693 				stm32_cryp_irq_write_gcmccm_header(cryp);
1694 			else
1695 				/* Input FIFO IRQ: write data */
1696 				stm32_cryp_irq_write_data(cryp);
1697 			if (is_gcm(cryp))
1698 				cryp->gcm_ctr++;
1699 		} else {
1700 			/* Input FIFO IRQ: write data */
1701 			stm32_cryp_irq_write_data(cryp);
1702 		}
1703 	}
1704 
1705 	/* Mask useless interrupts */
1706 	if (!cryp->payload_in && !cryp->header_in)
1707 		it_mask &= ~IMSCR_IN;
1708 	if (!cryp->payload_out)
1709 		it_mask &= ~IMSCR_OUT;
1710 	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1711 
1712 	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1713 		stm32_cryp_finish_req(cryp, 0);
1714 
1715 	return IRQ_HANDLED;
1716 }
1717 
1718 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719 {
1720 	struct stm32_cryp *cryp = arg;
1721 
1722 	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1723 
1724 	return IRQ_WAKE_THREAD;
1725 }
1726 
1727 static struct skcipher_alg crypto_algs[] = {
1728 {
1729 	.base.cra_name		= "ecb(aes)",
1730 	.base.cra_driver_name	= "stm32-ecb-aes",
1731 	.base.cra_priority	= 200,
1732 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1733 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1734 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1735 	.base.cra_alignmask	= 0,
1736 	.base.cra_module	= THIS_MODULE,
1737 
1738 	.init			= stm32_cryp_init_tfm,
1739 	.min_keysize		= AES_MIN_KEY_SIZE,
1740 	.max_keysize		= AES_MAX_KEY_SIZE,
1741 	.setkey			= stm32_cryp_aes_setkey,
1742 	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1743 	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1744 },
1745 {
1746 	.base.cra_name		= "cbc(aes)",
1747 	.base.cra_driver_name	= "stm32-cbc-aes",
1748 	.base.cra_priority	= 200,
1749 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1750 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1751 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1752 	.base.cra_alignmask	= 0,
1753 	.base.cra_module	= THIS_MODULE,
1754 
1755 	.init			= stm32_cryp_init_tfm,
1756 	.min_keysize		= AES_MIN_KEY_SIZE,
1757 	.max_keysize		= AES_MAX_KEY_SIZE,
1758 	.ivsize			= AES_BLOCK_SIZE,
1759 	.setkey			= stm32_cryp_aes_setkey,
1760 	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1761 	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1762 },
1763 {
1764 	.base.cra_name		= "ctr(aes)",
1765 	.base.cra_driver_name	= "stm32-ctr-aes",
1766 	.base.cra_priority	= 200,
1767 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1768 	.base.cra_blocksize	= 1,
1769 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1770 	.base.cra_alignmask	= 0,
1771 	.base.cra_module	= THIS_MODULE,
1772 
1773 	.init			= stm32_cryp_init_tfm,
1774 	.min_keysize		= AES_MIN_KEY_SIZE,
1775 	.max_keysize		= AES_MAX_KEY_SIZE,
1776 	.ivsize			= AES_BLOCK_SIZE,
1777 	.setkey			= stm32_cryp_aes_setkey,
1778 	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1779 	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1780 },
1781 {
1782 	.base.cra_name		= "ecb(des)",
1783 	.base.cra_driver_name	= "stm32-ecb-des",
1784 	.base.cra_priority	= 200,
1785 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1786 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1787 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1788 	.base.cra_alignmask	= 0,
1789 	.base.cra_module	= THIS_MODULE,
1790 
1791 	.init			= stm32_cryp_init_tfm,
1792 	.min_keysize		= DES_BLOCK_SIZE,
1793 	.max_keysize		= DES_BLOCK_SIZE,
1794 	.setkey			= stm32_cryp_des_setkey,
1795 	.encrypt		= stm32_cryp_des_ecb_encrypt,
