xref: /openbmc/linux/drivers/crypto/stm32/stm32-cryp.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright (C) STMicroelectronics SA 2017
3  * Author: Fabien Dessenne <fabien.dessenne@st.com>
4  * License terms:  GNU General Public License (GPL), version 2
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16 
17 #include <crypto/aes.h>
18 #include <crypto/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22 
23 #define DRIVER_NAME             "stm32-cryp"
24 
25 /* Bit [0] encrypt / decrypt */
26 #define FLG_ENCRYPT             BIT(0)
27 /* Bit [8..1] algo & operation mode */
28 #define FLG_AES                 BIT(1)
29 #define FLG_DES                 BIT(2)
30 #define FLG_TDES                BIT(3)
31 #define FLG_ECB                 BIT(4)
32 #define FLG_CBC                 BIT(5)
33 #define FLG_CTR                 BIT(6)
34 #define FLG_GCM                 BIT(7)
35 #define FLG_CCM                 BIT(8)
36 /* Mode mask = bits [15..0] */
37 #define FLG_MODE_MASK           GENMASK(15, 0)
38 /* Bit [31..16] status  */
39 #define FLG_CCM_PADDED_WA       BIT(16)
40 
41 /* Registers */
42 #define CRYP_CR                 0x00000000
43 #define CRYP_SR                 0x00000004
44 #define CRYP_DIN                0x00000008
45 #define CRYP_DOUT               0x0000000C
46 #define CRYP_DMACR              0x00000010
47 #define CRYP_IMSCR              0x00000014
48 #define CRYP_RISR               0x00000018
49 #define CRYP_MISR               0x0000001C
50 #define CRYP_K0LR               0x00000020
51 #define CRYP_K0RR               0x00000024
52 #define CRYP_K1LR               0x00000028
53 #define CRYP_K1RR               0x0000002C
54 #define CRYP_K2LR               0x00000030
55 #define CRYP_K2RR               0x00000034
56 #define CRYP_K3LR               0x00000038
57 #define CRYP_K3RR               0x0000003C
58 #define CRYP_IV0LR              0x00000040
59 #define CRYP_IV0RR              0x00000044
60 #define CRYP_IV1LR              0x00000048
61 #define CRYP_IV1RR              0x0000004C
62 #define CRYP_CSGCMCCM0R         0x00000050
63 #define CRYP_CSGCM0R            0x00000070
64 
65 /* Registers values */
66 #define CR_DEC_NOT_ENC          0x00000004
67 #define CR_TDES_ECB             0x00000000
68 #define CR_TDES_CBC             0x00000008
69 #define CR_DES_ECB              0x00000010
70 #define CR_DES_CBC              0x00000018
71 #define CR_AES_ECB              0x00000020
72 #define CR_AES_CBC              0x00000028
73 #define CR_AES_CTR              0x00000030
74 #define CR_AES_KP               0x00000038
75 #define CR_AES_GCM              0x00080000
76 #define CR_AES_CCM              0x00080008
77 #define CR_AES_UNKNOWN          0xFFFFFFFF
78 #define CR_ALGO_MASK            0x00080038
79 #define CR_DATA32               0x00000000
80 #define CR_DATA16               0x00000040
81 #define CR_DATA8                0x00000080
82 #define CR_DATA1                0x000000C0
83 #define CR_KEY128               0x00000000
84 #define CR_KEY192               0x00000100
85 #define CR_KEY256               0x00000200
86 #define CR_FFLUSH               0x00004000
87 #define CR_CRYPEN               0x00008000
88 #define CR_PH_INIT              0x00000000
89 #define CR_PH_HEADER            0x00010000
90 #define CR_PH_PAYLOAD           0x00020000
91 #define CR_PH_FINAL             0x00030000
92 #define CR_PH_MASK              0x00030000
93 #define CR_NBPBL_SHIFT          20
94 
95 #define SR_BUSY                 0x00000010
96 #define SR_OFNE                 0x00000004
97 
98 #define IMSCR_IN                BIT(0)
99 #define IMSCR_OUT               BIT(1)
100 
101 #define MISR_IN                 BIT(0)
102 #define MISR_OUT                BIT(1)
103 
104 /* Misc */
105 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
106 #define GCM_CTR_INIT            2
107 #define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
108 #define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
109 #define CRYP_AUTOSUSPEND_DELAY	50
110 
111 struct stm32_cryp_caps {
112 	bool                    swap_final;
113 	bool                    padding_wa;
114 };
115 
116 struct stm32_cryp_ctx {
117 	struct crypto_engine_ctx enginectx;
118 	struct stm32_cryp       *cryp;
119 	int                     keylen;
120 	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
121 	unsigned long           flags;
122 };
123 
124 struct stm32_cryp_reqctx {
125 	unsigned long mode;
126 };
127 
128 struct stm32_cryp {
129 	struct list_head        list;
130 	struct device           *dev;
131 	void __iomem            *regs;
132 	struct clk              *clk;
133 	unsigned long           flags;
134 	u32                     irq_status;
135 	const struct stm32_cryp_caps *caps;
136 	struct stm32_cryp_ctx   *ctx;
137 
138 	struct crypto_engine    *engine;
139 
140 	struct mutex            lock; /* protects req / areq */
141 	struct ablkcipher_request *req;
142 	struct aead_request     *areq;
143 
144 	size_t                  authsize;
145 	size_t                  hw_blocksize;
146 
147 	size_t                  total_in;
148 	size_t                  total_in_save;
149 	size_t                  total_out;
150 	size_t                  total_out_save;
151 
152 	struct scatterlist      *in_sg;
153 	struct scatterlist      *out_sg;
154 	struct scatterlist      *out_sg_save;
155 
156 	struct scatterlist      in_sgl;
157 	struct scatterlist      out_sgl;
158 	bool                    sgs_copied;
159 
160 	int                     in_sg_len;
161 	int                     out_sg_len;
162 
163 	struct scatter_walk     in_walk;
164 	struct scatter_walk     out_walk;
165 
166 	u32                     last_ctr[4];
167 	u32                     gcm_ctr;
168 };
169 
170 struct stm32_cryp_list {
171 	struct list_head        dev_list;
172 	spinlock_t              lock; /* protect dev_list */
173 };
174 
175 static struct stm32_cryp_list cryp_list = {
176 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
178 };
179 
180 static inline bool is_aes(struct stm32_cryp *cryp)
181 {
182 	return cryp->flags & FLG_AES;
183 }
184 
185 static inline bool is_des(struct stm32_cryp *cryp)
186 {
187 	return cryp->flags & FLG_DES;
188 }
189 
190 static inline bool is_tdes(struct stm32_cryp *cryp)
191 {
192 	return cryp->flags & FLG_TDES;
193 }
194 
195 static inline bool is_ecb(struct stm32_cryp *cryp)
196 {
197 	return cryp->flags & FLG_ECB;
198 }
199 
200 static inline bool is_cbc(struct stm32_cryp *cryp)
201 {
202 	return cryp->flags & FLG_CBC;
203 }
204 
205 static inline bool is_ctr(struct stm32_cryp *cryp)
206 {
207 	return cryp->flags & FLG_CTR;
208 }
209 
210 static inline bool is_gcm(struct stm32_cryp *cryp)
211 {
212 	return cryp->flags & FLG_GCM;
213 }
214 
215 static inline bool is_ccm(struct stm32_cryp *cryp)
216 {
217 	return cryp->flags & FLG_CCM;
218 }
219 
220 static inline bool is_encrypt(struct stm32_cryp *cryp)
221 {
222 	return cryp->flags & FLG_ENCRYPT;
223 }
224 
225 static inline bool is_decrypt(struct stm32_cryp *cryp)
226 {
227 	return !is_encrypt(cryp);
228 }
229 
230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
231 {
232 	return readl_relaxed(cryp->regs + ofst);
233 }
234 
235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
236 {
237 	writel_relaxed(val, cryp->regs + ofst);
238 }
239 
240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
241 {
242 	u32 status;
243 
244 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245 			!(status & SR_BUSY), 10, 100000);
246 }
247 
248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
249 {
250 	u32 status;
251 
252 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253 			!(status & CR_CRYPEN), 10, 100000);
254 }
255 
