1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17 
18 #include <crypto/aes.h>
19 #include <crypto/internal/des.h>
20 #include <crypto/engine.h>
21 #include <crypto/scatterwalk.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/skcipher.h>
24 
25 #define DRIVER_NAME             "stm32-cryp"
26 
27 /* Bit [0] encrypt / decrypt */
28 #define FLG_ENCRYPT             BIT(0)
29 /* Bit [8..1] algo & operation mode */
30 #define FLG_AES                 BIT(1)
31 #define FLG_DES                 BIT(2)
32 #define FLG_TDES                BIT(3)
33 #define FLG_ECB                 BIT(4)
34 #define FLG_CBC                 BIT(5)
35 #define FLG_CTR                 BIT(6)
36 #define FLG_GCM                 BIT(7)
37 #define FLG_CCM                 BIT(8)
38 /* Mode mask = bits [15..0] */
39 #define FLG_MODE_MASK           GENMASK(15, 0)
40 /* Bit [31..16] status  */
41 
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65 
66 #define UX500_CRYP_CR		0x00000000
67 #define UX500_CRYP_SR		0x00000004
68 #define UX500_CRYP_DIN		0x00000008
69 #define UX500_CRYP_DINSIZE	0x0000000C
70 #define UX500_CRYP_DOUT		0x00000010
71 #define UX500_CRYP_DOUSIZE	0x00000014
72 #define UX500_CRYP_DMACR	0x00000018
73 #define UX500_CRYP_IMSC		0x0000001C
74 #define UX500_CRYP_RIS		0x00000020
75 #define UX500_CRYP_MIS		0x00000024
76 #define UX500_CRYP_K1L		0x00000028
77 #define UX500_CRYP_K1R		0x0000002C
78 #define UX500_CRYP_K2L		0x00000030
79 #define UX500_CRYP_K2R		0x00000034
80 #define UX500_CRYP_K3L		0x00000038
81 #define UX500_CRYP_K3R		0x0000003C
82 #define UX500_CRYP_K4L		0x00000040
83 #define UX500_CRYP_K4R		0x00000044
84 #define UX500_CRYP_IV0L		0x00000048
85 #define UX500_CRYP_IV0R		0x0000004C
86 #define UX500_CRYP_IV1L		0x00000050
87 #define UX500_CRYP_IV1R		0x00000054
88 
89 /* Registers values */
90 #define CR_DEC_NOT_ENC          0x00000004
91 #define CR_TDES_ECB             0x00000000
92 #define CR_TDES_CBC             0x00000008
93 #define CR_DES_ECB              0x00000010
94 #define CR_DES_CBC              0x00000018
95 #define CR_AES_ECB              0x00000020
96 #define CR_AES_CBC              0x00000028
97 #define CR_AES_CTR              0x00000030
98 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
99 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
100 #define CR_AES_GCM              0x00080000
101 #define CR_AES_CCM              0x00080008
102 #define CR_AES_UNKNOWN          0xFFFFFFFF
103 #define CR_ALGO_MASK            0x00080038
104 #define CR_DATA32               0x00000000
105 #define CR_DATA16               0x00000040
106 #define CR_DATA8                0x00000080
107 #define CR_DATA1                0x000000C0
108 #define CR_KEY128               0x00000000
109 #define CR_KEY192               0x00000100
110 #define CR_KEY256               0x00000200
111 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
112 #define CR_KSE                  0x00000800 /* Only on Ux500 */
113 #define CR_FFLUSH               0x00004000
114 #define CR_CRYPEN               0x00008000
115 #define CR_PH_INIT              0x00000000
116 #define CR_PH_HEADER            0x00010000
117 #define CR_PH_PAYLOAD           0x00020000
118 #define CR_PH_FINAL             0x00030000
119 #define CR_PH_MASK              0x00030000
120 #define CR_NBPBL_SHIFT          20
121 
122 #define SR_BUSY                 0x00000010
123 #define SR_OFNE                 0x00000004
124 
125 #define IMSCR_IN                BIT(0)
126 #define IMSCR_OUT               BIT(1)
127 
128 #define MISR_IN                 BIT(0)
129 #define MISR_OUT                BIT(1)
130 
131 /* Misc */
132 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
133 #define GCM_CTR_INIT            2
134 #define CRYP_AUTOSUSPEND_DELAY	50
135 
136 struct stm32_cryp_caps {
137 	bool			aeads_support;
138 	bool			linear_aes_key;
139 	bool			kp_mode;
140 	bool			iv_protection;
141 	bool			swap_final;
142 	bool			padding_wa;
143 	u32			cr;
144 	u32			sr;
145 	u32			din;
146 	u32			dout;
147 	u32			imsc;
148 	u32			mis;
149 	u32			k1l;
150 	u32			k1r;
151 	u32			k3r;
152 	u32			iv0l;
153 	u32			iv0r;
154 	u32			iv1l;
155 	u32			iv1r;
156 };
157 
158 struct stm32_cryp_ctx {
159 	struct crypto_engine_ctx enginectx;
160 	struct stm32_cryp       *cryp;
161 	int                     keylen;
162 	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
163 	unsigned long           flags;
164 };
165 
166 struct stm32_cryp_reqctx {
167 	unsigned long mode;
168 };
169 
170 struct stm32_cryp {
171 	struct list_head        list;
172 	struct device           *dev;
173 	void __iomem            *regs;
174 	struct clk              *clk;
175 	unsigned long           flags;
176 	u32                     irq_status;
177 	const struct stm32_cryp_caps *caps;
178 	struct stm32_cryp_ctx   *ctx;
179 
180 	struct crypto_engine    *engine;
181 
182 	struct skcipher_request *req;
183 	struct aead_request     *areq;
184 
185 	size_t                  authsize;
186 	size_t                  hw_blocksize;
187 
188 	size_t                  payload_in;
189 	size_t                  header_in;
190 	size_t                  payload_out;
191 
192 	struct scatterlist      *out_sg;
193 
194 	struct scatter_walk     in_walk;
195 	struct scatter_walk     out_walk;
196 
197 	__be32                  last_ctr[4];
198 	u32                     gcm_ctr;
199 };
200 
201 struct stm32_cryp_list {
202 	struct list_head        dev_list;
203 	spinlock_t              lock; /* protect dev_list */
204 };
205 
206 static struct stm32_cryp_list cryp_list = {
207 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209 };
210 
211 static inline bool is_aes(struct stm32_cryp *cryp)
212 {
213 	return cryp->flags & FLG_AES;
214 }
215 
216 static inline bool is_des(struct stm32_cryp *cryp)
217 {
218 	return cryp->flags & FLG_DES;
219 }
220 
221 static inline bool is_tdes(struct stm32_cryp *cryp)
222 {
223 	return cryp->flags & FLG_TDES;
224 }
225 
226 static inline bool is_ecb(struct stm32_cryp *cryp)
227 {
228 	return cryp->flags & FLG_ECB;
229 }
230 
231 static inline bool is_cbc(struct stm32_cryp *cryp)
232 {
233 	return cryp->flags & FLG_CBC;
234 }
235 
236 static inline bool is_ctr(struct stm32_cryp *cryp)
237 {
238 	return cryp->flags & FLG_CTR;
239 }
240 
241 static inline bool is_gcm(struct stm32_cryp *cryp)
242 {
243 	return cryp->flags & FLG_GCM;
244 }
245 
246 static inline bool is_ccm(struct stm32_cryp *cryp)
247 {
248 	return cryp->flags & FLG_CCM;
249 }
250 
251 static inline bool is_encrypt(struct stm32_cryp *cryp)
252 {
253 	return cryp->flags & FLG_ENCRYPT;
254 }
255 
256 static inline bool is_decrypt(struct stm32_cryp *cryp)
257 {
258 	return !is_encrypt(cryp);
259 }
260 
261 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262 {
263 	return readl_relaxed(cryp->regs + ofst);
264 }
265 
266 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267 {
268 	writel_relaxed(val, cryp->regs + ofst);
269 }
270 
271 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272 {
273 	u32 status;
274 
275 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276 			!(status & SR_BUSY), 10, 100000);
277 }
278 
279 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280 {
281 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282 		       cryp->regs + cryp->caps->cr);
283 }
284 
285 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286 {
287 	u32 status;
288 
289 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290 			!(status & CR_CRYPEN), 10, 100000);
291 }
292 
293 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294 {
295 	u32 status;
296 
297 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298 			status & SR_OFNE, 10, 100000);
299 }
300 
301 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302 {
303 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304 		       cryp->regs + cryp->caps->cr);
305 }
306 
307 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308 {
