1 /*
2  * Copyright (C) STMicroelectronics SA 2017
3  * Author: Fabien Dessenne <fabien.dessenne@st.com>
4  * License terms:  GNU General Public License (GPL), version 2
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reset.h>
15 
16 #include <crypto/aes.h>
17 #include <crypto/des.h>
18 #include <crypto/engine.h>
19 #include <crypto/scatterwalk.h>
20 #include <crypto/internal/aead.h>
21 
22 #define DRIVER_NAME             "stm32-cryp"
23 
24 /* Bit [0] encrypt / decrypt */
25 #define FLG_ENCRYPT             BIT(0)
26 /* Bit [8..1] algo & operation mode */
27 #define FLG_AES                 BIT(1)
28 #define FLG_DES                 BIT(2)
29 #define FLG_TDES                BIT(3)
30 #define FLG_ECB                 BIT(4)
31 #define FLG_CBC                 BIT(5)
32 #define FLG_CTR                 BIT(6)
33 #define FLG_GCM                 BIT(7)
34 #define FLG_CCM                 BIT(8)
35 /* Mode mask = bits [15..0] */
36 #define FLG_MODE_MASK           GENMASK(15, 0)
37 /* Bit [31..16] status  */
38 #define FLG_CCM_PADDED_WA       BIT(16)
39 
40 /* Registers */
41 #define CRYP_CR                 0x00000000
42 #define CRYP_SR                 0x00000004
43 #define CRYP_DIN                0x00000008
44 #define CRYP_DOUT               0x0000000C
45 #define CRYP_DMACR              0x00000010
46 #define CRYP_IMSCR              0x00000014
47 #define CRYP_RISR               0x00000018
48 #define CRYP_MISR               0x0000001C
49 #define CRYP_K0LR               0x00000020
50 #define CRYP_K0RR               0x00000024
51 #define CRYP_K1LR               0x00000028
52 #define CRYP_K1RR               0x0000002C
53 #define CRYP_K2LR               0x00000030
54 #define CRYP_K2RR               0x00000034
55 #define CRYP_K3LR               0x00000038
56 #define CRYP_K3RR               0x0000003C
57 #define CRYP_IV0LR              0x00000040
58 #define CRYP_IV0RR              0x00000044
59 #define CRYP_IV1LR              0x00000048
60 #define CRYP_IV1RR              0x0000004C
61 #define CRYP_CSGCMCCM0R         0x00000050
62 #define CRYP_CSGCM0R            0x00000070
63 
64 /* Registers values */
65 #define CR_DEC_NOT_ENC          0x00000004
66 #define CR_TDES_ECB             0x00000000
67 #define CR_TDES_CBC             0x00000008
68 #define CR_DES_ECB              0x00000010
69 #define CR_DES_CBC              0x00000018
70 #define CR_AES_ECB              0x00000020
71 #define CR_AES_CBC              0x00000028
72 #define CR_AES_CTR              0x00000030
73 #define CR_AES_KP               0x00000038
74 #define CR_AES_GCM              0x00080000
75 #define CR_AES_CCM              0x00080008
76 #define CR_AES_UNKNOWN          0xFFFFFFFF
77 #define CR_ALGO_MASK            0x00080038
78 #define CR_DATA32               0x00000000
79 #define CR_DATA16               0x00000040
80 #define CR_DATA8                0x00000080
81 #define CR_DATA1                0x000000C0
82 #define CR_KEY128               0x00000000
83 #define CR_KEY192               0x00000100
84 #define CR_KEY256               0x00000200
85 #define CR_FFLUSH               0x00004000
86 #define CR_CRYPEN               0x00008000
87 #define CR_PH_INIT              0x00000000
88 #define CR_PH_HEADER            0x00010000
89 #define CR_PH_PAYLOAD           0x00020000
90 #define CR_PH_FINAL             0x00030000
91 #define CR_PH_MASK              0x00030000
92 #define CR_NBPBL_SHIFT          20
93 
94 #define SR_BUSY                 0x00000010
95 #define SR_OFNE                 0x00000004
96 
97 #define IMSCR_IN                BIT(0)
98 #define IMSCR_OUT               BIT(1)
99 
100 #define MISR_IN                 BIT(0)
101 #define MISR_OUT                BIT(1)
102 
103 /* Misc */
104 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
105 #define GCM_CTR_INIT            2
106 #define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
107 #define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
108 
109 struct stm32_cryp_caps {
110 	bool                    swap_final;
111 	bool                    padding_wa;
112 };
113 
114 struct stm32_cryp_ctx {
115 	struct crypto_engine_ctx enginectx;
116 	struct stm32_cryp       *cryp;
117 	int                     keylen;
118 	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
119 	unsigned long           flags;
120 };
121 
122 struct stm32_cryp_reqctx {
123 	unsigned long mode;
124 };
125 
126 struct stm32_cryp {
127 	struct list_head        list;
128 	struct device           *dev;
129 	void __iomem            *regs;
130 	struct clk              *clk;
131 	unsigned long           flags;
132 	u32                     irq_status;
133 	const struct stm32_cryp_caps *caps;
134 	struct stm32_cryp_ctx   *ctx;
135 
136 	struct crypto_engine    *engine;
137 
138 	struct mutex            lock; /* protects req / areq */
139 	struct ablkcipher_request *req;
140 	struct aead_request     *areq;
141 
142 	size_t                  authsize;
143 	size_t                  hw_blocksize;
144 
145 	size_t                  total_in;
146 	size_t                  total_in_save;
147 	size_t                  total_out;
148 	size_t                  total_out_save;
149 
150 	struct scatterlist      *in_sg;
151 	struct scatterlist      *out_sg;
152 	struct scatterlist      *out_sg_save;
153 
154 	struct scatterlist      in_sgl;
155 	struct scatterlist      out_sgl;
156 	bool                    sgs_copied;
157 
158 	int                     in_sg_len;
159 	int                     out_sg_len;
160 
161 	struct scatter_walk     in_walk;
162 	struct scatter_walk     out_walk;
163 
164 	u32                     last_ctr[4];
165 	u32                     gcm_ctr;
166 };
167 
168 struct stm32_cryp_list {
169 	struct list_head        dev_list;
170 	spinlock_t              lock; /* protect dev_list */
171 };
172 
173 static struct stm32_cryp_list cryp_list = {
174 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
175 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
176 };
177 
178 static inline bool is_aes(struct stm32_cryp *cryp)
179 {
180 	return cryp->flags & FLG_AES;
181 }
182 
183 static inline bool is_des(struct stm32_cryp *cryp)
184 {
185 	return cryp->flags & FLG_DES;
186 }
187 
188 static inline bool is_tdes(struct stm32_cryp *cryp)
189 {
190 	return cryp->flags & FLG_TDES;
191 }
192 
193 static inline bool is_ecb(struct stm32_cryp *cryp)
194 {
195 	return cryp->flags & FLG_ECB;
196 }
197 
198 static inline bool is_cbc(struct stm32_cryp *cryp)
199 {
200 	return cryp->flags & FLG_CBC;
201 }
202 
203 static inline bool is_ctr(struct stm32_cryp *cryp)
204 {
205 	return cryp->flags & FLG_CTR;
206 }
207 
208 static inline bool is_gcm(struct stm32_cryp *cryp)
209 {
210 	return cryp->flags & FLG_GCM;
211 }
212 
213 static inline bool is_ccm(struct stm32_cryp *cryp)
214 {
215 	return cryp->flags & FLG_CCM;
216 }
217 
218 static inline bool is_encrypt(struct stm32_cryp *cryp)
219 {
220 	return cryp->flags & FLG_ENCRYPT;
221 }
222 
223 static inline bool is_decrypt(struct stm32_cryp *cryp)
224 {
225 	return !is_encrypt(cryp);
226 }
227 
228 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
229 {
230 	return readl_relaxed(cryp->regs + ofst);
231 }
232 
233 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
234 {
235 	writel_relaxed(val, cryp->regs + ofst);
236 }
237 
238 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
239 {
240 	u32 status;
241 
242 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
243 			!(status & SR_BUSY), 10, 100000);
244 }
245 
246 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