256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
257 {
258 	u32 status;
259 
260 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261 			status & SR_OFNE, 10, 100000);
262 }
263 
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
265 
266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
267 {
268 	struct stm32_cryp *tmp, *cryp = NULL;
269 
270 	spin_lock_bh(&cryp_list.lock);
271 	if (!ctx->cryp) {
272 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273 			cryp = tmp;
274 			break;
275 		}
276 		ctx->cryp = cryp;
277 	} else {
278 		cryp = ctx->cryp;
279 	}
280 
281 	spin_unlock_bh(&cryp_list.lock);
282 
283 	return cryp;
284 }
285 
286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287 				    size_t align)
288 {
289 	int len = 0;
290 
291 	if (!total)
292 		return 0;
293 
294 	if (!IS_ALIGNED(total, align))
295 		return -EINVAL;
296 
297 	while (sg) {
298 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299 			return -EINVAL;
300 
301 		if (!IS_ALIGNED(sg->length, align))
302 			return -EINVAL;
303 
304 		len += sg->length;
305 		sg = sg_next(sg);
306 	}
307 
308 	if (len != total)
309 		return -EINVAL;
310 
311 	return 0;
312 }
313 
314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
315 {
316 	int ret;
317 
318 	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319 				       cryp->hw_blocksize);
320 	if (ret)
321 		return ret;
322 
323 	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324 				       cryp->hw_blocksize);
325 
326 	return ret;
327 }
328 
329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330 			unsigned int start, unsigned int nbytes, int out)
331 {
332 	struct scatter_walk walk;
333 
334 	if (!nbytes)
335 		return;
336 
337 	scatterwalk_start(&walk, sg);
338 	scatterwalk_advance(&walk, start);
339 	scatterwalk_copychunks(buf, &walk, nbytes, out);
340 	scatterwalk_done(&walk, out, 0);
341 }
342 
343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
344 {
345 	void *buf_in, *buf_out;
346 	int pages, total_in, total_out;
347 
348 	if (!stm32_cryp_check_io_aligned(cryp)) {
349 		cryp->sgs_copied = 0;
350 		return 0;
351 	}
352 
353 	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354 	pages = total_in ? get_order(total_in) : 1;
355 	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
356 
357 	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358 	pages = total_out ? get_order(total_out) : 1;
359 	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
360 
361 	if (!buf_in || !buf_out) {
362 		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363 		cryp->sgs_copied = 0;
364 		return -EFAULT;
365 	}
366 
367 	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
368 
369 	sg_init_one(&cryp->in_sgl, buf_in, total_in);
370 	cryp->in_sg = &cryp->in_sgl;
371 	cryp->in_sg_len = 1;
372 
373 	sg_init_one(&cryp->out_sgl, buf_out, total_out);
374 	cryp->out_sg_save = cryp->out_sg;
375 	cryp->out_sg = &cryp->out_sgl;
376 	cryp->out_sg_len = 1;
377 
378 	cryp->sgs_copied = 1;
379 
380 	return 0;
381 }
382 
383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
384 {
385 	if (!iv)
386 		return;
387 
388 	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
389 	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
390 
391 	if (is_aes(cryp)) {
392 		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
393 		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
394 	}
395 }
396 
397 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
398 {
399 	unsigned int i;
400 	int r_id;
401 
402 	if (is_des(c)) {
403 		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
404 		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
405 	} else {
406 		r_id = CRYP_K3RR;
407 		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
408 			stm32_cryp_write(c, r_id,
409 					 cpu_to_be32(c->ctx->key[i - 1]));
410 	}
411 }
412 
413 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
414 {
415 	if (is_aes(cryp) && is_ecb(cryp))
416 		return CR_AES_ECB;
417 
418 	if (is_aes(cryp) && is_cbc(cryp))
419 		return CR_AES_CBC;
420 
421 	if (is_aes(cryp) && is_ctr(cryp))
422 		return CR_AES_CTR;
423 
424 	if (is_aes(cryp) && is_gcm(cryp))
425 		return CR_AES_GCM;
426 
427 	if (is_aes(cryp) && is_ccm(cryp))
428 		return CR_AES_CCM;
429 
430 	if (is_des(cryp) && is_ecb(cryp))
431 		return CR_DES_ECB;
432 
433 	if (is_des(cryp) && is_cbc(cryp))
434 		return CR_DES_CBC;
435 
436 	if (is_tdes(cryp) && is_ecb(cryp))
437 		return CR_TDES_ECB;
438 
439 	if (is_tdes(cryp) && is_cbc(cryp))
440 		return CR_TDES_CBC;
441 
442 	dev_err(cryp->dev, "Unknown mode\n");
443 	return CR_AES_UNKNOWN;
444 }
445 
446 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
447 {
448 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
449 				  cryp->areq->cryptlen - cryp->authsize;
450 }
451 
452 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
453 {
454 	int ret;
455 	u32 iv[4];
456 
457 	/* Phase 1 : init */
458 	memcpy(iv, cryp->areq->iv, 12);
459 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
460 	cryp->gcm_ctr = GCM_CTR_INIT;
461 	stm32_cryp_hw_write_iv(cryp, iv);
462 
463 	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
464 
465 	/* Wait for end of processing */
466 	ret = stm32_cryp_wait_enable(cryp);
467 	if (ret)
468 		dev_err(cryp->dev, "Timeout (gcm init)\n");
469 
470 	return ret;
471 }
472 
473 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
474 {
475 	int ret;
476 	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
477 	u32 *d;
478 	unsigned int i, textlen;
479 
480 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
481 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
482 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
483 	iv[AES_BLOCK_SIZE - 1] = 1;
484 	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
485 
486 	/* Build B0 */
487 	memcpy(b0, iv, AES_BLOCK_SIZE);
488 
489 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
490 
491 	if (cryp->areq->assoclen)
492 		b0[0] |= 0x40;
493 
494 	textlen = stm32_cryp_get_input_text_len(cryp);
495 
496 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
497 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
498 
499 	/* Enable HW */
500 	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
501 
502 	/* Write B0 */
503 	d = (u32 *)b0;
504 
505 	for (i = 0; i < AES_BLOCK_32; i++) {
506 		if (!cryp->caps->padding_wa)
507 			*d = cpu_to_be32(*d);
508 		stm32_cryp_write(cryp, CRYP_DIN, *d++);
509 	}
510 
511 	/* Wait for end of processing */
512 	ret = stm32_cryp_wait_enable(cryp);
513 	if (ret)
514 		dev_err(cryp->dev, "Timeout (ccm init)\n");
515 
516 	return ret;
517 }
518 
519 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
520 {
521 	int ret;
522 	u32 cfg, hw_mode;
523 
524 	pm_runtime_get_sync(cryp->dev);
525 
526 	/* Disable interrupt */
527 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
528 
529 	/* Set key */
530 	stm32_cryp_hw_write_key(cryp);
531 
532 	/* Set configuration */
533 	cfg = CR_DATA8 | CR_FFLUSH;
534 
535 	switch (cryp->ctx->keylen) {
536 	case AES_KEYSIZE_128:
537 		cfg |= CR_KEY128;
538 		break;
539 
540 	case AES_KEYSIZE_192:
541 		cfg |= CR_KEY192;
542 		break;
543 
544 	default:
545 	case AES_KEYSIZE_256:
546 		cfg |= CR_KEY256;
547 		break;
548 	}
549 
550 	hw_mode = stm32_cryp_get_hw_mode(cryp);
551 	if (hw_mode == CR_AES_UNKNOWN)
552 		return -EINVAL;
553 
554 	/* AES ECB/CBC decrypt: run key preparation first */
555 	if (is_decrypt(cryp) &&
556 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
557 		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
558 
559 		/* Wait for end of processing */
560 		ret = stm32_cryp_wait_busy(cryp);
561 		if (ret) {