309 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310 		       cryp->regs + cryp->caps->cr);
311 }
312 
313 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315 
316 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317 {
318 	struct stm32_cryp *tmp, *cryp = NULL;
319 
320 	spin_lock_bh(&cryp_list.lock);
321 	if (!ctx->cryp) {
322 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323 			cryp = tmp;
324 			break;
325 		}
326 		ctx->cryp = cryp;
327 	} else {
328 		cryp = ctx->cryp;
329 	}
330 
331 	spin_unlock_bh(&cryp_list.lock);
332 
333 	return cryp;
334 }
335 
336 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337 {
338 	if (!iv)
339 		return;
340 
341 	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342 	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343 
344 	if (is_aes(cryp)) {
345 		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346 		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347 	}
348 }
349 
350 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351 {
352 	struct skcipher_request *req = cryp->req;
353 	__be32 *tmp = (void *)req->iv;
354 
355 	if (!tmp)
356 		return;
357 
358 	if (cryp->caps->iv_protection)
359 		stm32_cryp_key_read_enable(cryp);
360 
361 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363 
364 	if (is_aes(cryp)) {
365 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367 	}
368 
369 	if (cryp->caps->iv_protection)
370 		stm32_cryp_key_read_disable(cryp);
371 }
372 
373 /**
374  * ux500_swap_bits_in_byte() - mirror the bits in a byte
375  * @b: the byte to be mirrored
376  *
377  * The bits are swapped the following way:
378  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379  *  nibble 2 (n2) bits 4-7.
380  *
381  *  Nibble 1 (n1):
382  *  (The "old" (moved) bit is replaced with a zero)
383  *  1. Move bit 6 and 7, 4 positions to the left.
384  *  2. Move bit 3 and 5, 2 positions to the left.
385  *  3. Move bit 1-4, 1 position to the left.
386  *
387  *  Nibble 2 (n2):
388  *  1. Move bit 0 and 1, 4 positions to the right.
389  *  2. Move bit 2 and 4, 2 positions to the right.
390  *  3. Move bit 3-6, 1 position to the right.
391  *
392  *  Combine the two nibbles to a complete and swapped byte.
393  */
394 static inline u8 ux500_swap_bits_in_byte(u8 b)
395 {
396 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
397 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
398 				  right shift 2 */
399 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
400 				  right shift 1 */
401 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
402 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
403 				  left shift 2 */
404 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
405 				  left shift 1 */
406 
407 	u8 n1;
408 	u8 n2;
409 
410 	/* Swap most significant nibble */
411 	/* Right shift 4, bits 6 and 7 */
412 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
413 	/* Right shift 2, bits 3 and 5 */
414 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415 	/* Right shift 1, bits 1-4 */
416 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
417 
418 	/* Swap least significant nibble */
419 	/* Left shift 4, bits 0 and 1 */
420 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
421 	/* Left shift 2, bits 2 and 4 */
422 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423 	/* Left shift 1, bits 3-6 */
424 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
425 
426 	return n1 | n2;
427 }
428 
429 /**
430  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431  * @in: key to swizzle
432  * @out: swizzled key
433  * @len: length of key, in bytes
434  *
435  * This "key swizzling procedure" is described in the examples in the
436  * DB8500 design specification. There is no real description of why
437  * the bits have been arranged like this in the hardware.
438  */
439 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440 {
441 	int i = 0;
442 	int bpw = sizeof(u32);
443 	int j;
444 	int index = 0;
445 
446 	j = len - bpw;
447 	while (j >= 0) {
448 		for (i = 0; i < bpw; i++) {
449 			index = len - j - bpw + i;
450 			out[j + i] =
451 				ux500_swap_bits_in_byte(in[index]);
452 		}
453 		j -= bpw;
454 	}
455 }
456 
457 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458 {
459 	unsigned int i;
460 	int r_id;
461 
462 	if (is_des(c)) {
463 		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464 		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465 		return;
466 	}
467 
468 	/*
469 	 * On the Ux500 the AES key is considered as a single bit sequence
470 	 * of 128, 192 or 256 bits length. It is written linearly into the
471 	 * registers from K1L and down, and need to be processed to become
472 	 * a proper big-endian bit sequence.
473 	 */
474 	if (is_aes(c) && c->caps->linear_aes_key) {
475 		u32 tmpkey[8];
476 
477 		ux500_swizzle_key((u8 *)c->ctx->key,
478 				  (u8 *)tmpkey, c->ctx->keylen);
479 
480 		r_id = c->caps->k1l;
481 		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482 			stm32_cryp_write(c, r_id, tmpkey[i]);
483 
484 		return;
485 	}
486 
487 	r_id = c->caps->k3r;
488 	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489 		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490 }
491 
492 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493 {
494 	if (is_aes(cryp) && is_ecb(cryp))
495 		return CR_AES_ECB;
496 
497 	if (is_aes(cryp) && is_cbc(cryp))
498 		return CR_AES_CBC;
499 
500 	if (is_aes(cryp) && is_ctr(cryp))
501 		return CR_AES_CTR;
502 
503 	if (is_aes(cryp) && is_gcm(cryp))
504 		return CR_AES_GCM;
505 
506 	if (is_aes(cryp) && is_ccm(cryp))
507 		return CR_AES_CCM;
508 
509 	if (is_des(cryp) && is_ecb(cryp))
510 		return CR_DES_ECB;
511 
512 	if (is_des(cryp) && is_cbc(cryp))
513 		return CR_DES_CBC;
514 
515 	if (is_tdes(cryp) && is_ecb(cryp))
516 		return CR_TDES_ECB;
517 
518 	if (is_tdes(cryp) && is_cbc(cryp))
519 		return CR_TDES_CBC;
520 
521 	dev_err(cryp->dev, "Unknown mode\n");
522 	return CR_AES_UNKNOWN;
523 }
524 
525 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526 {
527 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
528 				  cryp->areq->cryptlen - cryp->authsize;
529 }
530 
531 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532 {
533 	int ret;
534 	__be32 iv[4];
535 
536 	/* Phase 1 : init */
537 	memcpy(iv, cryp->areq->iv, 12);
538 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
539 	cryp->gcm_ctr = GCM_CTR_INIT;
540 	stm32_cryp_hw_write_iv(cryp, iv);
541 
542 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543 
544 	/* Wait for end of processing */
545 	ret = stm32_cryp_wait_enable(cryp);
546 	if (ret) {
547 		dev_err(cryp->dev, "Timeout (gcm init)\n");
548 		return ret;
549 	}
550 
551 	/* Prepare next phase */
552 	if (cryp->areq->assoclen) {
553 		cfg |= CR_PH_HEADER;
554 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555 	} else if (stm32_cryp_get_input_text_len(cryp)) {
556 		cfg |= CR_PH_PAYLOAD;
557 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558 	}
559 
560 	return 0;
561 }
562 
563 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564 {
565 	u32 cfg;
566 	int err;
567 
568 	/* Check if whole header written */
569 	if (!cryp->header_in) {
570 		/* Wait for completion */
571 		err = stm32_cryp_wait_busy(cryp);
572 		if (err) {
573 			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574 			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575 			stm32_cryp_finish_req(cryp, err);
576 			return;
577 		}
578 
579 		if (stm32_cryp_get_input_text_len(cryp)) {
580 			/* Phase 3 : payload */
581 			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582 			cfg &= ~CR_CRYPEN;
583 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584 
585 			cfg &= ~CR_PH_MASK;
586 			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588 		} else {
589 			/*
590 			 * Phase 4 : tag.