247 {
248 	u32 status;
249 
250 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
251 			!(status & CR_CRYPEN), 10, 100000);
252 }
253 
254 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
255 {
256 	u32 status;
257 
258 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
259 			status & SR_OFNE, 10, 100000);
260 }
261 
262 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
263 
264 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
265 {
266 	struct stm32_cryp *tmp, *cryp = NULL;
267 
268 	spin_lock_bh(&cryp_list.lock);
269 	if (!ctx->cryp) {
270 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
271 			cryp = tmp;
272 			break;
273 		}
274 		ctx->cryp = cryp;
275 	} else {
276 		cryp = ctx->cryp;
277 	}
278 
279 	spin_unlock_bh(&cryp_list.lock);
280 
281 	return cryp;
282 }
283 
284 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
285 				    size_t align)
286 {
287 	int len = 0;
288 
289 	if (!total)
290 		return 0;
291 
292 	if (!IS_ALIGNED(total, align))
293 		return -EINVAL;
294 
295 	while (sg) {
296 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
297 			return -EINVAL;
298 
299 		if (!IS_ALIGNED(sg->length, align))
300 			return -EINVAL;
301 
302 		len += sg->length;
303 		sg = sg_next(sg);
304 	}
305 
306 	if (len != total)
307 		return -EINVAL;
308 
309 	return 0;
310 }
311 
312 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
313 {
314 	int ret;
315 
316 	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
317 				       cryp->hw_blocksize);
318 	if (ret)
319 		return ret;
320 
321 	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
322 				       cryp->hw_blocksize);
323 
324 	return ret;
325 }
326 
327 static void sg_copy_buf(void *buf, struct scatterlist *sg,
328 			unsigned int start, unsigned int nbytes, int out)
329 {
330 	struct scatter_walk walk;
331 
332 	if (!nbytes)
333 		return;
334 
335 	scatterwalk_start(&walk, sg);
336 	scatterwalk_advance(&walk, start);
337 	scatterwalk_copychunks(buf, &walk, nbytes, out);
338 	scatterwalk_done(&walk, out, 0);
339 }
340 
341 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
342 {
343 	void *buf_in, *buf_out;
344 	int pages, total_in, total_out;
345 
346 	if (!stm32_cryp_check_io_aligned(cryp)) {
347 		cryp->sgs_copied = 0;
348 		return 0;
349 	}
350 
351 	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
352 	pages = total_in ? get_order(total_in) : 1;
353 	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
354 
355 	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
356 	pages = total_out ? get_order(total_out) : 1;
357 	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
358 
359 	if (!buf_in || !buf_out) {
360 		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
361 		cryp->sgs_copied = 0;
362 		return -EFAULT;
363 	}
364 
365 	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
366 
367 	sg_init_one(&cryp->in_sgl, buf_in, total_in);
368 	cryp->in_sg = &cryp->in_sgl;
369 	cryp->in_sg_len = 1;
370 
371 	sg_init_one(&cryp->out_sgl, buf_out, total_out);
372 	cryp->out_sg_save = cryp->out_sg;
373 	cryp->out_sg = &cryp->out_sgl;
374 	cryp->out_sg_len = 1;
375 
376 	cryp->sgs_copied = 1;
377 
378 	return 0;
379 }
380 
381 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
382 {
383 	if (!iv)
384 		return;
385 
386 	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
387 	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
388 
389 	if (is_aes(cryp)) {
390 		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
391 		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
392 	}
393 }
394 
395 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
396 {
397 	unsigned int i;
398 	int r_id;
399 
400 	if (is_des(c)) {
401 		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
402 		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
403 	} else {
404 		r_id = CRYP_K3RR;
405 		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
406 			stm32_cryp_write(c, r_id,
407 					 cpu_to_be32(c->ctx->key[i - 1]));
408 	}
409 }
410 
411 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
412 {
413 	if (is_aes(cryp) && is_ecb(cryp))
414 		return CR_AES_ECB;
415 
416 	if (is_aes(cryp) && is_cbc(cryp))
417 		return CR_AES_CBC;
418 
419 	if (is_aes(cryp) && is_ctr(cryp))
420 		return CR_AES_CTR;
421 
422 	if (is_aes(cryp) && is_gcm(cryp))
423 		return CR_AES_GCM;
424 
425 	if (is_aes(cryp) && is_ccm(cryp))
426 		return CR_AES_CCM;
427 
428 	if (is_des(cryp) && is_ecb(cryp))
429 		return CR_DES_ECB;
430 
431 	if (is_des(cryp) && is_cbc(cryp))
432 		return CR_DES_CBC;
433 
434 	if (is_tdes(cryp) && is_ecb(cryp))
435 		return CR_TDES_ECB;
436 
437 	if (is_tdes(cryp) && is_cbc(cryp))
438 		return CR_TDES_CBC;
439 
440 	dev_err(cryp->dev, "Unknown mode\n");
441 	return CR_AES_UNKNOWN;
442 }
443 
444 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
445 {
446 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
447 				  cryp->areq->cryptlen - cryp->authsize;
448 }
449 
450 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
451 {
452 	int ret;
453 	u32 iv[4];
454 
455 	/* Phase 1 : init */
456 	memcpy(iv, cryp->areq->iv, 12);
457 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
458 	cryp->gcm_ctr = GCM_CTR_INIT;
459 	stm32_cryp_hw_write_iv(cryp, iv);
460 
461 	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
462 
463 	/* Wait for end of processing */
464 	ret = stm32_cryp_wait_enable(cryp);
465 	if (ret)
466 		dev_err(cryp->dev, "Timeout (gcm init)\n");
467 
468 	return ret;
469 }
470 
471 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
472 {
473 	int ret;
474 	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
475 	u32 *d;
476 	unsigned int i, textlen;
477 
478 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
479 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
480 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
481 	iv[AES_BLOCK_SIZE - 1] = 1;
482 	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
483 
484 	/* Build B0 */
485 	memcpy(b0, iv, AES_BLOCK_SIZE);
486 
487 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
488 
489 	if (cryp->areq->assoclen)
490 		b0[0] |= 0x40;
491 
492 	textlen = stm32_cryp_get_input_text_len(cryp);
493 
494 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
495 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
496 
497 	/* Enable HW */
498 	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
499 
500 	/* Write B0 */
501 	d = (u32 *)b0;
502 
503 	for (i = 0; i < AES_BLOCK_32; i++) {
504 		if (!cryp->caps->padding_wa)
505 			*d = cpu_to_be32(*d);
506 		stm32_cryp_write(cryp, CRYP_DIN, *d++);
507 	}
508 
509 	/* Wait for end of processing */
510 	ret = stm32_cryp_wait_enable(cryp);
511 	if (ret)
512 		dev_err(cryp->dev, "Timeout (ccm init)\n");
513 
514 	return ret;
515 }
516 
517 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
518 {
519 	int ret;
520 	u32 cfg, hw_mode;
521 
522 	/* Disable interrupt */
523 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
524 
525 	/* Set key */
526 	stm32_cryp_hw_write_key(cryp);
527 
528 	/* Set configuration */
529 	cfg = CR_DATA8 | CR_FFLUSH;
530 
531 	switch (cryp->ctx->keylen) {
532 	case AES_KEYSIZE_128:
533 		cfg |= CR_KEY128;
534 		break;
535 
536 	case AES_KEYSIZE_192:
537 		cfg |= CR_KEY192;
538 		break;
539 
540 	default:
541 	case AES_KEYSIZE_256:
542 		cfg |= CR_KEY256;
543 		break;
544 	}
545 
546 	hw_mode = stm32_cryp_get_hw_mode(cryp);
547 	if (hw_mode == CR_AES_UNKNOWN)
548 		return -EINVAL;