562 			dev_err(cryp->dev, "Timeout (key preparation)\n");
563 			return ret;
564 		}
565 	}
566 
567 	cfg |= hw_mode;
568 
569 	if (is_decrypt(cryp))
570 		cfg |= CR_DEC_NOT_ENC;
571 
572 	/* Apply config and flush (valid when CRYPEN = 0) */
573 	stm32_cryp_write(cryp, CRYP_CR, cfg);
574 
575 	switch (hw_mode) {
576 	case CR_AES_GCM:
577 	case CR_AES_CCM:
578 		/* Phase 1 : init */
579 		if (hw_mode == CR_AES_CCM)
580 			ret = stm32_cryp_ccm_init(cryp, cfg);
581 		else
582 			ret = stm32_cryp_gcm_init(cryp, cfg);
583 
584 		if (ret)
585 			return ret;
586 
587 		/* Phase 2 : header (authenticated data) */
588 		if (cryp->areq->assoclen) {
589 			cfg |= CR_PH_HEADER;
590 		} else if (stm32_cryp_get_input_text_len(cryp)) {
591 			cfg |= CR_PH_PAYLOAD;
592 			stm32_cryp_write(cryp, CRYP_CR, cfg);
593 		} else {
594 			cfg |= CR_PH_INIT;
595 		}
596 
597 		break;
598 
599 	case CR_DES_CBC:
600 	case CR_TDES_CBC:
601 	case CR_AES_CBC:
602 	case CR_AES_CTR:
603 		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
604 		break;
605 
606 	default:
607 		break;
608 	}
609 
610 	/* Enable now */
611 	cfg |= CR_CRYPEN;
612 
613 	stm32_cryp_write(cryp, CRYP_CR, cfg);
614 
615 	cryp->flags &= ~FLG_CCM_PADDED_WA;
616 
617 	return 0;
618 }
619 
620 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
621 {
622 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
623 		/* Phase 4 : output tag */
624 		err = stm32_cryp_read_auth_tag(cryp);
625 
626 	if (cryp->sgs_copied) {
627 		void *buf_in, *buf_out;
628 		int pages, len;
629 
630 		buf_in = sg_virt(&cryp->in_sgl);
631 		buf_out = sg_virt(&cryp->out_sgl);
632 
633 		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
634 			    cryp->total_out_save, 1);
635 
636 		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
637 		pages = len ? get_order(len) : 1;
638 		free_pages((unsigned long)buf_in, pages);
639 
640 		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
641 		pages = len ? get_order(len) : 1;
642 		free_pages((unsigned long)buf_out, pages);
643 	}
644 
645 	pm_runtime_mark_last_busy(cryp->dev);
646 	pm_runtime_put_autosuspend(cryp->dev);
647 
648 	if (is_gcm(cryp) || is_ccm(cryp)) {
649 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
650 		cryp->areq = NULL;
651 	} else {
652 		crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
653 						   err);
654 		cryp->req = NULL;
655 	}
656 
657 	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
658 
659 	mutex_unlock(&cryp->lock);
660 }
661 
662 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
663 {
664 	/* Enable interrupt and let the IRQ handler do everything */
665 	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
666 
667 	return 0;
668 }
669 
670 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
671 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
672 					 void *areq);
673 
674 static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
675 {
676 	struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
677 
678 	tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
679 
680 	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
681 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
682 	ctx->enginectx.op.unprepare_request = NULL;
683 	return 0;
684 }
685 
686 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
687 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
688 				       void *areq);
689 
690 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
691 {
692 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
693 
694 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
695 
696 	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
697 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
698 	ctx->enginectx.op.unprepare_request = NULL;
699 
700 	return 0;
701 }
702 
703 static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
704 {
705 	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
706 			crypto_ablkcipher_reqtfm(req));
707 	struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
708 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
709 
710 	if (!cryp)
711 		return -ENODEV;
712 
713 	rctx->mode = mode;
714 
715 	return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
716 }
717 
718 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
719 {
720 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
721 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
722 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
723 
724 	if (!cryp)
725 		return -ENODEV;
726 
727 	rctx->mode = mode;
728 
729 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
730 }
731 
732 static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
733 			     unsigned int keylen)
734 {
735 	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
736 
737 	memcpy(ctx->key, key, keylen);
738 	ctx->keylen = keylen;
739 
740 	return 0;
741 }
742 
743 static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
744 				 unsigned int keylen)
745 {
746 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
747 	    keylen != AES_KEYSIZE_256)
748 		return -EINVAL;
749 	else
750 		return stm32_cryp_setkey(tfm, key, keylen);
751 }
752 
753 static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
754 				 unsigned int keylen)
755 {
756 	if (keylen != DES_KEY_SIZE)
757 		return -EINVAL;
758 	else
759 		return stm32_cryp_setkey(tfm, key, keylen);
760 }
761 
762 static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
763 				  unsigned int keylen)
764 {
765 	if (keylen != (3 * DES_KEY_SIZE))
766 		return -EINVAL;
767 	else
768 		return stm32_cryp_setkey(tfm, key, keylen);
769 }
770 
771 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
772 				      unsigned int keylen)
773 {
774 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
775 
776 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
777 	    keylen != AES_KEYSIZE_256)
778 		return -EINVAL;
779 
780 	memcpy(ctx->key, key, keylen);
781 	ctx->keylen = keylen;
782 
783 	return 0;
784 }
785 
786 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
787 					  unsigned int authsize)
788 {
789 	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
790 }
791 
792 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
793 					  unsigned int authsize)
794 {
795 	switch (authsize) {
796 	case 4:
797 	case 6:
798 	case 8:
799 	case 10:
800 	case 12:
801 	case 14:
802 	case 16:
803 		break;
804 	default:
805 		return -EINVAL;
806 	}
807 
808 	return 0;
809 }
810 
811 static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
812 {
813 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
814 }
815 
816 static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
817 {
818 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
819 }
820 
821 static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
822 {
823 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
824 }
825 
826 static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
827 {
828 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
829 }
830 
831 static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
832 {
833 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
834 }
835 
836 static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
837 {
838 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
839 }
840 
841 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
842 {
843 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
844 }
845 
846 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
847 {
848 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
849 }
850 
851 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
852 {
853 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