1796 	.decrypt		= stm32_cryp_des_ecb_decrypt,
1797 },
1798 {
1799 	.base.cra_name		= "cbc(des)",
1800 	.base.cra_driver_name	= "stm32-cbc-des",
1801 	.base.cra_priority	= 200,
1802 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1804 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805 	.base.cra_alignmask	= 0,
1806 	.base.cra_module	= THIS_MODULE,
1807 
1808 	.init			= stm32_cryp_init_tfm,
1809 	.min_keysize		= DES_BLOCK_SIZE,
1810 	.max_keysize		= DES_BLOCK_SIZE,
1811 	.ivsize			= DES_BLOCK_SIZE,
1812 	.setkey			= stm32_cryp_des_setkey,
1813 	.encrypt		= stm32_cryp_des_cbc_encrypt,
1814 	.decrypt		= stm32_cryp_des_cbc_decrypt,
1815 },
1816 {
1817 	.base.cra_name		= "ecb(des3_ede)",
1818 	.base.cra_driver_name	= "stm32-ecb-des3",
1819 	.base.cra_priority	= 200,
1820 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1821 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1822 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1823 	.base.cra_alignmask	= 0,
1824 	.base.cra_module	= THIS_MODULE,
1825 
1826 	.init			= stm32_cryp_init_tfm,
1827 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1828 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1829 	.setkey			= stm32_cryp_tdes_setkey,
1830 	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1831 	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1832 },
1833 {
1834 	.base.cra_name		= "cbc(des3_ede)",
1835 	.base.cra_driver_name	= "stm32-cbc-des3",
1836 	.base.cra_priority	= 200,
1837 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1838 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1839 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1840 	.base.cra_alignmask	= 0,
1841 	.base.cra_module	= THIS_MODULE,
1842 
1843 	.init			= stm32_cryp_init_tfm,
1844 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1845 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1846 	.ivsize			= DES_BLOCK_SIZE,
1847 	.setkey			= stm32_cryp_tdes_setkey,
1848 	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1849 	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1850 },
1851 };
1852 
1853 static struct aead_alg aead_algs[] = {
1854 {
1855 	.setkey		= stm32_cryp_aes_aead_setkey,
1856 	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1857 	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1858 	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1859 	.init		= stm32_cryp_aes_aead_init,
1860 	.ivsize		= 12,
1861 	.maxauthsize	= AES_BLOCK_SIZE,
1862 
1863 	.base = {
1864 		.cra_name		= "gcm(aes)",
1865 		.cra_driver_name	= "stm32-gcm-aes",
1866 		.cra_priority		= 200,
1867 		.cra_flags		= CRYPTO_ALG_ASYNC,
1868 		.cra_blocksize		= 1,
1869 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1870 		.cra_alignmask		= 0,
1871 		.cra_module		= THIS_MODULE,
1872 	},
1873 },
1874 {
1875 	.setkey		= stm32_cryp_aes_aead_setkey,
1876 	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1877 	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1878 	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1879 	.init		= stm32_cryp_aes_aead_init,
1880 	.ivsize		= AES_BLOCK_SIZE,
1881 	.maxauthsize	= AES_BLOCK_SIZE,
1882 
1883 	.base = {
1884 		.cra_name		= "ccm(aes)",
1885 		.cra_driver_name	= "stm32-ccm-aes",
1886 		.cra_priority		= 200,
1887 		.cra_flags		= CRYPTO_ALG_ASYNC,
1888 		.cra_blocksize		= 1,
1889 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1890 		.cra_alignmask		= 0,
1891 		.cra_module		= THIS_MODULE,
1892 	},
1893 },
1894 };
1895 
1896 static const struct stm32_cryp_caps ux500_data = {
1897 	.aeads_support = false,