549 
550 	/* AES ECB/CBC decrypt: run key preparation first */
551 	if (is_decrypt(cryp) &&
552 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
553 		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
554 
555 		/* Wait for end of processing */
556 		ret = stm32_cryp_wait_busy(cryp);
557 		if (ret) {
558 			dev_err(cryp->dev, "Timeout (key preparation)\n");
559 			return ret;
560 		}
561 	}
562 
563 	cfg |= hw_mode;
564 
565 	if (is_decrypt(cryp))
566 		cfg |= CR_DEC_NOT_ENC;
567 
568 	/* Apply config and flush (valid when CRYPEN = 0) */
569 	stm32_cryp_write(cryp, CRYP_CR, cfg);
570 
571 	switch (hw_mode) {
572 	case CR_AES_GCM:
573 	case CR_AES_CCM:
574 		/* Phase 1 : init */
575 		if (hw_mode == CR_AES_CCM)
576 			ret = stm32_cryp_ccm_init(cryp, cfg);
577 		else
578 			ret = stm32_cryp_gcm_init(cryp, cfg);
579 
580 		if (ret)
581 			return ret;
582 
583 		/* Phase 2 : header (authenticated data) */
584 		if (cryp->areq->assoclen) {
585 			cfg |= CR_PH_HEADER;
586 		} else if (stm32_cryp_get_input_text_len(cryp)) {
587 			cfg |= CR_PH_PAYLOAD;
588 			stm32_cryp_write(cryp, CRYP_CR, cfg);
589 		} else {
590 			cfg |= CR_PH_INIT;
591 		}
592 
593 		break;
594 
595 	case CR_DES_CBC:
596 	case CR_TDES_CBC:
597 	case CR_AES_CBC:
598 	case CR_AES_CTR:
599 		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
600 		break;
601 
602 	default:
603 		break;
604 	}
605 
606 	/* Enable now */
607 	cfg |= CR_CRYPEN;
608 
609 	stm32_cryp_write(cryp, CRYP_CR, cfg);
610 
611 	cryp->flags &= ~FLG_CCM_PADDED_WA;
612 
613 	return 0;
614 }
615 
616 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
617 {
618 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
619 		/* Phase 4 : output tag */
620 		err = stm32_cryp_read_auth_tag(cryp);
621 
622 	if (cryp->sgs_copied) {
623 		void *buf_in, *buf_out;
624 		int pages, len;
625 
626 		buf_in = sg_virt(&cryp->in_sgl);
627 		buf_out = sg_virt(&cryp->out_sgl);
628 
629 		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
630 			    cryp->total_out_save, 1);
631 
632 		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
633 		pages = len ? get_order(len) : 1;
634 		free_pages((unsigned long)buf_in, pages);
635 
636 		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
637 		pages = len ? get_order(len) : 1;
638 		free_pages((unsigned long)buf_out, pages);
639 	}
640 
641 	if (is_gcm(cryp) || is_ccm(cryp)) {
642 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
643 		cryp->areq = NULL;
644 	} else {
645 		crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
646 						   err);
647 		cryp->req = NULL;
648 	}
649 
650 	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
651 
652 	mutex_unlock(&cryp->lock);
653 }
654 
655 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
656 {
657 	/* Enable interrupt and let the IRQ handler do everything */
658 	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
659 
660 	return 0;
661 }
662 
663 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
664 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
665 					 void *areq);
666 
667 static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
668 {
669 	struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
670 
671 	tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
672 
673 	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
674 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
675 	ctx->enginectx.op.unprepare_request = NULL;
676 	return 0;
677 }
678 
679 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
680 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
681 				       void *areq);
682 
683 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
684 {
685 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
686 
687 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
688 
689 	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
690 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
691 	ctx->enginectx.op.unprepare_request = NULL;
692 
693 	return 0;
694 }
695 
696 static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
697 {
698 	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
699 			crypto_ablkcipher_reqtfm(req));
700 	struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
701 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
702 
703 	if (!cryp)
704 		return -ENODEV;
705 
706 	rctx->mode = mode;
707 
708 	return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
709 }
710 
711 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
712 {
713 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
714 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
715 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
716 
717 	if (!cryp)
718 		return -ENODEV;
719 
720 	rctx->mode = mode;
721 
722 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
723 }
724 
725 static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
726 			     unsigned int keylen)
727 {
728 	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
729 
730 	memcpy(ctx->key, key, keylen);
731 	ctx->keylen = keylen;
732 
733 	return 0;
734 }
735 
736 static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
737 				 unsigned int keylen)
738 {
739 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
740 	    keylen != AES_KEYSIZE_256)
741 		return -EINVAL;
742 	else
743 		return stm32_cryp_setkey(tfm, key, keylen);
744 }
745 
746 static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
747 				 unsigned int keylen)
748 {
749 	if (keylen != DES_KEY_SIZE)
750 		return -EINVAL;
751 	else
752 		return stm32_cryp_setkey(tfm, key, keylen);
753 }
754 
755 static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
756 				  unsigned int keylen)
757 {
758 	if (keylen != (3 * DES_KEY_SIZE))
759 		return -EINVAL;
760 	else
761 		return stm32_cryp_setkey(tfm, key, keylen);
762 }
763 
764 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
765 				      unsigned int keylen)
766 {
767 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
768 
769 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
770 	    keylen != AES_KEYSIZE_256)
771 		return -EINVAL;
772 
773 	memcpy(ctx->key, key, keylen);
774 	ctx->keylen = keylen;
775 
776 	return 0;
777 }
778 
779 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
780 					  unsigned int authsize)
781 {
782 	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
783 }
784 
785 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
786 					  unsigned int authsize)
787 {
788 	switch (authsize) {
789 	case 4:
790 	case 6:
791 	case 8:
792 	case 10:
793 	case 12:
794 	case 14:
795 	case 16:
796 		break;
797 	default:
798 		return -EINVAL;
799 	}
800 
801 	return 0;
802 }
803 
804 static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
805 {
806 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
807 }
808 
809 static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
810 {
811 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
812 }
813 
814 static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
815 {
816 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
817 }
818 
819 static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
820 {
821 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
822 }
823 
824 static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
825 {
826 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
827 }
828 
829 static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
830 {
831 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