854 }
855 
856 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
857 {
858 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
859 }
860 
861 static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
862 {
863 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
864 }
865 
866 static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
867 {
868 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
869 }
870 
871 static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
872 {
873 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
874 }
875 
876 static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
877 {
878 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
879 }
880 
881 static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
882 {
883 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
884 }
885 
886 static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
887 {
888 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
889 }
890 
891 static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
892 {
893 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
894 }
895 
896 static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
897 {
898 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
899 }
900 
901 static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
902 				  struct aead_request *areq)
903 {
904 	struct stm32_cryp_ctx *ctx;
905 	struct stm32_cryp *cryp;
906 	struct stm32_cryp_reqctx *rctx;
907 	int ret;
908 
909 	if (!req && !areq)
910 		return -EINVAL;
911 
912 	ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
913 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
914 
915 	cryp = ctx->cryp;
916 
917 	if (!cryp)
918 		return -ENODEV;
919 
920 	mutex_lock(&cryp->lock);
921 
922 	rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
923 	rctx->mode &= FLG_MODE_MASK;
924 
925 	ctx->cryp = cryp;
926 
927 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
928 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
929 	cryp->ctx = ctx;
930 
931 	if (req) {
932 		cryp->req = req;
933 		cryp->total_in = req->nbytes;
934 		cryp->total_out = cryp->total_in;
935 	} else {
936 		/*
937 		 * Length of input and output data:
938 		 * Encryption case:
939 		 *  INPUT  =   AssocData  ||   PlainText
940 		 *          <- assoclen ->  <- cryptlen ->
941 		 *          <------- total_in ----------->
942 		 *
943 		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
944 		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
945 		 *          <---------------- total_out ----------------->
946 		 *
947 		 * Decryption case:
948 		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
949 		 *          <- assoclen ->  <--------- cryptlen --------->
950 		 *                                          <- authsize ->
951 		 *          <---------------- total_in ------------------>
952 		 *
953 		 *  OUTPUT =   AssocData  ||   PlainText
954 		 *          <- assoclen ->  <- crypten - authsize ->
955 		 *          <---------- total_out ----------------->
956 		 */
957 		cryp->areq = areq;
958 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
959 		cryp->total_in = areq->assoclen + areq->cryptlen;
960 		if (is_encrypt(cryp))
961 			/* Append auth tag to output */
962 			cryp->total_out = cryp->total_in + cryp->authsize;
963 		else
964 			/* No auth tag in output */
965 			cryp->total_out = cryp->total_in - cryp->authsize;
966 	}
967 
968 	cryp->total_in_save = cryp->total_in;
969 	cryp->total_out_save = cryp->total_out;
970 
971 	cryp->in_sg = req ? req->src : areq->src;
972 	cryp->out_sg = req ? req->dst : areq->dst;
973 	cryp->out_sg_save = cryp->out_sg;
974 
975 	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
976 	if (cryp->in_sg_len < 0) {
977 		dev_err(cryp->dev, "Cannot get in_sg_len\n");
978 		ret = cryp->in_sg_len;
979 		goto out;
980 	}
981 
982 	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
983 	if (cryp->out_sg_len < 0) {
984 		dev_err(cryp->dev, "Cannot get out_sg_len\n");
985 		ret = cryp->out_sg_len;
986 		goto out;
987 	}
988 
989 	ret = stm32_cryp_copy_sgs(cryp);
990 	if (ret)
991 		goto out;
992 
993 	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
994 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
995 
996 	if (is_gcm(cryp) || is_ccm(cryp)) {
997 		/* In output, jump after assoc data */
998 		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
999 		cryp->total_out -= cryp->areq->assoclen;
1000 	}
1001 
1002 	ret = stm32_cryp_hw_init(cryp);
1003 out:
1004 	if (ret)
1005 		mutex_unlock(&cryp->lock);
1006 
1007 	return ret;
1008 }
1009 
1010 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1011 					 void *areq)
1012 {
1013 	struct ablkcipher_request *req = container_of(areq,
1014 						      struct ablkcipher_request,
1015 						      base);
1016 
1017 	return stm32_cryp_prepare_req(req, NULL);
1018 }
1019 
1020 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1021 {
1022 	struct ablkcipher_request *req = container_of(areq,
1023 						      struct ablkcipher_request,
1024 						      base);
1025 	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1026 			crypto_ablkcipher_reqtfm(req));
1027 	struct stm32_cryp *cryp = ctx->cryp;
1028 
1029 	if (!cryp)
1030 		return -ENODEV;
1031 
1032 	return stm32_cryp_cpu_start(cryp);
1033 }
1034 
1035 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1036 {
1037 	struct aead_request *req = container_of(areq, struct aead_request,
1038 						base);
1039 
1040 	return stm32_cryp_prepare_req(NULL, req);
1041 }
1042 
1043 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1044 {
1045 	struct aead_request *req = container_of(areq, struct aead_request,
1046 						base);
1047 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1048 	struct stm32_cryp *cryp = ctx->cryp;
1049 
1050 	if (!cryp)
1051 		return -ENODEV;
1052 
1053 	if (unlikely(!cryp->areq->assoclen &&
1054 		     !stm32_cryp_get_input_text_len(cryp))) {
1055 		/* No input data to process: get tag and finish */
1056 		stm32_cryp_finish_req(cryp, 0);
1057 		return 0;
1058 	}
1059 
1060 	return stm32_cryp_cpu_start(cryp);
1061 }
1062 
1063 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1064 				unsigned int n)
1065 {
1066 	scatterwalk_advance(&cryp->out_walk, n);
1067 
1068 	if (unlikely(cryp->out_sg->length == _walked_out)) {
1069 		cryp->out_sg = sg_next(cryp->out_sg);
1070 		if (cryp->out_sg) {
1071 			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1072 			return (sg_virt(cryp->out_sg) + _walked_out);
1073 		}
1074 	}
1075 
1076 	return (u32 *)((u8 *)dst + n);
1077 }
1078 
1079 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1080 			       unsigned int n)
1081 {
1082 	scatterwalk_advance(&cryp->in_walk, n);
1083 
1084 	if (unlikely(cryp->in_sg->length == _walked_in)) {
1085 		cryp->in_sg = sg_next(cryp->in_sg);
1086 		if (cryp->in_sg) {
1087 			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1088 			return (sg_virt(cryp->in_sg) + _walked_in);
1089 		}
1090 	}
1091 
1092 	return (u32 *)((u8 *)src + n);
1093 }
1094 
1095 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1096 {
1097 	u32 cfg, size_bit, *dst, d32;
1098 	u8 *d8;
1099 	unsigned int i, j;
1100 	int ret = 0;
1101 
1102 	/* Update Config */
1103 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1104 
1105 	cfg &= ~CR_PH_MASK;
1106 	cfg |= CR_PH_FINAL;
1107 	cfg &= ~CR_DEC_NOT_ENC;
1108 	cfg |= CR_CRYPEN;
1109 
1110 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1111 
1112 	if (is_gcm(cryp)) {
1113 		/* GCM: write aad and payload size (in bits) */
1114 		size_bit = cryp->areq->assoclen * 8;
1115 		if (cryp->caps->swap_final)