591 			 * Nothing to read, nothing to write, caller have to
592 			 * end request
593 			 */
594 		}
595 	}
596 }
597 
598 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599 {
600 	size_t written;
601 	size_t len;
602 	u32 alen = cryp->areq->assoclen;
603 	u32 block[AES_BLOCK_32] = {0};
604 	u8 *b8 = (u8 *)block;
605 
606 	if (alen <= 65280) {
607 		/* Write first u32 of B1 */
608 		b8[0] = (alen >> 8) & 0xFF;
609 		b8[1] = alen & 0xFF;
610 		len = 2;
611 	} else {
612 		/* Build the two first u32 of B1 */
613 		b8[0] = 0xFF;
614 		b8[1] = 0xFE;
615 		b8[2] = (alen & 0xFF000000) >> 24;
616 		b8[3] = (alen & 0x00FF0000) >> 16;
617 		b8[4] = (alen & 0x0000FF00) >> 8;
618 		b8[5] = alen & 0x000000FF;
619 		len = 6;
620 	}
621 
622 	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
623 
624 	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
625 
626 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
627 
628 	cryp->header_in -= written;
629 
630 	stm32_crypt_gcmccm_end_header(cryp);
631 }
632 
633 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
634 {
635 	int ret;
636 	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
637 	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
638 	__be32 *bd;
639 	u32 *d;
640 	unsigned int i, textlen;
641 
642 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
643 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
644 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
645 	iv[AES_BLOCK_SIZE - 1] = 1;
646 	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
647 
648 	/* Build B0 */
649 	memcpy(b0, iv, AES_BLOCK_SIZE);
650 
651 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
652 
653 	if (cryp->areq->assoclen)
654 		b0[0] |= 0x40;
655 
656 	textlen = stm32_cryp_get_input_text_len(cryp);
657 
658 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
659 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
660 
661 	/* Enable HW */
662 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
663 
664 	/* Write B0 */
665 	d = (u32 *)b0;
666 	bd = (__be32 *)b0;
667 
668 	for (i = 0; i < AES_BLOCK_32; i++) {
669 		u32 xd = d[i];
670 
671 		if (!cryp->caps->padding_wa)
672 			xd = be32_to_cpu(bd[i]);
673 		stm32_cryp_write(cryp, cryp->caps->din, xd);
674 	}
675 
676 	/* Wait for end of processing */
677 	ret = stm32_cryp_wait_enable(cryp);
678 	if (ret) {
679 		dev_err(cryp->dev, "Timeout (ccm init)\n");
680 		return ret;
681 	}
682 
683 	/* Prepare next phase */
684 	if (cryp->areq->assoclen) {
685 		cfg |= CR_PH_HEADER | CR_CRYPEN;
686 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
687 
688 		/* Write first (special) block (may move to next phase [payload]) */
689 		stm32_cryp_write_ccm_first_header(cryp);
690 	} else if (stm32_cryp_get_input_text_len(cryp)) {
691 		cfg |= CR_PH_PAYLOAD;
692 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
693 	}
694 
695 	return 0;
696 }
697 
698 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
699 {
700 	int ret;
701 	u32 cfg, hw_mode;
702 
703 	pm_runtime_get_sync(cryp->dev);
704 
705 	/* Disable interrupt */
706 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
707 
708 	/* Set configuration */
709 	cfg = CR_DATA8 | CR_FFLUSH;
710 
711 	switch (cryp->ctx->keylen) {
712 	case AES_KEYSIZE_128:
713 		cfg |= CR_KEY128;
714 		break;
715 
716 	case AES_KEYSIZE_192:
717 		cfg |= CR_KEY192;
718 		break;
719 
720 	default:
721 	case AES_KEYSIZE_256:
722 		cfg |= CR_KEY256;
723 		break;
724 	}
725 
726 	hw_mode = stm32_cryp_get_hw_mode(cryp);
727 	if (hw_mode == CR_AES_UNKNOWN)
728 		return -EINVAL;
729 
730 	/* AES ECB/CBC decrypt: run key preparation first */
731 	if (is_decrypt(cryp) &&
732 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
733 		/* Configure in key preparation mode */
734 		if (cryp->caps->kp_mode)
735 			stm32_cryp_write(cryp, cryp->caps->cr,
736 				cfg | CR_AES_KP);
737 		else
738 			stm32_cryp_write(cryp,
739 				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
740 
741 		/* Set key only after full configuration done */
742 		stm32_cryp_hw_write_key(cryp);
743 
744 		/* Start prepare key */
745 		stm32_cryp_enable(cryp);
746 		/* Wait for end of processing */
747 		ret = stm32_cryp_wait_busy(cryp);
748 		if (ret) {
749 			dev_err(cryp->dev, "Timeout (key preparation)\n");
750 			return ret;
751 		}
752 
753 		cfg |= hw_mode | CR_DEC_NOT_ENC;
754 
755 		/* Apply updated config (Decrypt + algo) and flush */
756 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
757 	} else {
758 		cfg |= hw_mode;
759 		if (is_decrypt(cryp))
760 			cfg |= CR_DEC_NOT_ENC;
761 
762 		/* Apply config and flush */
763 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
764 
765 		/* Set key only after configuration done */
766 		stm32_cryp_hw_write_key(cryp);
767 	}
768 
769 	switch (hw_mode) {
770 	case CR_AES_GCM:
771 	case CR_AES_CCM:
772 		/* Phase 1 : init */
773 		if (hw_mode == CR_AES_CCM)
774 			ret = stm32_cryp_ccm_init(cryp, cfg);
775 		else
776 			ret = stm32_cryp_gcm_init(cryp, cfg);
777 
778 		if (ret)
779 			return ret;
780 
781 		break;
782 
783 	case CR_DES_CBC:
784 	case CR_TDES_CBC:
785 	case CR_AES_CBC:
786 	case CR_AES_CTR:
787 		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
788 		break;
789 
790 	default:
791 		break;
792 	}
793 
794 	/* Enable now */
795 	stm32_cryp_enable(cryp);
796 
797 	return 0;
798 }
799 
800 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
801 {
802 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
803 		/* Phase 4 : output tag */
804 		err = stm32_cryp_read_auth_tag(cryp);
805 
806 	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
807 		stm32_cryp_get_iv(cryp);
808 
809 	pm_runtime_mark_last_busy(cryp->dev);
810 	pm_runtime_put_autosuspend(cryp->dev);
811 
812 	if (is_gcm(cryp) || is_ccm(cryp))
813 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
814 	else
815 		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
816 						   err);
817 }
818 
819 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
820 {
821 	/* Enable interrupt and let the IRQ handler do everything */
822 	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
823 
824 	return 0;
825 }
826 
827 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
828 
829 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
830 {
831 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
832 
833 	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
834 
835 	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
836 	return 0;
837 }
838 
839 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
840 
841 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
842 {
843 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
844 
845 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
846 
847 	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