832 }
833 
834 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
835 {
836 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
837 }
838 
839 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
840 {
841 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
842 }
843 
844 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
845 {
846 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
847 }
848 
849 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
850 {
851 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
852 }
853 
854 static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
855 {
856 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
857 }
858 
859 static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
860 {
861 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
862 }
863 
864 static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
865 {
866 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
867 }
868 
869 static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
870 {
871 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
872 }
873 
874 static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
875 {
876 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
877 }
878 
879 static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
880 {
881 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
882 }
883 
884 static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
885 {
886 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
887 }
888 
889 static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
890 {
891 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
892 }
893 
894 static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
895 				  struct aead_request *areq)
896 {
897 	struct stm32_cryp_ctx *ctx;
898 	struct stm32_cryp *cryp;
899 	struct stm32_cryp_reqctx *rctx;
900 	int ret;
901 
902 	if (!req && !areq)
903 		return -EINVAL;
904 
905 	ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
906 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
907 
908 	cryp = ctx->cryp;
909 
910 	if (!cryp)
911 		return -ENODEV;
912 
913 	mutex_lock(&cryp->lock);
914 
915 	rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
916 	rctx->mode &= FLG_MODE_MASK;
917 
918 	ctx->cryp = cryp;
919 
920 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
921 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
922 	cryp->ctx = ctx;
923 
924 	if (req) {
925 		cryp->req = req;
926 		cryp->total_in = req->nbytes;
927 		cryp->total_out = cryp->total_in;
928 	} else {
929 		/*
930 		 * Length of input and output data:
931 		 * Encryption case:
932 		 *  INPUT  =   AssocData  ||   PlainText
933 		 *          <- assoclen ->  <- cryptlen ->
934 		 *          <------- total_in ----------->
935 		 *
936 		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
937 		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
938 		 *          <---------------- total_out ----------------->
939 		 *
940 		 * Decryption case:
941 		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
942 		 *          <- assoclen ->  <--------- cryptlen --------->
943 		 *                                          <- authsize ->
944 		 *          <---------------- total_in ------------------>
945 		 *
946 		 *  OUTPUT =   AssocData  ||   PlainText
947 		 *          <- assoclen ->  <- crypten - authsize ->
948 		 *          <---------- total_out ----------------->
949 		 */
950 		cryp->areq = areq;
951 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
952 		cryp->total_in = areq->assoclen + areq->cryptlen;
953 		if (is_encrypt(cryp))
954 			/* Append auth tag to output */
955 			cryp->total_out = cryp->total_in + cryp->authsize;
956 		else
957 			/* No auth tag in output */
958 			cryp->total_out = cryp->total_in - cryp->authsize;
959 	}
960 
961 	cryp->total_in_save = cryp->total_in;
962 	cryp->total_out_save = cryp->total_out;
963 
964 	cryp->in_sg = req ? req->src : areq->src;
965 	cryp->out_sg = req ? req->dst : areq->dst;
966 	cryp->out_sg_save = cryp->out_sg;
967 
968 	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
969 	if (cryp->in_sg_len < 0) {
970 		dev_err(cryp->dev, "Cannot get in_sg_len\n");
971 		ret = cryp->in_sg_len;
972 		goto out;
973 	}
974 
975 	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
976 	if (cryp->out_sg_len < 0) {
977 		dev_err(cryp->dev, "Cannot get out_sg_len\n");
978 		ret = cryp->out_sg_len;
979 		goto out;
980 	}
981 
982 	ret = stm32_cryp_copy_sgs(cryp);
983 	if (ret)
984 		goto out;
985 
986 	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
987 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
988 
989 	if (is_gcm(cryp) || is_ccm(cryp)) {
990 		/* In output, jump after assoc data */
991 		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
992 		cryp->total_out -= cryp->areq->assoclen;
993 	}
994 
995 	ret = stm32_cryp_hw_init(cryp);
996 out:
997 	if (ret)
998 		mutex_unlock(&cryp->lock);
999 
1000 	return ret;
1001 }
1002 
1003 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1004 					 void *areq)
1005 {
1006 	struct ablkcipher_request *req = container_of(areq,
1007 						      struct ablkcipher_request,
1008 						      base);
1009 
1010 	return stm32_cryp_prepare_req(req, NULL);
1011 }
1012 
1013 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1014 {
1015 	struct ablkcipher_request *req = container_of(areq,
1016 						      struct ablkcipher_request,
1017 						      base);
1018 	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1019 			crypto_ablkcipher_reqtfm(req));
1020 	struct stm32_cryp *cryp = ctx->cryp;
1021 
1022 	if (!cryp)
1023 		return -ENODEV;
1024 
1025 	return stm32_cryp_cpu_start(cryp);
1026 }
1027 
1028 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1029 {
1030 	struct aead_request *req = container_of(areq, struct aead_request,
1031 						base);
1032 
1033 	return stm32_cryp_prepare_req(NULL, req);
1034 }
1035 
1036 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1037 {
1038 	struct aead_request *req = container_of(areq, struct aead_request,
1039 						base);
1040 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1041 	struct stm32_cryp *cryp = ctx->cryp;
1042 
1043 	if (!cryp)
1044 		return -ENODEV;
1045 
1046 	if (unlikely(!cryp->areq->assoclen &&
1047 		     !stm32_cryp_get_input_text_len(cryp))) {
1048 		/* No input data to process: get tag and finish */
1049 		stm32_cryp_finish_req(cryp, 0);
1050 		return 0;
1051 	}
1052 
1053 	return stm32_cryp_cpu_start(cryp);
1054 }
1055 
1056 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1057 				unsigned int n)
1058 {
1059 	scatterwalk_advance(&cryp->out_walk, n);
1060 
1061 	if (unlikely(cryp->out_sg->length == _walked_out)) {
1062 		cryp->out_sg = sg_next(cryp->out_sg);
1063 		if (cryp->out_sg) {
1064 			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1065 			return (sg_virt(cryp->out_sg) + _walked_out);
1066 		}
1067 	}
1068 
1069 	return (u32 *)((u8 *)dst + n);
1070 }
1071 
1072 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1073 			       unsigned int n)
1074 {
1075 	scatterwalk_advance(&cryp->in_walk, n);
1076 
1077 	if (unlikely(cryp->in_sg->length == _walked_in)) {
1078 		cryp->in_sg = sg_next(cryp->in_sg);
1079 		if (cryp->in_sg) {
1080 			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1081 			return (sg_virt(cryp->in_sg) + _walked_in);
1082 		}
1083 	}
1084 
1085 	return (u32 *)((u8 *)src + n);
1086 }
1087 
1088 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1089 {