1116 			size_bit = cpu_to_be32(size_bit);
1117 
1118 		stm32_cryp_write(cryp, CRYP_DIN, 0);
1119 		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1120 
1121 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1122 				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1123 		size_bit *= 8;
1124 		if (cryp->caps->swap_final)
1125 			size_bit = cpu_to_be32(size_bit);
1126 
1127 		stm32_cryp_write(cryp, CRYP_DIN, 0);
1128 		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1129 	} else {
1130 		/* CCM: write CTR0 */
1131 		u8 iv[AES_BLOCK_SIZE];
1132 		u32 *iv32 = (u32 *)iv;
1133 
1134 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1135 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1136 
1137 		for (i = 0; i < AES_BLOCK_32; i++) {
1138 			if (!cryp->caps->padding_wa)
1139 				*iv32 = cpu_to_be32(*iv32);
1140 			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1141 		}
1142 	}
1143 
1144 	/* Wait for output data */
1145 	ret = stm32_cryp_wait_output(cryp);
1146 	if (ret) {
1147 		dev_err(cryp->dev, "Timeout (read tag)\n");
1148 		return ret;
1149 	}
1150 
1151 	if (is_encrypt(cryp)) {
1152 		/* Get and write tag */
1153 		dst = sg_virt(cryp->out_sg) + _walked_out;
1154 
1155 		for (i = 0; i < AES_BLOCK_32; i++) {
1156 			if (cryp->total_out >= sizeof(u32)) {
1157 				/* Read a full u32 */
1158 				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1159 
1160 				dst = stm32_cryp_next_out(cryp, dst,
1161 							  sizeof(u32));
1162 				cryp->total_out -= sizeof(u32);
1163 			} else if (!cryp->total_out) {
1164 				/* Empty fifo out (data from input padding) */
1165 				stm32_cryp_read(cryp, CRYP_DOUT);
1166 			} else {
1167 				/* Read less than an u32 */
1168 				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1169 				d8 = (u8 *)&d32;
1170 
1171 				for (j = 0; j < cryp->total_out; j++) {
1172 					*((u8 *)dst) = *(d8++);
1173 					dst = stm32_cryp_next_out(cryp, dst, 1);
1174 				}
1175 				cryp->total_out = 0;
1176 			}
1177 		}
1178 	} else {
1179 		/* Get and check tag */
1180 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1181 
1182 		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1183 					 cryp->total_in_save - cryp->authsize,
1184 					 cryp->authsize, 0);
1185 
1186 		for (i = 0; i < AES_BLOCK_32; i++)
1187 			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1188 
1189 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1190 			ret = -EBADMSG;
1191 	}
1192 
1193 	/* Disable cryp */
1194 	cfg &= ~CR_CRYPEN;
1195 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1196 
1197 	return ret;
1198 }
1199 
1200 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1201 {
1202 	u32 cr;
1203 
1204 	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1205 		cryp->last_ctr[3] = 0;
1206 		cryp->last_ctr[2]++;
1207 		if (!cryp->last_ctr[2]) {
1208 			cryp->last_ctr[1]++;
1209 			if (!cryp->last_ctr[1])
1210 				cryp->last_ctr[0]++;
1211 		}
1212 
1213 		cr = stm32_cryp_read(cryp, CRYP_CR);
1214 		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1215 
1216 		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1217 
1218 		stm32_cryp_write(cryp, CRYP_CR, cr);
1219 	}
1220 
1221 	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1222 	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1223 	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1224 	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1225 }
1226 
1227 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1228 {
1229 	unsigned int i, j;
1230 	u32 d32, *dst;
1231 	u8 *d8;
1232 	size_t tag_size;
1233 
1234 	/* Do no read tag now (if any) */
1235 	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1236 		tag_size = cryp->authsize;
1237 	else
1238 		tag_size = 0;
1239 
1240 	dst = sg_virt(cryp->out_sg) + _walked_out;
1241 
1242 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1243 		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1244 			/* Read a full u32 */
1245 			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1246 
1247 			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1248 			cryp->total_out -= sizeof(u32);
1249 		} else if (cryp->total_out == tag_size) {
1250 			/* Empty fifo out (data from input padding) */
1251 			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1252 		} else {
1253 			/* Read less than an u32 */
1254 			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1255 			d8 = (u8 *)&d32;
1256 
1257 			for (j = 0; j < cryp->total_out - tag_size; j++) {
1258 				*((u8 *)dst) = *(d8++);
1259 				dst = stm32_cryp_next_out(cryp, dst, 1);
1260 			}
1261 			cryp->total_out = tag_size;
1262 		}
1263 	}
1264 
1265 	return !(cryp->total_out - tag_size) || !cryp->total_in;
1266 }
1267 
1268 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1269 {
1270 	unsigned int i, j;
1271 	u32 *src;
1272 	u8 d8[4];
1273 	size_t tag_size;
1274 
1275 	/* Do no write tag (if any) */
1276 	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1277 		tag_size = cryp->authsize;
1278 	else
1279 		tag_size = 0;
1280 
1281 	src = sg_virt(cryp->in_sg) + _walked_in;
1282 
1283 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1284 		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1285 			/* Write a full u32 */
1286 			stm32_cryp_write(cryp, CRYP_DIN, *src);
1287 
1288 			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1289 			cryp->total_in -= sizeof(u32);
1290 		} else if (cryp->total_in == tag_size) {
1291 			/* Write padding data */
1292 			stm32_cryp_write(cryp, CRYP_DIN, 0);
1293 		} else {
1294 			/* Write less than an u32 */
1295 			memset(d8, 0, sizeof(u32));
1296 			for (j = 0; j < cryp->total_in - tag_size; j++) {
1297 				d8[j] = *((u8 *)src);
1298 				src = stm32_cryp_next_in(cryp, src, 1);
1299 			}
1300 
1301 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1302 			cryp->total_in = tag_size;
1303 		}
1304 	}
1305 }
1306 
1307 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1308 {
1309 	int err;
1310 	u32 cfg, tmp[AES_BLOCK_32];
1311 	size_t total_in_ori = cryp->total_in;
1312 	struct scatterlist *out_sg_ori = cryp->out_sg;
1313 	unsigned int i;
1314 
1315 	/* 'Special workaround' procedure described in the datasheet */
1316 
1317 	/* a) disable ip */
1318 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1319 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1320 	cfg &= ~CR_CRYPEN;
1321 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1322 
1323 	/* b) Update IV1R */
1324 	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1325 
1326 	/* c) change mode to CTR */
1327 	cfg &= ~CR_ALGO_MASK;
1328 	cfg |= CR_AES_CTR;
1329 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1330 
1331 	/* a) enable IP */
1332 	cfg |= CR_CRYPEN;
1333 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1334 
1335 	/* b) pad and write the last block */
1336 	stm32_cryp_irq_write_block(cryp);
1337 	cryp->total_in = total_in_ori;
1338 	err = stm32_cryp_wait_output(cryp);
1339 	if (err) {
1340 		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1341 		return stm32_cryp_finish_req(cryp, err);
1342 	}
1343 
1344 	/* c) get and store encrypted data */
1345 	stm32_cryp_irq_read_data(cryp);
1346 	scatterwalk_map_and_copy(tmp, out_sg_ori,
1347 				 cryp->total_in_save - total_in_ori,
1348 				 total_in_ori, 0);
1349 
1350 	/* d) change mode back to AES GCM */
1351 	cfg &= ~CR_ALGO_MASK;
1352 	cfg |= CR_AES_GCM;
1353 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1354 
1355 	/* e) change phase to Final */
1356 	cfg &= ~CR_PH_MASK;
1357 	cfg |= CR_PH_FINAL;
1358 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1359 
1360 	/* f) write padded data */
1361 	for (i = 0; i < AES_BLOCK_32; i++) {