1898 	.linear_aes_key = true,
1899 	.kp_mode = false,
1900 	.iv_protection = true,
1901 	.swap_final = true,
1902 	.padding_wa = true,
1903 	.cr = UX500_CRYP_CR,
1904 	.sr = UX500_CRYP_SR,
1905 	.din = UX500_CRYP_DIN,
1906 	.dout = UX500_CRYP_DOUT,
1907 	.imsc = UX500_CRYP_IMSC,
1908 	.mis = UX500_CRYP_MIS,
1909 	.k1l = UX500_CRYP_K1L,
1910 	.k1r = UX500_CRYP_K1R,
1911 	.k3r = UX500_CRYP_K3R,
1912 	.iv0l = UX500_CRYP_IV0L,
1913 	.iv0r = UX500_CRYP_IV0R,
1914 	.iv1l = UX500_CRYP_IV1L,
1915 	.iv1r = UX500_CRYP_IV1R,
1916 };
1917 
1918 static const struct stm32_cryp_caps f7_data = {
1919 	.aeads_support = true,
1920 	.linear_aes_key = false,
1921 	.kp_mode = true,
1922 	.iv_protection = false,
1923 	.swap_final = true,
1924 	.padding_wa = true,
1925 	.cr = CRYP_CR,
1926 	.sr = CRYP_SR,
1927 	.din = CRYP_DIN,
1928 	.dout = CRYP_DOUT,
1929 	.imsc = CRYP_IMSCR,
1930 	.mis = CRYP_MISR,
1931 	.k1l = CRYP_K1LR,
1932 	.k1r = CRYP_K1RR,
1933 	.k3r = CRYP_K3RR,
1934 	.iv0l = CRYP_IV0LR,
1935 	.iv0r = CRYP_IV0RR,
1936 	.iv1l = CRYP_IV1LR,
1937 	.iv1r = CRYP_IV1RR,
1938 };
1939 
1940 static const struct stm32_cryp_caps mp1_data = {
1941 	.aeads_support = true,
1942 	.linear_aes_key = false,
1943 	.kp_mode = true,
1944 	.iv_protection = false,
1945 	.swap_final = false,
1946 	.padding_wa = false,
1947 	.cr = CRYP_CR,
1948 	.sr = CRYP_SR,
1949 	.din = CRYP_DIN,
1950 	.dout = CRYP_DOUT,
1951 	.imsc = CRYP_IMSCR,
1952 	.mis = CRYP_MISR,
1953 	.k1l = CRYP_K1LR,
1954 	.k1r = CRYP_K1RR,
1955 	.k3r = CRYP_K3RR,
1956 	.iv0l = CRYP_IV0LR,
1957 	.iv0r = CRYP_IV0RR,
1958 	.iv1l = CRYP_IV1LR,
1959 	.iv1r = CRYP_IV1RR,
1960 };
1961 
1962 static const struct of_device_id stm32_dt_ids[] = {
1963 	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1964 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1965 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1966 	{},
1967 };
1968 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1969 
1970 static int stm32_cryp_probe(struct platform_device *pdev)
1971 {
1972 	struct device *dev = &pdev->dev;
1973 	struct stm32_cryp *cryp;
1974 	struct reset_control *rst;
1975 	int irq, ret;
1976 
1977 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1978 	if (!cryp)
1979 		return -ENOMEM;
1980 
1981 	cryp->caps = of_device_get_match_data(dev);
1982 	if (!cryp->caps)
1983 		return -ENODEV;
1984 
1985 	cryp->dev = dev;
1986 
1987 	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1988 	if (IS_ERR(cryp->regs))
1989 		return PTR_ERR(cryp->regs);
1990 
1991 	irq = platform_get_irq(pdev, 0);
1992 	if (irq < 0)
1993 		return irq;
1994 
1995 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1996 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1997 					dev_name(dev), cryp);
1998 	if (ret) {
1999 		dev_err(dev, "Cannot grab IRQ\n");
2000 		return ret;
2001 	}
2002 
2003 	cryp->clk = devm_clk_get(dev, NULL);
2004 	if (IS_ERR(cryp->clk)) {
2005 		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2006 
2007 		return PTR_ERR(cryp->clk);
2008 	}
2009 
2010 	ret = clk_prepare_enable(cryp->clk);
2011 	if (ret) {
2012 		dev_err(cryp->dev, "Failed to enable clock\n");
2013 		return ret;
2014 	}
2015 
2016 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2017 	pm_runtime_use_autosuspend(dev);
2018 
2019 	pm_runtime_get_noresume(dev);
2020 	pm_runtime_set_active(dev);
2021 	pm_runtime_enable(dev);
2022 
2023 	rst = devm_reset_control_get(dev, NULL);
2024 	if (IS_ERR(rst)) {
2025 		ret = PTR_ERR(rst);
2026 		if (ret == -EPROBE_DEFER)
2027 			goto err_rst;
2028 	} else {
2029 		reset_control_assert(rst);