1090 	u32 cfg, size_bit, *dst, d32;
1091 	u8 *d8;
1092 	unsigned int i, j;
1093 	int ret = 0;
1094 
1095 	/* Update Config */
1096 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1097 
1098 	cfg &= ~CR_PH_MASK;
1099 	cfg |= CR_PH_FINAL;
1100 	cfg &= ~CR_DEC_NOT_ENC;
1101 	cfg |= CR_CRYPEN;
1102 
1103 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1104 
1105 	if (is_gcm(cryp)) {
1106 		/* GCM: write aad and payload size (in bits) */
1107 		size_bit = cryp->areq->assoclen * 8;
1108 		if (cryp->caps->swap_final)
1109 			size_bit = cpu_to_be32(size_bit);
1110 
1111 		stm32_cryp_write(cryp, CRYP_DIN, 0);
1112 		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1113 
1114 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1115 				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1116 		size_bit *= 8;
1117 		if (cryp->caps->swap_final)
1118 			size_bit = cpu_to_be32(size_bit);
1119 
1120 		stm32_cryp_write(cryp, CRYP_DIN, 0);
1121 		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1122 	} else {
1123 		/* CCM: write CTR0 */
1124 		u8 iv[AES_BLOCK_SIZE];
1125 		u32 *iv32 = (u32 *)iv;
1126 
1127 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1128 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1129 
1130 		for (i = 0; i < AES_BLOCK_32; i++) {
1131 			if (!cryp->caps->padding_wa)
1132 				*iv32 = cpu_to_be32(*iv32);
1133 			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1134 		}
1135 	}
1136 
1137 	/* Wait for output data */
1138 	ret = stm32_cryp_wait_output(cryp);
1139 	if (ret) {
1140 		dev_err(cryp->dev, "Timeout (read tag)\n");
1141 		return ret;
1142 	}
1143 
1144 	if (is_encrypt(cryp)) {
1145 		/* Get and write tag */
1146 		dst = sg_virt(cryp->out_sg) + _walked_out;
1147 
1148 		for (i = 0; i < AES_BLOCK_32; i++) {
1149 			if (cryp->total_out >= sizeof(u32)) {
1150 				/* Read a full u32 */
1151 				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1152 
1153 				dst = stm32_cryp_next_out(cryp, dst,
1154 							  sizeof(u32));
1155 				cryp->total_out -= sizeof(u32);
1156 			} else if (!cryp->total_out) {
1157 				/* Empty fifo out (data from input padding) */
1158 				stm32_cryp_read(cryp, CRYP_DOUT);
1159 			} else {
1160 				/* Read less than an u32 */
1161 				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1162 				d8 = (u8 *)&d32;
1163 
1164 				for (j = 0; j < cryp->total_out; j++) {
1165 					*((u8 *)dst) = *(d8++);
1166 					dst = stm32_cryp_next_out(cryp, dst, 1);
1167 				}
1168 				cryp->total_out = 0;
1169 			}
1170 		}
1171 	} else {
1172 		/* Get and check tag */
1173 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1174 
1175 		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1176 					 cryp->total_in_save - cryp->authsize,
1177 					 cryp->authsize, 0);
1178 
1179 		for (i = 0; i < AES_BLOCK_32; i++)
1180 			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1181 
1182 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1183 			ret = -EBADMSG;
1184 	}
1185 
1186 	/* Disable cryp */
1187 	cfg &= ~CR_CRYPEN;
1188 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1189 
1190 	return ret;
1191 }
1192 
1193 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1194 {
1195 	u32 cr;
1196 
1197 	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1198 		cryp->last_ctr[3] = 0;
1199 		cryp->last_ctr[2]++;
1200 		if (!cryp->last_ctr[2]) {
1201 			cryp->last_ctr[1]++;
1202 			if (!cryp->last_ctr[1])
1203 				cryp->last_ctr[0]++;
1204 		}
1205 
1206 		cr = stm32_cryp_read(cryp, CRYP_CR);
1207 		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1208 
1209 		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1210 
1211 		stm32_cryp_write(cryp, CRYP_CR, cr);
1212 	}
1213 
1214 	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1215 	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1216 	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1217 	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1218 }
1219 
1220 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1221 {
1222 	unsigned int i, j;
1223 	u32 d32, *dst;
1224 	u8 *d8;
1225 	size_t tag_size;
1226 
1227 	/* Do no read tag now (if any) */
1228 	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1229 		tag_size = cryp->authsize;
1230 	else
1231 		tag_size = 0;
1232 
1233 	dst = sg_virt(cryp->out_sg) + _walked_out;
1234 
1235 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1236 		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1237 			/* Read a full u32 */
1238 			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1239 
1240 			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1241 			cryp->total_out -= sizeof(u32);
1242 		} else if (cryp->total_out == tag_size) {
1243 			/* Empty fifo out (data from input padding) */
1244 			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1245 		} else {
1246 			/* Read less than an u32 */
1247 			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1248 			d8 = (u8 *)&d32;
1249 
1250 			for (j = 0; j < cryp->total_out - tag_size; j++) {
1251 				*((u8 *)dst) = *(d8++);
1252 				dst = stm32_cryp_next_out(cryp, dst, 1);
1253 			}
1254 			cryp->total_out = tag_size;
1255 		}
1256 	}
1257 
1258 	return !(cryp->total_out - tag_size) || !cryp->total_in;
1259 }
1260 
1261 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1262 {
1263 	unsigned int i, j;
1264 	u32 *src;
1265 	u8 d8[4];
1266 	size_t tag_size;
1267 
1268 	/* Do no write tag (if any) */
1269 	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1270 		tag_size = cryp->authsize;
1271 	else
1272 		tag_size = 0;
1273 
1274 	src = sg_virt(cryp->in_sg) + _walked_in;
1275 
1276 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1277 		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1278 			/* Write a full u32 */
1279 			stm32_cryp_write(cryp, CRYP_DIN, *src);
1280 
1281 			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1282 			cryp->total_in -= sizeof(u32);
1283 		} else if (cryp->total_in == tag_size) {
1284 			/* Write padding data */
1285 			stm32_cryp_write(cryp, CRYP_DIN, 0);
1286 		} else {
1287 			/* Write less than an u32 */
1288 			memset(d8, 0, sizeof(u32));
1289 			for (j = 0; j < cryp->total_in - tag_size; j++) {
1290 				d8[j] = *((u8 *)src);
1291 				src = stm32_cryp_next_in(cryp, src, 1);
1292 			}
1293 
1294 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1295 			cryp->total_in = tag_size;
1296 		}
1297 	}
1298 }
1299 
1300 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1301 {
1302 	int err;
1303 	u32 cfg, tmp[AES_BLOCK_32];
1304 	size_t total_in_ori = cryp->total_in;
1305 	struct scatterlist *out_sg_ori = cryp->out_sg;
1306 	unsigned int i;
1307 
1308 	/* 'Special workaround' procedure described in the datasheet */
1309 
1310 	/* a) disable ip */
1311 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1312 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1313 	cfg &= ~CR_CRYPEN;
1314 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1315 
1316 	/* b) Update IV1R */
1317 	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1318 
1319 	/* c) change mode to CTR */
1320 	cfg &= ~CR_ALGO_MASK;
1321 	cfg |= CR_AES_CTR;
1322 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1323 
1324 	/* a) enable IP */
1325 	cfg |= CR_CRYPEN;
1326 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1327 
1328 	/* b) pad and write the last block */
1329 	stm32_cryp_irq_write_block(cryp);
1330 	cryp->total_in = total_in_ori;
1331 	err = stm32_cryp_wait_output(cryp);