1362 		if (cryp->total_in)
1363 			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1364 		else
1365 			stm32_cryp_write(cryp, CRYP_DIN, 0);
1366 
1367 		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1368 	}
1369 
1370 	/* g) Empty fifo out */
1371 	err = stm32_cryp_wait_output(cryp);
1372 	if (err) {
1373 		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1374 		return stm32_cryp_finish_req(cryp, err);
1375 	}
1376 
1377 	for (i = 0; i < AES_BLOCK_32; i++)
1378 		stm32_cryp_read(cryp, CRYP_DOUT);
1379 
1380 	/* h) run the he normal Final phase */
1381 	stm32_cryp_finish_req(cryp, 0);
1382 }
1383 
1384 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1385 {
1386 	u32 cfg, payload_bytes;
1387 
1388 	/* disable ip, set NPBLB and reneable ip */
1389 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1390 	cfg &= ~CR_CRYPEN;
1391 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1392 
1393 	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1394 					   cryp->total_in;
1395 	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1396 	cfg |= CR_CRYPEN;
1397 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1398 }
1399 
1400 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1401 {
1402 	int err = 0;
1403 	u32 cfg, iv1tmp;
1404 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1405 	size_t last_total_out, total_in_ori = cryp->total_in;
1406 	struct scatterlist *out_sg_ori = cryp->out_sg;
1407 	unsigned int i;
1408 
1409 	/* 'Special workaround' procedure described in the datasheet */
1410 	cryp->flags |= FLG_CCM_PADDED_WA;
1411 
1412 	/* a) disable ip */
1413 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1414 
1415 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1416 	cfg &= ~CR_CRYPEN;
1417 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1418 
1419 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1420 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1421 
1422 	/* c) Load CRYP_CSGCMCCMxR */
1423 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1424 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1425 
1426 	/* d) Write IV1R */
1427 	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1428 
1429 	/* e) change mode to CTR */
1430 	cfg &= ~CR_ALGO_MASK;
1431 	cfg |= CR_AES_CTR;
1432 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1433 
1434 	/* a) enable IP */
1435 	cfg |= CR_CRYPEN;
1436 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1437 
1438 	/* b) pad and write the last block */
1439 	stm32_cryp_irq_write_block(cryp);
1440 	cryp->total_in = total_in_ori;
1441 	err = stm32_cryp_wait_output(cryp);
1442 	if (err) {
1443 		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1444 		return stm32_cryp_finish_req(cryp, err);
1445 	}
1446 
1447 	/* c) get and store decrypted data */
1448 	last_total_out = cryp->total_out;
1449 	stm32_cryp_irq_read_data(cryp);
1450 
1451 	memset(tmp, 0, sizeof(tmp));
1452 	scatterwalk_map_and_copy(tmp, out_sg_ori,
1453 				 cryp->total_out_save - last_total_out,
1454 				 last_total_out, 0);
1455 
1456 	/* d) Load again CRYP_CSGCMCCMxR */
1457 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1458 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1459 
1460 	/* e) change mode back to AES CCM */
1461 	cfg &= ~CR_ALGO_MASK;
1462 	cfg |= CR_AES_CCM;
1463 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1464 
1465 	/* f) change phase to header */
1466 	cfg &= ~CR_PH_MASK;
1467 	cfg |= CR_PH_HEADER;
1468 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1469 
1470 	/* g) XOR and write padded data */
1471 	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1472 		tmp[i] ^= cstmp1[i];
1473 		tmp[i] ^= cstmp2[i];
1474 		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1475 	}
1476 
1477 	/* h) wait for completion */
1478 	err = stm32_cryp_wait_busy(cryp);
1479 	if (err)
1480 		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1481 
1482 	/* i) run the he normal Final phase */
1483 	stm32_cryp_finish_req(cryp, err);
1484 }
1485 
1486 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1487 {
1488 	if (unlikely(!cryp->total_in)) {
1489 		dev_warn(cryp->dev, "No more data to process\n");
1490 		return;
1491 	}
1492 
1493 	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1494 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1495 		     is_encrypt(cryp))) {
1496 		/* Padding for AES GCM encryption */
1497 		if (cryp->caps->padding_wa)
1498 			/* Special case 1 */
1499 			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1500 
1501 		/* Setting padding bytes (NBBLB) */
1502 		stm32_cryp_irq_set_npblb(cryp);
1503 	}
1504 
1505 	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1506 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1507 		     is_decrypt(cryp))) {
1508 		/* Padding for AES CCM decryption */
1509 		if (cryp->caps->padding_wa)
1510 			/* Special case 2 */
1511 			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1512 
1513 		/* Setting padding bytes (NBBLB) */
1514 		stm32_cryp_irq_set_npblb(cryp);
1515 	}
1516 
1517 	if (is_aes(cryp) && is_ctr(cryp))
1518 		stm32_cryp_check_ctr_counter(cryp);
1519 
1520 	stm32_cryp_irq_write_block(cryp);
1521 }
1522 
1523 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1524 {
1525 	int err;
1526 	unsigned int i, j;
1527 	u32 cfg, *src;
1528 
1529 	src = sg_virt(cryp->in_sg) + _walked_in;
1530 
1531 	for (i = 0; i < AES_BLOCK_32; i++) {
1532 		stm32_cryp_write(cryp, CRYP_DIN, *src);
1533 
1534 		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1535 		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1536 
1537 		/* Check if whole header written */
1538 		if ((cryp->total_in_save - cryp->total_in) ==
1539 				cryp->areq->assoclen) {
1540 			/* Write padding if needed */
1541 			for (j = i + 1; j < AES_BLOCK_32; j++)
1542 				stm32_cryp_write(cryp, CRYP_DIN, 0);
1543 
1544 			/* Wait for completion */
1545 			err = stm32_cryp_wait_busy(cryp);
1546 			if (err) {
1547 				dev_err(cryp->dev, "Timeout (gcm header)\n");
1548 				return stm32_cryp_finish_req(cryp, err);
1549 			}
1550 
1551 			if (stm32_cryp_get_input_text_len(cryp)) {
1552 				/* Phase 3 : payload */
1553 				cfg = stm32_cryp_read(cryp, CRYP_CR);
1554 				cfg &= ~CR_CRYPEN;
1555 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1556 
1557 				cfg &= ~CR_PH_MASK;
1558 				cfg |= CR_PH_PAYLOAD;
1559 				cfg |= CR_CRYPEN;
1560 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1561 			} else {
1562 				/* Phase 4 : tag */
1563 				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1564 				stm32_cryp_finish_req(cryp, 0);
1565 			}
1566 
1567 			break;
1568 		}
1569 
1570 		if (!cryp->total_in)
1571 			break;
1572 	}
1573 }
1574 
1575 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1576 {
1577 	int err;
1578 	unsigned int i = 0, j, k;
1579 	u32 alen, cfg, *src;
1580 	u8 d8[4];
1581 
1582 	src = sg_virt(cryp->in_sg) + _walked_in;
1583 	alen = cryp->areq->assoclen;
1584 
1585 	if (!_walked_in) {
1586 		if (cryp->areq->assoclen <= 65280) {
1587 			/* Write first u32 of B1 */
1588 			d8[0] = (alen >> 8) & 0xFF;
1589 			d8[1] = alen & 0xFF;
1590 			d8[2] = *((u8 *)src);
1591 			src = stm32_cryp_next_in(cryp, src, 1);
1592 			d8[3] = *((u8 *)src);
1593 			src = stm32_cryp_next_in(cryp, src, 1);
1594 
1595 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1596 			i++;
1597 
1598 			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1599 		} else {
1600 			/* Build the two first u32 of B1 */
1601 			d8[0] = 0xFF;
1602 			d8[1] = 0xFE;
1603 			d8[2] = alen & 0xFF000000;
1604 			d8[3] = alen & 0x00FF0000;
1605 
1606 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1607 			i++;
1608 