848 
849 	return 0;
850 }
851 
852 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
853 {
854 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
855 			crypto_skcipher_reqtfm(req));
856 	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
857 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
858 
859 	if (!cryp)
860 		return -ENODEV;
861 
862 	rctx->mode = mode;
863 
864 	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
865 }
866 
867 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
868 {
869 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
870 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
871 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
872 
873 	if (!cryp)
874 		return -ENODEV;
875 
876 	rctx->mode = mode;
877 
878 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
879 }
880 
881 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
882 			     unsigned int keylen)
883 {
884 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
885 
886 	memcpy(ctx->key, key, keylen);
887 	ctx->keylen = keylen;
888 
889 	return 0;
890 }
891 
892 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
893 				 unsigned int keylen)
894 {
895 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
896 	    keylen != AES_KEYSIZE_256)
897 		return -EINVAL;
898 	else
899 		return stm32_cryp_setkey(tfm, key, keylen);
900 }
901 
902 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
903 				 unsigned int keylen)
904 {
905 	return verify_skcipher_des_key(tfm, key) ?:
906 	       stm32_cryp_setkey(tfm, key, keylen);
907 }
908 
909 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
910 				  unsigned int keylen)
911 {
912 	return verify_skcipher_des3_key(tfm, key) ?:
913 	       stm32_cryp_setkey(tfm, key, keylen);
914 }
915 
916 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
917 				      unsigned int keylen)
918 {
919 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
920 
921 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
922 	    keylen != AES_KEYSIZE_256)
923 		return -EINVAL;
924 
925 	memcpy(ctx->key, key, keylen);
926 	ctx->keylen = keylen;
927 
928 	return 0;
929 }
930 
931 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
932 					  unsigned int authsize)
933 {
934 	switch (authsize) {
935 	case 4:
936 	case 8:
937 	case 12:
938 	case 13:
939 	case 14:
940 	case 15:
941 	case 16:
942 		break;
943 	default:
944 		return -EINVAL;
945 	}
946 
947 	return 0;
948 }
949 
950 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
951 					  unsigned int authsize)
952 {
953 	switch (authsize) {
954 	case 4:
955 	case 6:
956 	case 8:
957 	case 10:
958 	case 12:
959 	case 14:
960 	case 16:
961 		break;
962 	default:
963 		return -EINVAL;
964 	}
965 
966 	return 0;
967 }
968 
969 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
970 {
971 	if (req->cryptlen % AES_BLOCK_SIZE)
972 		return -EINVAL;
973 
974 	if (req->cryptlen == 0)
975 		return 0;
976 
977 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
978 }
979 
980 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
981 {
982 	if (req->cryptlen % AES_BLOCK_SIZE)
983 		return -EINVAL;
984 
985 	if (req->cryptlen == 0)
986 		return 0;
987 
988 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
989 }
990 
991 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
992 {
993 	if (req->cryptlen % AES_BLOCK_SIZE)
994 		return -EINVAL;
995 
996 	if (req->cryptlen == 0)
997 		return 0;
998 
999 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1000 }
1001 
1002 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1003 {
1004 	if (req->cryptlen % AES_BLOCK_SIZE)
1005 		return -EINVAL;
1006 
1007 	if (req->cryptlen == 0)
1008 		return 0;
1009 
1010 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1011 }
1012 
1013 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1014 {
1015 	if (req->cryptlen == 0)
1016 		return 0;
1017 
1018 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1019 }
1020 
1021 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1022 {
1023 	if (req->cryptlen == 0)
1024 		return 0;
1025 
1026 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1027 }
1028 
1029 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1030 {
1031 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1032 }
1033 
1034 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1035 {
1036 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1037 }
1038 
1039 static inline int crypto_ccm_check_iv(const u8 *iv)
1040 {
1041 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1042 	if (iv[0] < 1 || iv[0] > 7)
1043 		return -EINVAL;
1044 
1045 	return 0;
1046 }
1047 
1048 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1049 {
1050 	int err;
1051 
1052 	err = crypto_ccm_check_iv(req->iv);
1053 	if (err)
1054 		return err;
1055 
1056 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1057 }
1058 
1059 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1060 {
1061 	int err;
1062 
1063 	err = crypto_ccm_check_iv(req->iv);
1064 	if (err)
1065 		return err;
1066 
1067 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1068 }
1069 
1070 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1071 {
1072 	if (req->cryptlen % DES_BLOCK_SIZE)
1073 		return -EINVAL;
1074 
1075 	if (req->cryptlen == 0)
1076 		return 0;
1077 
1078 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1079 }
1080 
1081 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1082 {
1083 	if (req->cryptlen % DES_BLOCK_SIZE)
1084 		return -EINVAL;
1085 
1086 	if (req->cryptlen == 0)
1087 		return 0;
1088 
1089 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1090 }
1091 
1092 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1093 {
1094 	if (req->cryptlen % DES_BLOCK_SIZE)
1095 		return -EINVAL;
1096 
1097 	if (req->cryptlen == 0)
1098 		return 0;
1099 
1100 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1101 }
1102 
1103 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1104 {
1105 	if (req->cryptlen % DES_BLOCK_SIZE)
1106 		return -EINVAL;
1107 
1108 	if (req->cryptlen == 0)
1109 		return 0;
1110 
1111 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1112 }
1113 
1114 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1115 {
1116 	if (req->cryptlen % DES_BLOCK_SIZE)
1117 		return -EINVAL;
1118 
1119 	if (req->cryptlen == 0)
1120 		return 0;
1121 
1122 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1123 }
1124 
1125 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1126 {
1127 	if (req->cryptlen % DES_BLOCK_SIZE)
1128 		return -EINVAL;
1129 
1130 	if (req->cryptlen == 0)
1131 		return 0;
1132 
1133 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1134 }
1135 
1136 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1137 {
1138 	if (req->cryptlen % DES_BLOCK_SIZE)
1139 		return -EINVAL;