1332 	if (err) {
1333 		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1334 		return stm32_cryp_finish_req(cryp, err);
1335 	}
1336 
1337 	/* c) get and store encrypted data */
1338 	stm32_cryp_irq_read_data(cryp);
1339 	scatterwalk_map_and_copy(tmp, out_sg_ori,
1340 				 cryp->total_in_save - total_in_ori,
1341 				 total_in_ori, 0);
1342 
1343 	/* d) change mode back to AES GCM */
1344 	cfg &= ~CR_ALGO_MASK;
1345 	cfg |= CR_AES_GCM;
1346 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1347 
1348 	/* e) change phase to Final */
1349 	cfg &= ~CR_PH_MASK;
1350 	cfg |= CR_PH_FINAL;
1351 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1352 
1353 	/* f) write padded data */
1354 	for (i = 0; i < AES_BLOCK_32; i++) {
1355 		if (cryp->total_in)
1356 			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1357 		else
1358 			stm32_cryp_write(cryp, CRYP_DIN, 0);
1359 
1360 		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1361 	}
1362 
1363 	/* g) Empty fifo out */
1364 	err = stm32_cryp_wait_output(cryp);
1365 	if (err) {
1366 		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1367 		return stm32_cryp_finish_req(cryp, err);
1368 	}
1369 
1370 	for (i = 0; i < AES_BLOCK_32; i++)
1371 		stm32_cryp_read(cryp, CRYP_DOUT);
1372 
1373 	/* h) run the he normal Final phase */
1374 	stm32_cryp_finish_req(cryp, 0);
1375 }
1376 
1377 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1378 {
1379 	u32 cfg, payload_bytes;
1380 
1381 	/* disable ip, set NPBLB and reneable ip */
1382 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1383 	cfg &= ~CR_CRYPEN;
1384 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1385 
1386 	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1387 					   cryp->total_in;
1388 	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1389 	cfg |= CR_CRYPEN;
1390 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1391 }
1392 
1393 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1394 {
1395 	int err = 0;
1396 	u32 cfg, iv1tmp;
1397 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1398 	size_t last_total_out, total_in_ori = cryp->total_in;
1399 	struct scatterlist *out_sg_ori = cryp->out_sg;
1400 	unsigned int i;
1401 
1402 	/* 'Special workaround' procedure described in the datasheet */
1403 	cryp->flags |= FLG_CCM_PADDED_WA;
1404 
1405 	/* a) disable ip */
1406 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1407 
1408 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1409 	cfg &= ~CR_CRYPEN;
1410 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1411 
1412 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1413 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1414 
1415 	/* c) Load CRYP_CSGCMCCMxR */
1416 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1417 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1418 
1419 	/* d) Write IV1R */
1420 	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1421 
1422 	/* e) change mode to CTR */
1423 	cfg &= ~CR_ALGO_MASK;
1424 	cfg |= CR_AES_CTR;
1425 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1426 
1427 	/* a) enable IP */
1428 	cfg |= CR_CRYPEN;
1429 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1430 
1431 	/* b) pad and write the last block */
1432 	stm32_cryp_irq_write_block(cryp);
1433 	cryp->total_in = total_in_ori;
1434 	err = stm32_cryp_wait_output(cryp);
1435 	if (err) {
1436 		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1437 		return stm32_cryp_finish_req(cryp, err);
1438 	}
1439 
1440 	/* c) get and store decrypted data */
1441 	last_total_out = cryp->total_out;
1442 	stm32_cryp_irq_read_data(cryp);
1443 
1444 	memset(tmp, 0, sizeof(tmp));
1445 	scatterwalk_map_and_copy(tmp, out_sg_ori,
1446 				 cryp->total_out_save - last_total_out,
1447 				 last_total_out, 0);
1448 
1449 	/* d) Load again CRYP_CSGCMCCMxR */
1450 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1451 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1452 
1453 	/* e) change mode back to AES CCM */
1454 	cfg &= ~CR_ALGO_MASK;
1455 	cfg |= CR_AES_CCM;
1456 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1457 
1458 	/* f) change phase to header */
1459 	cfg &= ~CR_PH_MASK;
1460 	cfg |= CR_PH_HEADER;
1461 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1462 
1463 	/* g) XOR and write padded data */
1464 	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1465 		tmp[i] ^= cstmp1[i];
1466 		tmp[i] ^= cstmp2[i];
1467 		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1468 	}
1469 
1470 	/* h) wait for completion */
1471 	err = stm32_cryp_wait_busy(cryp);
1472 	if (err)
1473 		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1474 
1475 	/* i) run the he normal Final phase */
1476 	stm32_cryp_finish_req(cryp, err);
1477 }
1478 
1479 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1480 {
1481 	if (unlikely(!cryp->total_in)) {
1482 		dev_warn(cryp->dev, "No more data to process\n");
1483 		return;
1484 	}
1485 
1486 	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1487 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1488 		     is_encrypt(cryp))) {
1489 		/* Padding for AES GCM encryption */
1490 		if (cryp->caps->padding_wa)
1491 			/* Special case 1 */
1492 			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1493 
1494 		/* Setting padding bytes (NBBLB) */
1495 		stm32_cryp_irq_set_npblb(cryp);
1496 	}
1497 
1498 	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1499 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1500 		     is_decrypt(cryp))) {
1501 		/* Padding for AES CCM decryption */
1502 		if (cryp->caps->padding_wa)
1503 			/* Special case 2 */
1504 			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1505 
1506 		/* Setting padding bytes (NBBLB) */
1507 		stm32_cryp_irq_set_npblb(cryp);
1508 	}
1509 
1510 	if (is_aes(cryp) && is_ctr(cryp))
1511 		stm32_cryp_check_ctr_counter(cryp);
1512 
1513 	stm32_cryp_irq_write_block(cryp);
1514 }
1515 
1516 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1517 {
1518 	int err;
1519 	unsigned int i, j;
1520 	u32 cfg, *src;
1521 
1522 	src = sg_virt(cryp->in_sg) + _walked_in;
1523 
1524 	for (i = 0; i < AES_BLOCK_32; i++) {
1525 		stm32_cryp_write(cryp, CRYP_DIN, *src);
1526 
1527 		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1528 		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1529 
1530 		/* Check if whole header written */
1531 		if ((cryp->total_in_save - cryp->total_in) ==
1532 				cryp->areq->assoclen) {
1533 			/* Write padding if needed */
1534 			for (j = i + 1; j < AES_BLOCK_32; j++)
1535 				stm32_cryp_write(cryp, CRYP_DIN, 0);
1536 
1537 			/* Wait for completion */
1538 			err = stm32_cryp_wait_busy(cryp);
1539 			if (err) {
1540 				dev_err(cryp->dev, "Timeout (gcm header)\n");
1541 				return stm32_cryp_finish_req(cryp, err);
1542 			}
1543 
1544 			if (stm32_cryp_get_input_text_len(cryp)) {
1545 				/* Phase 3 : payload */
1546 				cfg = stm32_cryp_read(cryp, CRYP_CR);
1547 				cfg &= ~CR_CRYPEN;
1548 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1549 
1550 				cfg &= ~CR_PH_MASK;
1551 				cfg |= CR_PH_PAYLOAD;
1552 				cfg |= CR_CRYPEN;
1553 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1554 			} else {
1555 				/* Phase 4 : tag */
1556 				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1557 				stm32_cryp_finish_req(cryp, 0);
1558 			}
1559 
1560 			break;
1561 		}
1562 
1563 		if (!cryp->total_in)
1564 			break;
1565 	}
1566 }
1567 
1568 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1569 {