1609 			d8[0] = alen & 0x0000FF00;
1610 			d8[1] = alen & 0x000000FF;
1611 			d8[2] = *((u8 *)src);
1612 			src = stm32_cryp_next_in(cryp, src, 1);
1613 			d8[3] = *((u8 *)src);
1614 			src = stm32_cryp_next_in(cryp, src, 1);
1615 
1616 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1617 			i++;
1618 
1619 			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1620 		}
1621 	}
1622 
1623 	/* Write next u32 */
1624 	for (; i < AES_BLOCK_32; i++) {
1625 		/* Build an u32 */
1626 		memset(d8, 0, sizeof(u32));
1627 		for (k = 0; k < sizeof(u32); k++) {
1628 			d8[k] = *((u8 *)src);
1629 			src = stm32_cryp_next_in(cryp, src, 1);
1630 
1631 			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1632 			if ((cryp->total_in_save - cryp->total_in) == alen)
1633 				break;
1634 		}
1635 
1636 		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1637 
1638 		if ((cryp->total_in_save - cryp->total_in) == alen) {
1639 			/* Write padding if needed */
1640 			for (j = i + 1; j < AES_BLOCK_32; j++)
1641 				stm32_cryp_write(cryp, CRYP_DIN, 0);
1642 
1643 			/* Wait for completion */
1644 			err = stm32_cryp_wait_busy(cryp);
1645 			if (err) {
1646 				dev_err(cryp->dev, "Timeout (ccm header)\n");
1647 				return stm32_cryp_finish_req(cryp, err);
1648 			}
1649 
1650 			if (stm32_cryp_get_input_text_len(cryp)) {
1651 				/* Phase 3 : payload */
1652 				cfg = stm32_cryp_read(cryp, CRYP_CR);
1653 				cfg &= ~CR_CRYPEN;
1654 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1655 
1656 				cfg &= ~CR_PH_MASK;
1657 				cfg |= CR_PH_PAYLOAD;
1658 				cfg |= CR_CRYPEN;
1659 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1660 			} else {
1661 				/* Phase 4 : tag */
1662 				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1663 				stm32_cryp_finish_req(cryp, 0);
1664 			}
1665 
1666 			break;
1667 		}
1668 	}
1669 }
1670 
1671 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1672 {
1673 	struct stm32_cryp *cryp = arg;
1674 	u32 ph;
1675 
1676 	if (cryp->irq_status & MISR_OUT)
1677 		/* Output FIFO IRQ: read data */
1678 		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1679 			/* All bytes processed, finish */
1680 			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1681 			stm32_cryp_finish_req(cryp, 0);
1682 			return IRQ_HANDLED;
1683 		}
1684 
1685 	if (cryp->irq_status & MISR_IN) {
1686 		if (is_gcm(cryp)) {
1687 			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1688 			if (unlikely(ph == CR_PH_HEADER))
1689 				/* Write Header */
1690 				stm32_cryp_irq_write_gcm_header(cryp);
1691 			else
1692 				/* Input FIFO IRQ: write data */
1693 				stm32_cryp_irq_write_data(cryp);
1694 			cryp->gcm_ctr++;
1695 		} else if (is_ccm(cryp)) {
1696 			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1697 			if (unlikely(ph == CR_PH_HEADER))
1698 				/* Write Header */
1699 				stm32_cryp_irq_write_ccm_header(cryp);
1700 			else
1701 				/* Input FIFO IRQ: write data */
1702 				stm32_cryp_irq_write_data(cryp);
1703 		} else {
1704 			/* Input FIFO IRQ: write data */
1705 			stm32_cryp_irq_write_data(cryp);
1706 		}
1707 	}
1708 
1709 	return IRQ_HANDLED;
1710 }
1711 
1712 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1713 {
1714 	struct stm32_cryp *cryp = arg;
1715 
1716 	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1717 
1718 	return IRQ_WAKE_THREAD;
1719 }
1720 
1721 static struct crypto_alg crypto_algs[] = {
1722 {
1723 	.cra_name		= "ecb(aes)",
1724 	.cra_driver_name	= "stm32-ecb-aes",
1725 	.cra_priority		= 200,
1726 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1727 				  CRYPTO_ALG_ASYNC,
1728 	.cra_blocksize		= AES_BLOCK_SIZE,
1729 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1730 	.cra_alignmask		= 0xf,
1731 	.cra_type		= &crypto_ablkcipher_type,
1732 	.cra_module		= THIS_MODULE,
1733 	.cra_init		= stm32_cryp_cra_init,
1734 	.cra_ablkcipher = {
1735 		.min_keysize	= AES_MIN_KEY_SIZE,
1736 		.max_keysize	= AES_MAX_KEY_SIZE,
1737 		.setkey		= stm32_cryp_aes_setkey,
1738 		.encrypt	= stm32_cryp_aes_ecb_encrypt,
1739 		.decrypt	= stm32_cryp_aes_ecb_decrypt,
1740 	}
1741 },
1742 {
1743 	.cra_name		= "cbc(aes)",
1744 	.cra_driver_name	= "stm32-cbc-aes",
1745 	.cra_priority		= 200,
1746 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1747 				  CRYPTO_ALG_ASYNC,
1748 	.cra_blocksize		= AES_BLOCK_SIZE,
1749 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1750 	.cra_alignmask		= 0xf,
1751 	.cra_type		= &crypto_ablkcipher_type,
1752 	.cra_module		= THIS_MODULE,
1753 	.cra_init		= stm32_cryp_cra_init,
1754 	.cra_ablkcipher = {
1755 		.min_keysize	= AES_MIN_KEY_SIZE,
1756 		.max_keysize	= AES_MAX_KEY_SIZE,
1757 		.ivsize		= AES_BLOCK_SIZE,
1758 		.setkey		= stm32_cryp_aes_setkey,
1759 		.encrypt	= stm32_cryp_aes_cbc_encrypt,
1760 		.decrypt	= stm32_cryp_aes_cbc_decrypt,
1761 	}
1762 },
1763 {
1764 	.cra_name		= "ctr(aes)",
1765 	.cra_driver_name	= "stm32-ctr-aes",
1766 	.cra_priority		= 200,
1767 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1768 				  CRYPTO_ALG_ASYNC,
1769 	.cra_blocksize		= 1,
1770 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1771 	.cra_alignmask		= 0xf,
1772 	.cra_type		= &crypto_ablkcipher_type,
1773 	.cra_module		= THIS_MODULE,
1774 	.cra_init		= stm32_cryp_cra_init,
1775 	.cra_ablkcipher = {
1776 		.min_keysize	= AES_MIN_KEY_SIZE,
1777 		.max_keysize	= AES_MAX_KEY_SIZE,
1778 		.ivsize		= AES_BLOCK_SIZE,
1779 		.setkey		= stm32_cryp_aes_setkey,
1780 		.encrypt	= stm32_cryp_aes_ctr_encrypt,
1781 		.decrypt	= stm32_cryp_aes_ctr_decrypt,
1782 	}
1783 },
1784 {
1785 	.cra_name		= "ecb(des)",
1786 	.cra_driver_name	= "stm32-ecb-des",
1787 	.cra_priority		= 200,
1788 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1789 				  CRYPTO_ALG_ASYNC,
1790 	.cra_blocksize		= DES_BLOCK_SIZE,
1791 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1792 	.cra_alignmask		= 0xf,
1793 	.cra_type		= &crypto_ablkcipher_type,
1794 	.cra_module		= THIS_MODULE,
1795 	.cra_init		= stm32_cryp_cra_init,
1796 	.cra_ablkcipher = {
1797 		.min_keysize	= DES_BLOCK_SIZE,
1798 		.max_keysize	= DES_BLOCK_SIZE,
1799 		.setkey		= stm32_cryp_des_setkey,
1800 		.encrypt	= stm32_cryp_des_ecb_encrypt,
1801 		.decrypt	= stm32_cryp_des_ecb_decrypt,
1802 	}
1803 },
1804 {
1805 	.cra_name		= "cbc(des)",
1806 	.cra_driver_name	= "stm32-cbc-des",
1807 	.cra_priority		= 200,
1808 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1809 				  CRYPTO_ALG_ASYNC,
1810 	.cra_blocksize		= DES_BLOCK_SIZE,
1811 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1812 	.cra_alignmask		= 0xf,
1813 	.cra_type		= &crypto_ablkcipher_type,
1814 	.cra_module		= THIS_MODULE,
1815 	.cra_init		= stm32_cryp_cra_init,
1816 	.cra_ablkcipher = {
1817 		.min_keysize	= DES_BLOCK_SIZE,
1818 		.max_keysize	= DES_BLOCK_SIZE,
1819 		.ivsize		= DES_BLOCK_SIZE,
1820 		.setkey		= stm32_cryp_des_setkey,
1821 		.encrypt	= stm32_cryp_des_cbc_encrypt,
1822 		.decrypt	= stm32_cryp_des_cbc_decrypt,
1823 	}
1824 },
1825 {
1826 	.cra_name		= "ecb(des3_ede)",
1827 	.cra_driver_name	= "stm32-ecb-des3",
1828 	.cra_priority		= 200,
1829 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1830 				  CRYPTO_ALG_ASYNC,
1831 	.cra_blocksize		= DES_BLOCK_SIZE,
1832 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1833 	.cra_alignmask		= 0xf,
1834 	.cra_type		= &crypto_ablkcipher_type,
1835 	.cra_module		= THIS_MODULE,
1836 	.cra_init		= stm32_cryp_cra_init,
1837 	.cra_ablkcipher = {
1838 		.min_keysize	= 3 * DES_BLOCK_SIZE,
1839 		.max_keysize	= 3 * DES_BLOCK_SIZE,
1840 		.setkey		= stm32_cryp_tdes_setkey,
1841 		.encrypt	= stm32_cryp_tdes_ecb_encrypt,
1842 		.decrypt	= stm32_cryp_tdes_ecb_decrypt,
1843 	}
1844 },
1845 {