1140 
1141 	if (req->cryptlen == 0)
1142 		return 0;
1143 
1144 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1145 }
1146 
1147 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1148 {
1149 	if (req->cryptlen % DES_BLOCK_SIZE)
1150 		return -EINVAL;
1151 
1152 	if (req->cryptlen == 0)
1153 		return 0;
1154 
1155 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1156 }
1157 
1158 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1159 				  struct aead_request *areq)
1160 {
1161 	struct stm32_cryp_ctx *ctx;
1162 	struct stm32_cryp *cryp;
1163 	struct stm32_cryp_reqctx *rctx;
1164 	struct scatterlist *in_sg;
1165 	int ret;
1166 
1167 	if (!req && !areq)
1168 		return -EINVAL;
1169 
1170 	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1171 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1172 
1173 	cryp = ctx->cryp;
1174 
1175 	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1176 	rctx->mode &= FLG_MODE_MASK;
1177 
1178 	ctx->cryp = cryp;
1179 
1180 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1181 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1182 	cryp->ctx = ctx;
1183 
1184 	if (req) {
1185 		cryp->req = req;
1186 		cryp->areq = NULL;
1187 		cryp->header_in = 0;
1188 		cryp->payload_in = req->cryptlen;
1189 		cryp->payload_out = req->cryptlen;
1190 		cryp->authsize = 0;
1191 	} else {
1192 		/*
1193 		 * Length of input and output data:
1194 		 * Encryption case:
1195 		 *  INPUT  = AssocData   ||     PlainText
1196 		 *          <- assoclen ->  <- cryptlen ->
1197 		 *
1198 		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1199 		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1200 		 *
1201 		 * Decryption case:
1202 		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1203 		 *          <- assoclen --->  <---------- cryptlen ---------->
1204 		 *
1205 		 *  OUTPUT = AssocData    ||               PlainText
1206 		 *          <- assoclen ->  <- cryptlen - authsize ->
1207 		 */
1208 		cryp->areq = areq;
1209 		cryp->req = NULL;
1210 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1211 		if (is_encrypt(cryp)) {
1212 			cryp->payload_in = areq->cryptlen;
1213 			cryp->header_in = areq->assoclen;
1214 			cryp->payload_out = areq->cryptlen;
1215 		} else {
1216 			cryp->payload_in = areq->cryptlen - cryp->authsize;
1217 			cryp->header_in = areq->assoclen;
1218 			cryp->payload_out = cryp->payload_in;
1219 		}
1220 	}
1221 
1222 	in_sg = req ? req->src : areq->src;
1223 	scatterwalk_start(&cryp->in_walk, in_sg);
1224 
1225 	cryp->out_sg = req ? req->dst : areq->dst;
1226 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1227 
1228 	if (is_gcm(cryp) || is_ccm(cryp)) {
1229 		/* In output, jump after assoc data */
1230 		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1231 	}
1232 
1233 	if (is_ctr(cryp))
1234 		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1235 
1236 	ret = stm32_cryp_hw_init(cryp);
1237 	return ret;
1238 }
1239 
1240 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1241 {
1242 	struct skcipher_request *req = container_of(areq,
1243 						      struct skcipher_request,
1244 						      base);
1245 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1246 			crypto_skcipher_reqtfm(req));
1247 	struct stm32_cryp *cryp = ctx->cryp;
1248 
1249 	if (!cryp)
1250 		return -ENODEV;
1251 
1252 	return stm32_cryp_prepare_req(req, NULL) ?:
1253 	       stm32_cryp_cpu_start(cryp);
1254 }
1255 
1256 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1257 {
1258 	struct aead_request *req = container_of(areq, struct aead_request,
1259 						base);
1260 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1261 	struct stm32_cryp *cryp = ctx->cryp;
1262 	int err;
1263 
1264 	if (!cryp)
1265 		return -ENODEV;
1266 
1267 	err = stm32_cryp_prepare_req(NULL, req);
1268 	if (err)
1269 		return err;
1270 
1271 	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1272 		/* No input data to process: get tag and finish */
1273 		stm32_cryp_finish_req(cryp, 0);
1274 		return 0;
1275 	}
1276 
1277 	return stm32_cryp_cpu_start(cryp);
1278 }
1279 
1280 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1281 {
1282 	u32 cfg, size_bit;
1283 	unsigned int i;
1284 	int ret = 0;
1285 
1286 	/* Update Config */
1287 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1288 
1289 	cfg &= ~CR_PH_MASK;
1290 	cfg |= CR_PH_FINAL;
1291 	cfg &= ~CR_DEC_NOT_ENC;
1292 	cfg |= CR_CRYPEN;
1293 
1294 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1295 
1296 	if (is_gcm(cryp)) {
1297 		/* GCM: write aad and payload size (in bits) */
1298 		size_bit = cryp->areq->assoclen * 8;
1299 		if (cryp->caps->swap_final)
1300 			size_bit = (__force u32)cpu_to_be32(size_bit);
1301 
1302 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1303 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1304 
1305 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1306 				cryp->areq->cryptlen - cryp->authsize;
1307 		size_bit *= 8;
1308 		if (cryp->caps->swap_final)
1309 			size_bit = (__force u32)cpu_to_be32(size_bit);
1310 
1311 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1312 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1313 	} else {
1314 		/* CCM: write CTR0 */
1315 		u32 iv32[AES_BLOCK_32];
1316 		u8 *iv = (u8 *)iv32;
1317 		__be32 *biv = (__be32 *)iv32;
1318 
1319 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1320 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1321 
1322 		for (i = 0; i < AES_BLOCK_32; i++) {
1323 			u32 xiv = iv32[i];
1324 
1325 			if (!cryp->caps->padding_wa)
1326 				xiv = be32_to_cpu(biv[i]);
1327 			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1328 		}
1329 	}
1330 
1331 	/* Wait for output data */
1332 	ret = stm32_cryp_wait_output(cryp);
1333 	if (ret) {
1334 		dev_err(cryp->dev, "Timeout (read tag)\n");
1335 		return ret;
1336 	}
1337 
1338 	if (is_encrypt(cryp)) {
1339 		u32 out_tag[AES_BLOCK_32];
1340 
1341 		/* Get and write tag */
1342 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1343 		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1344 	} else {
1345 		/* Get and check tag */
1346 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1347 
1348 		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1349 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1350 
1351 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1352 			ret = -EBADMSG;
1353 	}
1354 
1355 	/* Disable cryp */
1356 	cfg &= ~CR_CRYPEN;
1357 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1358 
1359 	return ret;
1360 }
1361 
1362 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1363 {
1364 	u32 cr;
1365 
1366 	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1367 		/*
1368 		 * In this case, we need to increment manually the ctr counter,
1369 		 * as HW doesn't handle the U32 carry.