1570 	int err;
1571 	unsigned int i = 0, j, k;
1572 	u32 alen, cfg, *src;
1573 	u8 d8[4];
1574 
1575 	src = sg_virt(cryp->in_sg) + _walked_in;
1576 	alen = cryp->areq->assoclen;
1577 
1578 	if (!_walked_in) {
1579 		if (cryp->areq->assoclen <= 65280) {
1580 			/* Write first u32 of B1 */
1581 			d8[0] = (alen >> 8) & 0xFF;
1582 			d8[1] = alen & 0xFF;
1583 			d8[2] = *((u8 *)src);
1584 			src = stm32_cryp_next_in(cryp, src, 1);
1585 			d8[3] = *((u8 *)src);
1586 			src = stm32_cryp_next_in(cryp, src, 1);
1587 
1588 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1589 			i++;
1590 
1591 			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1592 		} else {
1593 			/* Build the two first u32 of B1 */
1594 			d8[0] = 0xFF;
1595 			d8[1] = 0xFE;
1596 			d8[2] = alen & 0xFF000000;
1597 			d8[3] = alen & 0x00FF0000;
1598 
1599 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1600 			i++;
1601 
1602 			d8[0] = alen & 0x0000FF00;
1603 			d8[1] = alen & 0x000000FF;
1604 			d8[2] = *((u8 *)src);
1605 			src = stm32_cryp_next_in(cryp, src, 1);
1606 			d8[3] = *((u8 *)src);
1607 			src = stm32_cryp_next_in(cryp, src, 1);
1608 
1609 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1610 			i++;
1611 
1612 			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1613 		}
1614 	}
1615 
1616 	/* Write next u32 */
1617 	for (; i < AES_BLOCK_32; i++) {
1618 		/* Build an u32 */
1619 		memset(d8, 0, sizeof(u32));
1620 		for (k = 0; k < sizeof(u32); k++) {
1621 			d8[k] = *((u8 *)src);
1622 			src = stm32_cryp_next_in(cryp, src, 1);
1623 
1624 			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1625 			if ((cryp->total_in_save - cryp->total_in) == alen)
1626 				break;
1627 		}
1628 
1629 		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1630 
1631 		if ((cryp->total_in_save - cryp->total_in) == alen) {
1632 			/* Write padding if needed */
1633 			for (j = i + 1; j < AES_BLOCK_32; j++)
1634 				stm32_cryp_write(cryp, CRYP_DIN, 0);
1635 
1636 			/* Wait for completion */
1637 			err = stm32_cryp_wait_busy(cryp);
1638 			if (err) {
1639 				dev_err(cryp->dev, "Timeout (ccm header)\n");
1640 				return stm32_cryp_finish_req(cryp, err);
1641 			}
1642 
1643 			if (stm32_cryp_get_input_text_len(cryp)) {
1644 				/* Phase 3 : payload */
1645 				cfg = stm32_cryp_read(cryp, CRYP_CR);
1646 				cfg &= ~CR_CRYPEN;
1647 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1648 
1649 				cfg &= ~CR_PH_MASK;
1650 				cfg |= CR_PH_PAYLOAD;
1651 				cfg |= CR_CRYPEN;
1652 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1653 			} else {
1654 				/* Phase 4 : tag */
1655 				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1656 				stm32_cryp_finish_req(cryp, 0);
1657 			}
1658 
1659 			break;
1660 		}
1661 	}
1662 }
1663 
1664 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1665 {
1666 	struct stm32_cryp *cryp = arg;
1667 	u32 ph;
1668 
1669 	if (cryp->irq_status & MISR_OUT)
1670 		/* Output FIFO IRQ: read data */
1671 		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1672 			/* All bytes processed, finish */
1673 			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1674 			stm32_cryp_finish_req(cryp, 0);
1675 			return IRQ_HANDLED;
1676 		}
1677 
1678 	if (cryp->irq_status & MISR_IN) {
1679 		if (is_gcm(cryp)) {
1680 			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1681 			if (unlikely(ph == CR_PH_HEADER))
1682 				/* Write Header */
1683 				stm32_cryp_irq_write_gcm_header(cryp);
1684 			else
1685 				/* Input FIFO IRQ: write data */
1686 				stm32_cryp_irq_write_data(cryp);
1687 			cryp->gcm_ctr++;
1688 		} else if (is_ccm(cryp)) {
1689 			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1690 			if (unlikely(ph == CR_PH_HEADER))
1691 				/* Write Header */
1692 				stm32_cryp_irq_write_ccm_header(cryp);
1693 			else
1694 				/* Input FIFO IRQ: write data */
1695 				stm32_cryp_irq_write_data(cryp);
1696 		} else {
1697 			/* Input FIFO IRQ: write data */
1698 			stm32_cryp_irq_write_data(cryp);
1699 		}
1700 	}
1701 
1702 	return IRQ_HANDLED;
1703 }
1704 
1705 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1706 {
1707 	struct stm32_cryp *cryp = arg;
1708 
1709 	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1710 
1711 	return IRQ_WAKE_THREAD;
1712 }
1713 
1714 static struct crypto_alg crypto_algs[] = {
1715 {
1716 	.cra_name		= "ecb(aes)",
1717 	.cra_driver_name	= "stm32-ecb-aes",
1718 	.cra_priority		= 200,
1719 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1720 				  CRYPTO_ALG_ASYNC,
1721 	.cra_blocksize		= AES_BLOCK_SIZE,
1722 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1723 	.cra_alignmask		= 0xf,
1724 	.cra_type		= &crypto_ablkcipher_type,
1725 	.cra_module		= THIS_MODULE,
1726 	.cra_init		= stm32_cryp_cra_init,
1727 	.cra_ablkcipher = {
1728 		.min_keysize	= AES_MIN_KEY_SIZE,
1729 		.max_keysize	= AES_MAX_KEY_SIZE,
1730 		.setkey		= stm32_cryp_aes_setkey,
1731 		.encrypt	= stm32_cryp_aes_ecb_encrypt,
1732 		.decrypt	= stm32_cryp_aes_ecb_decrypt,
1733 	}
1734 },
1735 {
1736 	.cra_name		= "cbc(aes)",
1737 	.cra_driver_name	= "stm32-cbc-aes",
1738 	.cra_priority		= 200,
1739 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1740 				  CRYPTO_ALG_ASYNC,
1741 	.cra_blocksize		= AES_BLOCK_SIZE,
1742 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1743 	.cra_alignmask		= 0xf,
1744 	.cra_type		= &crypto_ablkcipher_type,
1745 	.cra_module		= THIS_MODULE,
1746 	.cra_init		= stm32_cryp_cra_init,
1747 	.cra_ablkcipher = {
1748 		.min_keysize	= AES_MIN_KEY_SIZE,
1749 		.max_keysize	= AES_MAX_KEY_SIZE,
1750 		.ivsize		= AES_BLOCK_SIZE,
1751 		.setkey		= stm32_cryp_aes_setkey,
1752 		.encrypt	= stm32_cryp_aes_cbc_encrypt,
1753 		.decrypt	= stm32_cryp_aes_cbc_decrypt,
1754 	}
1755 },
1756 {
1757 	.cra_name		= "ctr(aes)",
1758 	.cra_driver_name	= "stm32-ctr-aes",
1759 	.cra_priority		= 200,
1760 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1761 				  CRYPTO_ALG_ASYNC,
1762 	.cra_blocksize		= 1,
1763 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1764 	.cra_alignmask		= 0xf,
1765 	.cra_type		= &crypto_ablkcipher_type,
1766 	.cra_module		= THIS_MODULE,
1767 	.cra_init		= stm32_cryp_cra_init,
1768 	.cra_ablkcipher = {
1769 		.min_keysize	= AES_MIN_KEY_SIZE,
1770 		.max_keysize	= AES_MAX_KEY_SIZE,
1771 		.ivsize		= AES_BLOCK_SIZE,
1772 		.setkey		= stm32_cryp_aes_setkey,
1773 		.encrypt	= stm32_cryp_aes_ctr_encrypt,
1774 		.decrypt	= stm32_cryp_aes_ctr_decrypt,
1775 	}
1776 },
1777 {
1778 	.cra_name		= "ecb(des)",
1779 	.cra_driver_name	= "stm32-ecb-des",
1780 	.cra_priority		= 200,
1781 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1782 				  CRYPTO_ALG_ASYNC,
1783 	.cra_blocksize		= DES_BLOCK_SIZE,
1784 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1785 	.cra_alignmask		= 0xf,
1786 	.cra_type		= &crypto_ablkcipher_type,
1787 	.cra_module		= THIS_MODULE,
1788 	.cra_init		= stm32_cryp_cra_init,
1789 	.cra_ablkcipher = {
1790 		.min_keysize	= DES_BLOCK_SIZE,
1791 		.max_keysize	= DES_BLOCK_SIZE,
1792 		.setkey		= stm32_cryp_des_setkey,
1793 		.encrypt	= stm32_cryp_des_ecb_encrypt,
1794 		.decrypt	= stm32_cryp_des_ecb_decrypt,
1795 	}
1796 },
1797 {
1798 	.cra_name		= "cbc(des)",
1799 	.cra_driver_name	= "stm32-cbc-des",
1800 	.cra_priority		= 200,
1801 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1802 				  CRYPTO_ALG_ASYNC,
1803 	.cra_blocksize		= DES_BLOCK_SIZE,
1804 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1805 	.cra_alignmask		= 0xf,
1806 	.cra_type		= &crypto_ablkcipher_type,