1846 	.cra_name		= "cbc(des3_ede)",
1847 	.cra_driver_name	= "stm32-cbc-des3",
1848 	.cra_priority		= 200,
1849 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1850 				  CRYPTO_ALG_ASYNC,
1851 	.cra_blocksize		= DES_BLOCK_SIZE,
1852 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1853 	.cra_alignmask		= 0xf,
1854 	.cra_type		= &crypto_ablkcipher_type,
1855 	.cra_module		= THIS_MODULE,
1856 	.cra_init		= stm32_cryp_cra_init,
1857 	.cra_ablkcipher = {
1858 		.min_keysize	= 3 * DES_BLOCK_SIZE,
1859 		.max_keysize	= 3 * DES_BLOCK_SIZE,
1860 		.ivsize		= DES_BLOCK_SIZE,
1861 		.setkey		= stm32_cryp_tdes_setkey,
1862 		.encrypt	= stm32_cryp_tdes_cbc_encrypt,
1863 		.decrypt	= stm32_cryp_tdes_cbc_decrypt,
1864 	}
1865 },
1866 };
1867 
1868 static struct aead_alg aead_algs[] = {
1869 {
1870 	.setkey		= stm32_cryp_aes_aead_setkey,
1871 	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1872 	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1873 	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1874 	.init		= stm32_cryp_aes_aead_init,
1875 	.ivsize		= 12,
1876 	.maxauthsize	= AES_BLOCK_SIZE,
1877 
1878 	.base = {
1879 		.cra_name		= "gcm(aes)",
1880 		.cra_driver_name	= "stm32-gcm-aes",
1881 		.cra_priority		= 200,
1882 		.cra_flags		= CRYPTO_ALG_ASYNC,
1883 		.cra_blocksize		= 1,
1884 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1885 		.cra_alignmask		= 0xf,
1886 		.cra_module		= THIS_MODULE,
1887 	},
1888 },
1889 {
1890 	.setkey		= stm32_cryp_aes_aead_setkey,
1891 	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1892 	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1893 	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1894 	.init		= stm32_cryp_aes_aead_init,
1895 	.ivsize		= AES_BLOCK_SIZE,
1896 	.maxauthsize	= AES_BLOCK_SIZE,
1897 
1898 	.base = {
1899 		.cra_name		= "ccm(aes)",
1900 		.cra_driver_name	= "stm32-ccm-aes",
1901 		.cra_priority		= 200,
1902 		.cra_flags		= CRYPTO_ALG_ASYNC,
1903 		.cra_blocksize		= 1,
1904 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1905 		.cra_alignmask		= 0xf,
1906 		.cra_module		= THIS_MODULE,
1907 	},
1908 },
1909 };
1910 
1911 static const struct stm32_cryp_caps f7_data = {
1912 	.swap_final = true,
1913 	.padding_wa = true,
1914 };
1915 
1916 static const struct stm32_cryp_caps mp1_data = {
1917 	.swap_final = false,
1918 	.padding_wa = false,
1919 };
1920 
1921 static const struct of_device_id stm32_dt_ids[] = {
1922 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1923 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1924 	{},
1925 };
1926 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1927 
1928 static int stm32_cryp_probe(struct platform_device *pdev)
1929 {
1930 	struct device *dev = &pdev->dev;
1931 	struct stm32_cryp *cryp;
1932 	struct resource *res;
1933 	struct reset_control *rst;
1934 	int irq, ret;
1935 
1936 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1937 	if (!cryp)
1938 		return -ENOMEM;
1939 
1940 	cryp->caps = of_device_get_match_data(dev);
1941 	if (!cryp->caps)
1942 		return -ENODEV;
1943 
1944 	cryp->dev = dev;
1945 
1946 	mutex_init(&cryp->lock);
1947 
1948 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1949 	cryp->regs = devm_ioremap_resource(dev, res);
1950 	if (IS_ERR(cryp->regs))
1951 		return PTR_ERR(cryp->regs);
1952 
1953 	irq = platform_get_irq(pdev, 0);
1954 	if (irq < 0) {
1955 		dev_err(dev, "Cannot get IRQ resource\n");
1956 		return irq;
1957 	}
1958 
1959 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1961 					dev_name(dev), cryp);
1962 	if (ret) {
1963 		dev_err(dev, "Cannot grab IRQ\n");
1964 		return ret;
1965 	}
1966 
1967 	cryp->clk = devm_clk_get(dev, NULL);
1968 	if (IS_ERR(cryp->clk)) {
1969 		dev_err(dev, "Could not get clock\n");
1970 		return PTR_ERR(cryp->clk);
1971 	}
1972 
1973 	ret = clk_prepare_enable(cryp->clk);
1974 	if (ret) {
1975 		dev_err(cryp->dev, "Failed to enable clock\n");
1976 		return ret;
1977 	}
1978 
1979 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980 	pm_runtime_use_autosuspend(dev);
1981 
1982 	pm_runtime_get_noresume(dev);
1983 	pm_runtime_set_active(dev);
1984 	pm_runtime_enable(dev);
1985 
1986 	rst = devm_reset_control_get(dev, NULL);
1987 	if (!IS_ERR(rst)) {
1988 		reset_control_assert(rst);
1989 		udelay(2);
1990 		reset_control_deassert(rst);
1991 	}
1992 
1993 	platform_set_drvdata(pdev, cryp);
1994 
1995 	spin_lock(&cryp_list.lock);
1996 	list_add(&cryp->list, &cryp_list.dev_list);
1997 	spin_unlock(&cryp_list.lock);
1998 
1999 	/* Initialize crypto engine */
2000 	cryp->engine = crypto_engine_alloc_init(dev, 1);
2001 	if (!cryp->engine) {
2002 		dev_err(dev, "Could not init crypto engine\n");
2003 		ret = -ENOMEM;
2004 		goto err_engine1;
2005 	}
2006 
2007 	ret = crypto_engine_start(cryp->engine);
2008 	if (ret) {
2009 		dev_err(dev, "Could not start crypto engine\n");
2010 		goto err_engine2;
2011 	}
2012 
2013 	ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014 	if (ret) {
2015 		dev_err(dev, "Could not register algs\n");
2016 		goto err_algs;
2017 	}
2018 
2019 	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020 	if (ret)
2021 		goto err_aead_algs;
2022 
2023 	dev_info(dev, "Initialized\n");
2024 
2025 	pm_runtime_put_sync(dev);
2026 
2027 	return 0;
2028 
2029 err_aead_algs:
2030 	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031 err_algs:
2032 err_engine2:
2033 	crypto_engine_exit(cryp->engine);
2034 err_engine1:
2035 	spin_lock(&cryp_list.lock);
2036 	list_del(&cryp->list);
2037 	spin_unlock(&cryp_list.lock);
2038 
2039 	pm_runtime_disable(dev);
2040 	pm_runtime_put_noidle(dev);
2041 	pm_runtime_disable(dev);
2042 	pm_runtime_put_noidle(dev);
2043 
2044 	clk_disable_unprepare(cryp->clk);
2045 
2046 	return ret;
2047 }
2048 
2049 static int stm32_cryp_remove(struct platform_device *pdev)
2050 {
2051 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052 	int ret;
2053 
2054 	if (!cryp)
2055 		return -ENODEV;
2056 
2057 	ret = pm_runtime_get_sync(cryp->dev);
2058 	if (ret < 0)
2059 		return ret;
2060 
2061 	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062 	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063 
2064 	crypto_engine_exit(cryp->engine);
2065 
2066 	spin_lock(&cryp_list.lock);
2067 	list_del(&cryp->list);
2068 	spin_unlock(&cryp_list.lock);
2069 
2070 	pm_runtime_disable(cryp->dev);
2071 	pm_runtime_put_noidle(cryp->dev);
2072 
2073 	clk_disable_unprepare(cryp->clk);
2074 
2075 	return 0;
2076 }
2077 
2078 #ifdef CONFIG_PM
2079 static int stm32_cryp_runtime_suspend(struct device *dev)
2080 {
2081 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082 
2083 	clk_disable_unprepare(cryp->clk);
2084 
2085 	return 0;
2086 }
2087 
2088 static int stm32_cryp_runtime_resume(struct device *dev)
2089 {
2090 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091 	int ret;
2092 
2093 	ret = clk_prepare_enable(cryp->clk);
2094 	if (ret) {
2095 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096 		return ret;
2097 	}
2098 
2099 	return 0;
2100 }
2101 #endif
2102 
2103 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105 				pm_runtime_force_resume)
2106 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107 			   stm32_cryp_runtime_resume, NULL)
2108 };
2109 
2110 static struct platform_driver stm32_cryp_driver = {
2111 	.probe  = stm32_cryp_probe,
2112 	.remove = stm32_cryp_remove,
2113 	.driver = {
2114 		.name           = DRIVER_NAME,
2115 		.pm		= &stm32_cryp_pm_ops,
2116 		.of_match_table = stm32_dt_ids,
2117 	},
2118 };
2119 
2120 module_platform_driver(stm32_cryp_driver);
2121 
2122 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124 MODULE_LICENSE("GPL");
2125