1370 		 */
1371 		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1372 
1373 		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1374 		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1375 
1376 		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1377 
1378 		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1379 	}
1380 
1381 	/* The IV registers are BE  */
1382 	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1383 	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1384 	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1385 	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1386 }
1387 
1388 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1389 {
1390 	u32 block[AES_BLOCK_32];
1391 
1392 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1393 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1394 							     cryp->payload_out), 1);
1395 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1396 				   cryp->payload_out);
1397 }
1398 
1399 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1400 {
1401 	u32 block[AES_BLOCK_32] = {0};
1402 
1403 	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1404 							    cryp->payload_in), 0);
1405 	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1406 	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1407 }
1408 
1409 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1410 {
1411 	int err;
1412 	u32 cfg, block[AES_BLOCK_32] = {0};
1413 	unsigned int i;
1414 
1415 	/* 'Special workaround' procedure described in the datasheet */
1416 
1417 	/* a) disable ip */
1418 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1419 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1420 	cfg &= ~CR_CRYPEN;
1421 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1422 
1423 	/* b) Update IV1R */
1424 	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1425 
1426 	/* c) change mode to CTR */
1427 	cfg &= ~CR_ALGO_MASK;
1428 	cfg |= CR_AES_CTR;
1429 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1430 
1431 	/* a) enable IP */
1432 	cfg |= CR_CRYPEN;
1433 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1434 
1435 	/* b) pad and write the last block */
1436 	stm32_cryp_irq_write_block(cryp);
1437 	/* wait end of process */
1438 	err = stm32_cryp_wait_output(cryp);
1439 	if (err) {
1440 		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1441 		return stm32_cryp_finish_req(cryp, err);
1442 	}
1443 
1444 	/* c) get and store encrypted data */
1445 	/*
1446 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1447 	 * block value
1448 	 */
1449 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1450 
1451 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1452 							     cryp->payload_out), 1);
1453 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1454 				   cryp->payload_out);
1455 
1456 	/* d) change mode back to AES GCM */
1457 	cfg &= ~CR_ALGO_MASK;
1458 	cfg |= CR_AES_GCM;
1459 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1460 
1461 	/* e) change phase to Final */
1462 	cfg &= ~CR_PH_MASK;
1463 	cfg |= CR_PH_FINAL;
1464 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1465 
1466 	/* f) write padded data */
1467 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1468 
1469 	/* g) Empty fifo out */
1470 	err = stm32_cryp_wait_output(cryp);
1471 	if (err) {
1472 		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1473 		return stm32_cryp_finish_req(cryp, err);
1474 	}
1475 
1476 	for (i = 0; i < AES_BLOCK_32; i++)
1477 		stm32_cryp_read(cryp, cryp->caps->dout);
1478 
1479 	/* h) run the he normal Final phase */
1480 	stm32_cryp_finish_req(cryp, 0);
1481 }
1482 
1483 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1484 {
1485 	u32 cfg;
1486 
1487 	/* disable ip, set NPBLB and reneable ip */
1488 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1489 	cfg &= ~CR_CRYPEN;
1490 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1491 
1492 	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1493 	cfg |= CR_CRYPEN;
1494 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495 }
1496 
1497 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1498 {
1499 	int err = 0;
1500 	u32 cfg, iv1tmp;
1501 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1502 	u32 block[AES_BLOCK_32] = {0};
1503 	unsigned int i;
1504 
1505 	/* 'Special workaround' procedure described in the datasheet */
1506 
1507 	/* a) disable ip */
1508 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1509 
1510 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1511 	cfg &= ~CR_CRYPEN;
1512 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1513 
1514 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1515 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1516 
1517 	/* c) Load CRYP_CSGCMCCMxR */
1518 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1519 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1520 
1521 	/* d) Write IV1R */
1522 	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1523 
1524 	/* e) change mode to CTR */
1525 	cfg &= ~CR_ALGO_MASK;
1526 	cfg |= CR_AES_CTR;
1527 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1528 
1529 	/* a) enable IP */
1530 	cfg |= CR_CRYPEN;
1531 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1532 
1533 	/* b) pad and write the last block */
1534 	stm32_cryp_irq_write_block(cryp);
1535 	/* wait end of process */
1536 	err = stm32_cryp_wait_output(cryp);
1537 	if (err) {
1538 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1539 		return stm32_cryp_finish_req(cryp, err);
1540 	}
1541 
1542 	/* c) get and store decrypted data */
1543 	/*
1544 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1545 	 * block value
1546 	 */
1547 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1548 
1549 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1550 							     cryp->payload_out), 1);
1551 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1552 
1553 	/* d) Load again CRYP_CSGCMCCMxR */
1554 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1555 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556 
1557 	/* e) change mode back to AES CCM */
1558 	cfg &= ~CR_ALGO_MASK;
1559 	cfg |= CR_AES_CCM;
1560 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1561 
1562 	/* f) change phase to header */
1563 	cfg &= ~CR_PH_MASK;
1564 	cfg |= CR_PH_HEADER;
1565 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1566 
1567 	/* g) XOR and write padded data */
1568 	for (i = 0; i < ARRAY_SIZE(block); i++) {
1569 		block[i] ^= cstmp1[i];
1570 		block[i] ^= cstmp2[i];
1571 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1572 	}
1573 
1574 	/* h) wait for completion */
1575 	err = stm32_cryp_wait_busy(cryp);
1576 	if (err)
1577 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1578 
1579 	/* i) run the he normal Final phase */
1580 	stm32_cryp_finish_req(cryp, err);
1581 }
1582 
1583 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1584 {
1585 	if (unlikely(!cryp->payload_in)) {
1586 		dev_warn(cryp->dev, "No more data to process\n");
1587 		return;
1588 	}
1589 
1590 	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1591 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1592 		     is_encrypt(cryp))) {
1593 		/* Padding for AES GCM encryption */
1594 		if (cryp->caps->padding_wa) {
1595 			/* Special case 1 */
1596 			stm32_cryp_irq_write_gcm_padded_data(cryp);
1597 			return;
1598 		}
1599 
1600 		/* Setting padding bytes (NBBLB) */
1601 		stm32_cryp_irq_set_npblb(cryp);
1602 	}
1603 
1604 	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1605 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1606 		     is_decrypt(cryp))) {
1607 		/* Padding for AES CCM decryption */
1608 		if (cryp->caps->padding_wa) {
1609 			/* Special case 2 */