1807 	.cra_module		= THIS_MODULE,
1808 	.cra_init		= stm32_cryp_cra_init,
1809 	.cra_ablkcipher = {
1810 		.min_keysize	= DES_BLOCK_SIZE,
1811 		.max_keysize	= DES_BLOCK_SIZE,
1812 		.ivsize		= DES_BLOCK_SIZE,
1813 		.setkey		= stm32_cryp_des_setkey,
1814 		.encrypt	= stm32_cryp_des_cbc_encrypt,
1815 		.decrypt	= stm32_cryp_des_cbc_decrypt,
1816 	}
1817 },
1818 {
1819 	.cra_name		= "ecb(des3_ede)",
1820 	.cra_driver_name	= "stm32-ecb-des3",
1821 	.cra_priority		= 200,
1822 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1823 				  CRYPTO_ALG_ASYNC,
1824 	.cra_blocksize		= DES_BLOCK_SIZE,
1825 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1826 	.cra_alignmask		= 0xf,
1827 	.cra_type		= &crypto_ablkcipher_type,
1828 	.cra_module		= THIS_MODULE,
1829 	.cra_init		= stm32_cryp_cra_init,
1830 	.cra_ablkcipher = {
1831 		.min_keysize	= 3 * DES_BLOCK_SIZE,
1832 		.max_keysize	= 3 * DES_BLOCK_SIZE,
1833 		.setkey		= stm32_cryp_tdes_setkey,
1834 		.encrypt	= stm32_cryp_tdes_ecb_encrypt,
1835 		.decrypt	= stm32_cryp_tdes_ecb_decrypt,
1836 	}
1837 },
1838 {
1839 	.cra_name		= "cbc(des3_ede)",
1840 	.cra_driver_name	= "stm32-cbc-des3",
1841 	.cra_priority		= 200,
1842 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1843 				  CRYPTO_ALG_ASYNC,
1844 	.cra_blocksize		= DES_BLOCK_SIZE,
1845 	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1846 	.cra_alignmask		= 0xf,
1847 	.cra_type		= &crypto_ablkcipher_type,
1848 	.cra_module		= THIS_MODULE,
1849 	.cra_init		= stm32_cryp_cra_init,
1850 	.cra_ablkcipher = {
1851 		.min_keysize	= 3 * DES_BLOCK_SIZE,
1852 		.max_keysize	= 3 * DES_BLOCK_SIZE,
1853 		.ivsize		= DES_BLOCK_SIZE,
1854 		.setkey		= stm32_cryp_tdes_setkey,
1855 		.encrypt	= stm32_cryp_tdes_cbc_encrypt,
1856 		.decrypt	= stm32_cryp_tdes_cbc_decrypt,
1857 	}
1858 },
1859 };
1860 
1861 static struct aead_alg aead_algs[] = {
1862 {
1863 	.setkey		= stm32_cryp_aes_aead_setkey,
1864 	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1865 	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1866 	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1867 	.init		= stm32_cryp_aes_aead_init,
1868 	.ivsize		= 12,
1869 	.maxauthsize	= AES_BLOCK_SIZE,
1870 
1871 	.base = {
1872 		.cra_name		= "gcm(aes)",
1873 		.cra_driver_name	= "stm32-gcm-aes",
1874 		.cra_priority		= 200,
1875 		.cra_flags		= CRYPTO_ALG_ASYNC,
1876 		.cra_blocksize		= 1,
1877 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1878 		.cra_alignmask		= 0xf,
1879 		.cra_module		= THIS_MODULE,
1880 	},
1881 },
1882 {
1883 	.setkey		= stm32_cryp_aes_aead_setkey,
1884 	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1885 	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1886 	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1887 	.init		= stm32_cryp_aes_aead_init,
1888 	.ivsize		= AES_BLOCK_SIZE,
1889 	.maxauthsize	= AES_BLOCK_SIZE,
1890 
1891 	.base = {
1892 		.cra_name		= "ccm(aes)",
1893 		.cra_driver_name	= "stm32-ccm-aes",
1894 		.cra_priority		= 200,
1895 		.cra_flags		= CRYPTO_ALG_ASYNC,
1896 		.cra_blocksize		= 1,
1897 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1898 		.cra_alignmask		= 0xf,
1899 		.cra_module		= THIS_MODULE,
1900 	},
1901 },
1902 };
1903 
1904 static const struct stm32_cryp_caps f7_data = {
1905 	.swap_final = true,
1906 	.padding_wa = true,
1907 };
1908 
1909 static const struct stm32_cryp_caps mp1_data = {
1910 	.swap_final = false,
1911 	.padding_wa = false,
1912 };
1913 
1914 static const struct of_device_id stm32_dt_ids[] = {
1915 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1916 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1917 	{},
1918 };
1919 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1920 
1921 static int stm32_cryp_probe(struct platform_device *pdev)
1922 {
1923 	struct device *dev = &pdev->dev;
1924 	struct stm32_cryp *cryp;
1925 	struct resource *res;
1926 	struct reset_control *rst;
1927 	int irq, ret;
1928 
1929 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1930 	if (!cryp)
1931 		return -ENOMEM;
1932 
1933 	cryp->caps = of_device_get_match_data(dev);
1934 	if (!cryp->caps)
1935 		return -ENODEV;
1936 
1937 	cryp->dev = dev;
1938 
1939 	mutex_init(&cryp->lock);
1940 
1941 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1942 	cryp->regs = devm_ioremap_resource(dev, res);
1943 	if (IS_ERR(cryp->regs))
1944 		return PTR_ERR(cryp->regs);
1945 
1946 	irq = platform_get_irq(pdev, 0);
1947 	if (irq < 0) {
1948 		dev_err(dev, "Cannot get IRQ resource\n");
1949 		return irq;
1950 	}
1951 
1952 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1953 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1954 					dev_name(dev), cryp);
1955 	if (ret) {
1956 		dev_err(dev, "Cannot grab IRQ\n");
1957 		return ret;
1958 	}
1959 
1960 	cryp->clk = devm_clk_get(dev, NULL);
1961 	if (IS_ERR(cryp->clk)) {
1962 		dev_err(dev, "Could not get clock\n");
1963 		return PTR_ERR(cryp->clk);
1964 	}
1965 
1966 	ret = clk_prepare_enable(cryp->clk);
1967 	if (ret) {
1968 		dev_err(cryp->dev, "Failed to enable clock\n");
1969 		return ret;
1970 	}
1971 
1972 	rst = devm_reset_control_get(dev, NULL);
1973 	if (!IS_ERR(rst)) {
1974 		reset_control_assert(rst);
1975 		udelay(2);
1976 		reset_control_deassert(rst);
1977 	}
1978 
1979 	platform_set_drvdata(pdev, cryp);
1980 
1981 	spin_lock(&cryp_list.lock);
1982 	list_add(&cryp->list, &cryp_list.dev_list);
1983 	spin_unlock(&cryp_list.lock);
1984 
1985 	/* Initialize crypto engine */
1986 	cryp->engine = crypto_engine_alloc_init(dev, 1);
1987 	if (!cryp->engine) {
1988 		dev_err(dev, "Could not init crypto engine\n");
1989 		ret = -ENOMEM;
1990 		goto err_engine1;
1991 	}
1992 
1993 	ret = crypto_engine_start(cryp->engine);
1994 	if (ret) {
1995 		dev_err(dev, "Could not start crypto engine\n");
1996 		goto err_engine2;
1997 	}
1998 
1999 	ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2000 	if (ret) {
2001 		dev_err(dev, "Could not register algs\n");
2002 		goto err_algs;
2003 	}
2004 
2005 	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2006 	if (ret)
2007 		goto err_aead_algs;
2008 
2009 	dev_info(dev, "Initialized\n");
2010 
2011 	return 0;
2012 
2013 err_aead_algs:
2014 	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2015 err_algs:
2016 err_engine2:
2017 	crypto_engine_exit(cryp->engine);
2018 err_engine1:
2019 	spin_lock(&cryp_list.lock);
2020 	list_del(&cryp->list);
2021 	spin_unlock(&cryp_list.lock);
2022 
2023 	clk_disable_unprepare(cryp->clk);
2024 
2025 	return ret;
2026 }
2027 
2028 static int stm32_cryp_remove(struct platform_device *pdev)
2029 {
2030 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2031 
2032 	if (!cryp)
2033 		return -ENODEV;
2034 
2035 	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2036 	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2037 
2038 	crypto_engine_exit(cryp->engine);
2039 
2040 	spin_lock(&cryp_list.lock);
2041 	list_del(&cryp->list);
2042 	spin_unlock(&cryp_list.lock);
2043 
2044 	clk_disable_unprepare(cryp->clk);
2045 
2046 	return 0;
2047 }
2048 
2049 static struct platform_driver stm32_cryp_driver = {
2050 	.probe  = stm32_cryp_probe,
2051 	.remove = stm32_cryp_remove,
2052 	.driver = {
2053 		.name           = DRIVER_NAME,
2054 		.of_match_table = stm32_dt_ids,
2055 	},
2056 };
2057 
2058 module_platform_driver(stm32_cryp_driver);
2059 
2060 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2061 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2062 MODULE_LICENSE("GPL");
2063