2030 		udelay(2);
2031 		reset_control_deassert(rst);
2032 	}
2033 
2034 	platform_set_drvdata(pdev, cryp);
2035 
2036 	spin_lock(&cryp_list.lock);
2037 	list_add(&cryp->list, &cryp_list.dev_list);
2038 	spin_unlock(&cryp_list.lock);
2039 
2040 	/* Initialize crypto engine */
2041 	cryp->engine = crypto_engine_alloc_init(dev, 1);
2042 	if (!cryp->engine) {
2043 		dev_err(dev, "Could not init crypto engine\n");
2044 		ret = -ENOMEM;
2045 		goto err_engine1;
2046 	}
2047 
2048 	ret = crypto_engine_start(cryp->engine);
2049 	if (ret) {
2050 		dev_err(dev, "Could not start crypto engine\n");
2051 		goto err_engine2;
2052 	}
2053 
2054 	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2055 	if (ret) {
2056 		dev_err(dev, "Could not register algs\n");
2057 		goto err_algs;
2058 	}
2059 
2060 	if (cryp->caps->aeads_support) {
2061 		ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062 		if (ret)
2063 			goto err_aead_algs;
2064 	}
2065 
2066 	dev_info(dev, "Initialized\n");
2067 
2068 	pm_runtime_put_sync(dev);
2069 
2070 	return 0;
2071 
2072 err_aead_algs:
2073 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2074 err_algs:
2075 err_engine2:
2076 	crypto_engine_exit(cryp->engine);
2077 err_engine1:
2078 	spin_lock(&cryp_list.lock);
2079 	list_del(&cryp->list);
2080 	spin_unlock(&cryp_list.lock);
2081 err_rst:
2082 	pm_runtime_disable(dev);
2083 	pm_runtime_put_noidle(dev);
2084 
2085 	clk_disable_unprepare(cryp->clk);
2086 
2087 	return ret;
2088 }
2089 
2090 static int stm32_cryp_remove(struct platform_device *pdev)
2091 {
2092 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2093 	int ret;
2094 
2095 	if (!cryp)
2096 		return -ENODEV;
2097 
2098 	ret = pm_runtime_resume_and_get(cryp->dev);
2099 	if (ret < 0)
2100 		return ret;
2101 
2102 	if (cryp->caps->aeads_support)
2103 		crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2104 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2105 
2106 	crypto_engine_exit(cryp->engine);
2107 
2108 	spin_lock(&cryp_list.lock);
2109 	list_del(&cryp->list);
2110 	spin_unlock(&cryp_list.lock);
2111 
2112 	pm_runtime_disable(cryp->dev);
2113 	pm_runtime_put_noidle(cryp->dev);
2114 
2115 	clk_disable_unprepare(cryp->clk);
2116 
2117 	return 0;
2118 }
2119 
2120 #ifdef CONFIG_PM
2121 static int stm32_cryp_runtime_suspend(struct device *dev)
2122 {
2123 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124 
2125 	clk_disable_unprepare(cryp->clk);
2126 
2127 	return 0;
2128 }
2129 
2130 static int stm32_cryp_runtime_resume(struct device *dev)
2131 {
2132 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2133 	int ret;
2134 
2135 	ret = clk_prepare_enable(cryp->clk);
2136 	if (ret) {
2137 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2138 		return ret;
2139 	}
2140 
2141 	return 0;
2142 }
2143 #endif
2144 
2145 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2146 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2147 				pm_runtime_force_resume)
2148 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2149 			   stm32_cryp_runtime_resume, NULL)
2150 };
2151 
2152 static struct platform_driver stm32_cryp_driver = {
2153 	.probe  = stm32_cryp_probe,
2154 	.remove = stm32_cryp_remove,
2155 	.driver = {
2156 		.name           = DRIVER_NAME,
2157 		.pm		= &stm32_cryp_pm_ops,
2158 		.of_match_table = stm32_dt_ids,
2159 	},
2160 };
2161 
2162 module_platform_driver(stm32_cryp_driver);
2163 
2164 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2165 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2166 MODULE_LICENSE("GPL");
2167