1610 			stm32_cryp_irq_write_ccm_padded_data(cryp);
1611 			return;
1612 		}
1613 
1614 		/* Setting padding bytes (NBBLB) */
1615 		stm32_cryp_irq_set_npblb(cryp);
1616 	}
1617 
1618 	if (is_aes(cryp) && is_ctr(cryp))
1619 		stm32_cryp_check_ctr_counter(cryp);
1620 
1621 	stm32_cryp_irq_write_block(cryp);
1622 }
1623 
1624 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1625 {
1626 	u32 block[AES_BLOCK_32] = {0};
1627 	size_t written;
1628 
1629 	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1630 
1631 	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1632 
1633 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1634 
1635 	cryp->header_in -= written;
1636 
1637 	stm32_crypt_gcmccm_end_header(cryp);
1638 }
1639 
1640 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1641 {
1642 	struct stm32_cryp *cryp = arg;
1643 	u32 ph;
1644 	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1645 
1646 	if (cryp->irq_status & MISR_OUT)
1647 		/* Output FIFO IRQ: read data */
1648 		stm32_cryp_irq_read_data(cryp);
1649 
1650 	if (cryp->irq_status & MISR_IN) {
1651 		if (is_gcm(cryp) || is_ccm(cryp)) {
1652 			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1653 			if (unlikely(ph == CR_PH_HEADER))
1654 				/* Write Header */
1655 				stm32_cryp_irq_write_gcmccm_header(cryp);
1656 			else
1657 				/* Input FIFO IRQ: write data */
1658 				stm32_cryp_irq_write_data(cryp);
1659 			if (is_gcm(cryp))
1660 				cryp->gcm_ctr++;
1661 		} else {
1662 			/* Input FIFO IRQ: write data */
1663 			stm32_cryp_irq_write_data(cryp);
1664 		}
1665 	}
1666 
1667 	/* Mask useless interrupts */
1668 	if (!cryp->payload_in && !cryp->header_in)
1669 		it_mask &= ~IMSCR_IN;
1670 	if (!cryp->payload_out)
1671 		it_mask &= ~IMSCR_OUT;
1672 	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1673 
1674 	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1675 		stm32_cryp_finish_req(cryp, 0);
1676 
1677 	return IRQ_HANDLED;
1678 }
1679 
1680 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1681 {
1682 	struct stm32_cryp *cryp = arg;
1683 
1684 	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1685 
1686 	return IRQ_WAKE_THREAD;
1687 }
1688 
1689 static struct skcipher_alg crypto_algs[] = {
1690 {
1691 	.base.cra_name		= "ecb(aes)",
1692 	.base.cra_driver_name	= "stm32-ecb-aes",
1693 	.base.cra_priority	= 200,
1694 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1695 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1696 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1697 	.base.cra_alignmask	= 0,
1698 	.base.cra_module	= THIS_MODULE,
1699 
1700 	.init			= stm32_cryp_init_tfm,
1701 	.min_keysize		= AES_MIN_KEY_SIZE,
1702 	.max_keysize		= AES_MAX_KEY_SIZE,
1703 	.setkey			= stm32_cryp_aes_setkey,
1704 	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1705 	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1706 },
1707 {
1708 	.base.cra_name		= "cbc(aes)",
1709 	.base.cra_driver_name	= "stm32-cbc-aes",
1710 	.base.cra_priority	= 200,
1711 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1712 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1713 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1714 	.base.cra_alignmask	= 0,
1715 	.base.cra_module	= THIS_MODULE,
1716 
1717 	.init			= stm32_cryp_init_tfm,
1718 	.min_keysize		= AES_MIN_KEY_SIZE,
1719 	.max_keysize		= AES_MAX_KEY_SIZE,
1720 	.ivsize			= AES_BLOCK_SIZE,
1721 	.setkey			= stm32_cryp_aes_setkey,
1722 	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1723 	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1724 },
1725 {
1726 	.base.cra_name		= "ctr(aes)",
1727 	.base.cra_driver_name	= "stm32-ctr-aes",
1728 	.base.cra_priority	= 200,
1729 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1730 	.base.cra_blocksize	= 1,
1731 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1732 	.base.cra_alignmask	= 0,
1733 	.base.cra_module	= THIS_MODULE,
1734 
1735 	.init			= stm32_cryp_init_tfm,
1736 	.min_keysize		= AES_MIN_KEY_SIZE,
1737 	.max_keysize		= AES_MAX_KEY_SIZE,
1738 	.ivsize			= AES_BLOCK_SIZE,
1739 	.setkey			= stm32_cryp_aes_setkey,
1740 	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1741 	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1742 },
1743 {
1744 	.base.cra_name		= "ecb(des)",
1745 	.base.cra_driver_name	= "stm32-ecb-des",
1746 	.base.cra_priority	= 200,
1747 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1748 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1749 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1750 	.base.cra_alignmask	= 0,
1751 	.base.cra_module	= THIS_MODULE,
1752 
1753 	.init			= stm32_cryp_init_tfm,
1754 	.min_keysize		= DES_BLOCK_SIZE,
1755 	.max_keysize		= DES_BLOCK_SIZE,
1756 	.setkey			= stm32_cryp_des_setkey,
1757 	.encrypt		= stm32_cryp_des_ecb_encrypt,
1758 	.decrypt		= stm32_cryp_des_ecb_decrypt,
1759 },
1760 {
1761 	.base.cra_name		= "cbc(des)",
1762 	.base.cra_driver_name	= "stm32-cbc-des",
1763 	.base.cra_priority	= 200,
1764 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1765 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1766 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1767 	.base.cra_alignmask	= 0,
1768 	.base.cra_module	= THIS_MODULE,
1769 
1770 	.init			= stm32_cryp_init_tfm,
1771 	.min_keysize		= DES_BLOCK_SIZE,
1772 	.max_keysize		= DES_BLOCK_SIZE,
1773 	.ivsize			= DES_BLOCK_SIZE,
1774 	.setkey			= stm32_cryp_des_setkey,
1775 	.encrypt		= stm32_cryp_des_cbc_encrypt,
1776 	.decrypt		= stm32_cryp_des_cbc_decrypt,
1777 },
1778 {
1779 	.base.cra_name		= "ecb(des3_ede)",
1780 	.base.cra_driver_name	= "stm32-ecb-des3",
1781 	.base.cra_priority	= 200,
1782 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1783 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1784 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1785 	.base.cra_alignmask	= 0,
1786 	.base.cra_module	= THIS_MODULE,
1787 
1788 	.init			= stm32_cryp_init_tfm,
1789 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1790 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1791 	.setkey			= stm32_cryp_tdes_setkey,
1792 	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1793 	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1794 },
1795 {
1796 	.base.cra_name		= "cbc(des3_ede)",
1797 	.base.cra_driver_name	= "stm32-cbc-des3",
1798 	.base.cra_priority	= 200,
1799 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1800 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1801 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1802 	.base.cra_alignmask	= 0,
1803 	.base.cra_module	= THIS_MODULE,
1804 
1805 	.init			= stm32_cryp_init_tfm,
1806 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1807 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1808 	.ivsize			= DES_BLOCK_SIZE,
1809 	.setkey			= stm32_cryp_tdes_setkey,
1810 	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1811 	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1812 },
1813 };
1814 
1815 static struct aead_alg aead_algs[] = {
1816 {
1817 	.setkey		= stm32_cryp_aes_aead_setkey,
1818 	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1819 	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1820 	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1821 	.init		= stm32_cryp_aes_aead_init,
1822 	.ivsize		= 12,
1823 	.maxauthsize	= AES_BLOCK_SIZE,
1824 
1825 	.base = {
1826 		.cra_name		= "gcm(aes)",
1827 		.cra_driver_name	= "stm32-gcm-aes",
1828 		.cra_priority		= 200,
1829 		.cra_flags		= CRYPTO_ALG_ASYNC,
1830 		.cra_blocksize		= 1,
1831 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1832 		.cra_alignmask		= 0,
1833 		.cra_module		= THIS_MODULE,
1834 	},
1835 },
1836 {
1837 	.setkey		= stm32_cryp_aes_aead_setkey,
1838 	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1839 	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1840 	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1841 	.init		= stm32_cryp_aes_aead_init,
1842 	.ivsize		= AES_BLOCK_SIZE,
1843 	.maxauthsize	= AES_BLOCK_SIZE,
1844 
1845 	.base = {
1846 		.cra_name		= "ccm(aes)",
1847 		.cra_driver_name	= "stm32-ccm-aes",
1848 		.cra_priority		= 200,
1849 		.cra_flags		= CRYPTO_ALG_ASYNC,
1850 		.cra_blocksize		= 1,
1851 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1852 		.cra_alignmask		= 0,
1853 		.cra_module		= THIS_MODULE,
1854 	},
1855 },
1856 };
1857 
1858 static const struct stm32_cryp_caps ux500_data = {
1859 	.aeads_support = false,
1860 	.linear_aes_key = true,
1861 	.kp_mode = false,
1862 	.iv_protection = true,
1863 	.swap_final = true,
1864 	.padding_wa = true,
1865 	.cr = UX500_CRYP_CR,
1866 	.sr = UX500_CRYP_SR,
1867 	.din = UX500_CRYP_DIN,
1868 	.dout = UX500_CRYP_DOUT,
1869 	.imsc = UX500_CRYP_IMSC,
1870 	.mis = UX500_CRYP_MIS,
1871 	.k1l = UX500_CRYP_K1L,
1872 	.k1r = UX500_CRYP_K1R,
1873 	.k3r = UX500_CRYP_K3R,
1874 	.iv0l = UX500_CRYP_IV0L,
1875 	.iv0r = UX500_CRYP_IV0R,
1876 	.iv1l = UX500_CRYP_IV1L,
1877 	.iv1r = UX500_CRYP_IV1R,
1878 };
1879 
1880 static const struct stm32_cryp_caps f7_data = {
1881 	.aeads_support = true,
1882 	.linear_aes_key = false,
1883 	.kp_mode = true,
1884 	.iv_protection = false,
1885 	.swap_final = true,
1886 	.padding_wa = true,
1887 	.cr = CRYP_CR,
1888 	.sr = CRYP_SR,
1889 	.din = CRYP_DIN,
1890 	.dout = CRYP_DOUT,
1891 	.imsc = CRYP_IMSCR,
1892 	.mis = CRYP_MISR,
1893 	.k1l = CRYP_K1LR,
1894 	.k1r = CRYP_K1RR,
1895 	.k3r = CRYP_K3RR,
1896 	.iv0l = CRYP_IV0LR,
1897 	.iv0r = CRYP_IV0RR,
1898 	.iv1l = CRYP_IV1LR,
1899 	.iv1r = CRYP_IV1RR,
1900 };
1901 
1902 static const struct stm32_cryp_caps mp1_data = {
1903 	.aeads_support = true,
1904 	.linear_aes_key = false,
1905 	.kp_mode = true,
1906 	.iv_protection = false,
1907 	.swap_final = false,
1908 	.padding_wa = false,
1909 	.cr = CRYP_CR,
1910 	.sr = CRYP_SR,
1911 	.din = CRYP_DIN,
1912 	.dout = CRYP_DOUT,
1913 	.imsc = CRYP_IMSCR,
1914 	.mis = CRYP_MISR,
1915 	.k1l = CRYP_K1LR,
1916 	.k1r = CRYP_K1RR,
1917 	.k3r = CRYP_K3RR,
1918 	.iv0l = CRYP_IV0LR,
1919 	.iv0r = CRYP_IV0RR,
1920 	.iv1l = CRYP_IV1LR,
1921 	.iv1r = CRYP_IV1RR,
1922 };
1923 
1924 static const struct of_device_id stm32_dt_ids[] = {
1925 	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1926 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1927 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1928 	{},
1929 };
1930 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1931 
1932 static int stm32_cryp_probe(struct platform_device *pdev)
1933 {
1934 	struct device *dev = &pdev->dev;
1935 	struct stm32_cryp *cryp;
1936 	struct reset_control *rst;
1937 	int irq, ret;
1938 
1939 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1940 	if (!cryp)
1941 		return -ENOMEM;
1942 
1943 	cryp->caps = of_device_get_match_data(dev);
1944 	if (!cryp->caps)
1945 		return -ENODEV;
1946 
1947 	cryp->dev = dev;
1948 
1949 	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1950 	if (IS_ERR(cryp->regs))
1951 		return PTR_ERR(cryp->regs);
1952 
1953 	irq = platform_get_irq(pdev, 0);
1954 	if (irq < 0)
1955 		return irq;
1956 
1957 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1958 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1959 					dev_name(dev), cryp);
1960 	if (ret) {
1961 		dev_err(dev, "Cannot grab IRQ\n");
1962 		return ret;
1963 	}
1964 
1965 	cryp->clk = devm_clk_get(dev, NULL);
1966 	if (IS_ERR(cryp->clk)) {
1967 		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
1968 
1969 		return PTR_ERR(cryp->clk);
1970 	}
1971 
1972 	ret = clk_prepare_enable(cryp->clk);
1973 	if (ret) {
1974 		dev_err(cryp->dev, "Failed to enable clock\n");
1975 		return ret;
1976 	}
1977 
1978 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1979 	pm_runtime_use_autosuspend(dev);
1980 
1981 	pm_runtime_get_noresume(dev);
1982 	pm_runtime_set_active(dev);
1983 	pm_runtime_enable(dev);
1984 
1985 	rst = devm_reset_control_get(dev, NULL);
1986 	if (IS_ERR(rst)) {
1987 		ret = PTR_ERR(rst);
1988 		if (ret == -EPROBE_DEFER)
1989 			goto err_rst;
1990 	} else {
1991 		reset_control_assert(rst);
1992 		udelay(2);
1993 		reset_control_deassert(rst);
1994 	}
1995 
1996 	platform_set_drvdata(pdev, cryp);
1997 
1998 	spin_lock(&cryp_list.lock);
1999 	list_add(&cryp->list, &cryp_list.dev_list);
2000 	spin_unlock(&cryp_list.lock);
2001 
2002 	/* Initialize crypto engine */
2003 	cryp->engine = crypto_engine_alloc_init(dev, 1);
2004 	if (!cryp->engine) {
2005 		dev_err(dev, "Could not init crypto engine\n");
2006 		ret = -ENOMEM;
2007 		goto err_engine1;
2008 	}
2009 
2010 	ret = crypto_engine_start(cryp->engine);
2011 	if (ret) {
2012 		dev_err(dev, "Could not start crypto engine\n");
2013 		goto err_engine2;
2014 	}
2015 
2016 	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2017 	if (ret) {
2018 		dev_err(dev, "Could not register algs\n");
2019 		goto err_algs;
2020 	}
2021 
2022 	if (cryp->caps->aeads_support) {
2023 		ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2024 		if (ret)
2025 			goto err_aead_algs;
2026 	}
2027 
2028 	dev_info(dev, "Initialized\n");
2029 
2030 	pm_runtime_put_sync(dev);
2031 
2032 	return 0;
2033 
2034 err_aead_algs:
2035 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2036 err_algs:
2037 err_engine2:
2038 	crypto_engine_exit(cryp->engine);
2039 err_engine1:
2040 	spin_lock(&cryp_list.lock);
2041 	list_del(&cryp->list);
2042 	spin_unlock(&cryp_list.lock);
2043 err_rst:
2044 	pm_runtime_disable(dev);
2045 	pm_runtime_put_noidle(dev);
2046 
2047 	clk_disable_unprepare(cryp->clk);
2048 
2049 	return ret;
2050 }
2051 
2052 static int stm32_cryp_remove(struct platform_device *pdev)
2053 {
2054 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2055 	int ret;
2056 
2057 	if (!cryp)
2058 		return -ENODEV;
2059 
2060 	ret = pm_runtime_resume_and_get(cryp->dev);
2061 	if (ret < 0)
2062 		return ret;
2063 
2064 	if (cryp->caps->aeads_support)
2065 		crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2066 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2067 
2068 	crypto_engine_exit(cryp->engine);
2069 
2070 	spin_lock(&cryp_list.lock);
2071 	list_del(&cryp->list);
2072 	spin_unlock(&cryp_list.lock);
2073 
2074 	pm_runtime_disable(cryp->dev);
2075 	pm_runtime_put_noidle(cryp->dev);
2076 
2077 	clk_disable_unprepare(cryp->clk);
2078 
2079 	return 0;
2080 }
2081 
2082 #ifdef CONFIG_PM
2083 static int stm32_cryp_runtime_suspend(struct device *dev)
2084 {
2085 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2086 
2087 	clk_disable_unprepare(cryp->clk);
2088 
2089 	return 0;
2090 }
2091 
2092 static int stm32_cryp_runtime_resume(struct device *dev)
2093 {
2094 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2095 	int ret;
2096 
2097 	ret = clk_prepare_enable(cryp->clk);
2098 	if (ret) {
2099 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2100 		return ret;
2101 	}
2102 
2103 	return 0;
2104 }
2105 #endif
2106 
2107 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2108 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2109 				pm_runtime_force_resume)
2110 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2111 			   stm32_cryp_runtime_resume, NULL)
2112 };
2113 
2114 static struct platform_driver stm32_cryp_driver = {
2115 	.probe  = stm32_cryp_probe,
2116 	.remove = stm32_cryp_remove,
2117 	.driver = {
2118 		.name           = DRIVER_NAME,
2119 		.pm		= &stm32_cryp_pm_ops,
2120 		.of_match_table = stm32_dt_ids,
2121 	},
2122 };
2123 
2124 module_platform_driver(stm32_cryp_driver);
2125 
2126 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2127 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2128 MODULE_LICENSE("GPL");
2129