1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  */
6 
7 #include <linux/bitrev.h>
8 #include <linux/clk.h>
9 #include <linux/crc32.h>
10 #include <linux/crc32poly.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 
18 #include <crypto/internal/hash.h>
19 
20 #include <asm/unaligned.h>
21 
22 #define DRIVER_NAME             "stm32-crc32"
23 #define CHKSUM_DIGEST_SIZE      4
24 #define CHKSUM_BLOCK_SIZE       1
25 
26 /* Registers */
27 #define CRC_DR                  0x00000000
28 #define CRC_CR                  0x00000008
29 #define CRC_INIT                0x00000010
30 #define CRC_POL                 0x00000014
31 
32 /* Registers values */
33 #define CRC_CR_RESET            BIT(0)
34 #define CRC_CR_REV_IN_WORD      (BIT(6) | BIT(5))
35 #define CRC_CR_REV_IN_BYTE      BIT(5)
36 #define CRC_CR_REV_OUT          BIT(7)
37 #define CRC32C_INIT_DEFAULT     0xFFFFFFFF
38 
39 #define CRC_AUTOSUSPEND_DELAY	50
40 
41 static unsigned int burst_size;
42 module_param(burst_size, uint, 0644);
43 MODULE_PARM_DESC(burst_size, "Select burst byte size (0 unlimited)");
44 
45 struct stm32_crc {
46 	struct list_head list;
47 	struct device    *dev;
48 	void __iomem     *regs;
49 	struct clk       *clk;
50 	spinlock_t       lock;
51 };
52 
53 struct stm32_crc_list {
54 	struct list_head dev_list;
55 	spinlock_t       lock; /* protect dev_list */
56 };
57 
58 static struct stm32_crc_list crc_list = {
59 	.dev_list = LIST_HEAD_INIT(crc_list.dev_list),
60 	.lock     = __SPIN_LOCK_UNLOCKED(crc_list.lock),
61 };
62 
63 struct stm32_crc_ctx {
64 	u32 key;
65 	u32 poly;
66 };
67 
68 struct stm32_crc_desc_ctx {
69 	u32    partial; /* crc32c: partial in first 4 bytes of that struct */
70 };
71 
72 static int stm32_crc32_cra_init(struct crypto_tfm *tfm)
73 {
74 	struct stm32_crc_ctx *mctx = crypto_tfm_ctx(tfm);
75 
76 	mctx->key = 0;
77 	mctx->poly = CRC32_POLY_LE;
78 	return 0;
79 }
80 
81 static int stm32_crc32c_cra_init(struct crypto_tfm *tfm)
82 {
83 	struct stm32_crc_ctx *mctx = crypto_tfm_ctx(tfm);
84 
85 	mctx->key = CRC32C_INIT_DEFAULT;
86 	mctx->poly = CRC32C_POLY_LE;
87 	return 0;
88 }
89 
90 static int stm32_crc_setkey(struct crypto_shash *tfm, const u8 *key,
91 			    unsigned int keylen)
92 {
93 	struct stm32_crc_ctx *mctx = crypto_shash_ctx(tfm);
94 
95 	if (keylen != sizeof(u32))
96 		return -EINVAL;
97 
98 	mctx->key = get_unaligned_le32(key);
99 	return 0;
100 }
101 
102 static struct stm32_crc *stm32_crc_get_next_crc(void)
103 {
104 	struct stm32_crc *crc;
105 
106 	spin_lock_bh(&crc_list.lock);
107 	crc = list_first_entry(&crc_list.dev_list, struct stm32_crc, list);
108 	if (crc)
109 		list_move_tail(&crc->list, &crc_list.dev_list);
110 	spin_unlock_bh(&crc_list.lock);
111 
112 	return crc;
113 }
114 
115 static int stm32_crc_init(struct shash_desc *desc)
116 {
117 	struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc);
118 	struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
119 	struct stm32_crc *crc;
120 	unsigned long flags;
121 
122 	crc = stm32_crc_get_next_crc();
123 	if (!crc)
124 		return -ENODEV;
125 
126 	pm_runtime_get_sync(crc->dev);
127 
128 	spin_lock_irqsave(&crc->lock, flags);
129 
130 	/* Reset, set key, poly and configure in bit reverse mode */
131 	writel_relaxed(bitrev32(mctx->key), crc->regs + CRC_INIT);
132 	writel_relaxed(bitrev32(mctx->poly), crc->regs + CRC_POL);
133 	writel_relaxed(CRC_CR_RESET | CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT,
134 		       crc->regs + CRC_CR);
135 
136 	/* Store partial result */
137 	ctx->partial = readl_relaxed(crc->regs + CRC_DR);
138 
139 	spin_unlock_irqrestore(&crc->lock, flags);
140 
141 	pm_runtime_mark_last_busy(crc->dev);
142 	pm_runtime_put_autosuspend(crc->dev);
143 
144 	return 0;
145 }
146 
147 static int burst_update(struct shash_desc *desc, const u8 *d8,
148 			size_t length)
149 {
150 	struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc);
151 	struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
152 	struct stm32_crc *crc;
153 
154 	crc = stm32_crc_get_next_crc();
155 	if (!crc)
156 		return -ENODEV;
157 
158 	pm_runtime_get_sync(crc->dev);
159 
160 	if (!spin_trylock(&crc->lock)) {
161 		/* Hardware is busy, calculate crc32 by software */
162 		if (mctx->poly == CRC32_POLY_LE)
163 			ctx->partial = crc32_le(ctx->partial, d8, length);
164 		else
165 			ctx->partial = __crc32c_le(ctx->partial, d8, length);
166 
167 		goto pm_out;
168 	}
169 
170 	/*
171 	 * Restore previously calculated CRC for this context as init value
172 	 * Restore polynomial configuration
173 	 * Configure in register for word input data,
174 	 * Configure out register in reversed bit mode data.
175 	 */
176 	writel_relaxed(bitrev32(ctx->partial), crc->regs + CRC_INIT);
177 	writel_relaxed(bitrev32(mctx->poly), crc->regs + CRC_POL);
178 	writel_relaxed(CRC_CR_RESET | CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT,
179 		       crc->regs + CRC_CR);
180 
181 	if (d8 != PTR_ALIGN(d8, sizeof(u32))) {
182 		/* Configure for byte data */
183 		writel_relaxed(CRC_CR_REV_IN_BYTE | CRC_CR_REV_OUT,
184 			       crc->regs + CRC_CR);
185 		while (d8 != PTR_ALIGN(d8, sizeof(u32)) && length) {
186 			writeb_relaxed(*d8++, crc->regs + CRC_DR);
187 			length--;
188 		}
189 		/* Configure for word data */
190 		writel_relaxed(CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT,
191 			       crc->regs + CRC_CR);
192 	}
193 
194 	for (; length >= sizeof(u32); d8 += sizeof(u32), length -= sizeof(u32))
195 		writel_relaxed(*((u32 *)d8), crc->regs + CRC_DR);
196 
197 	if (length) {
198 		/* Configure for byte data */
199 		writel_relaxed(CRC_CR_REV_IN_BYTE | CRC_CR_REV_OUT,
200 			       crc->regs + CRC_CR);
201 		while (length--)
202 			writeb_relaxed(*d8++, crc->regs + CRC_DR);
203 	}
204 
205 	/* Store partial result */
206 	ctx->partial = readl_relaxed(crc->regs + CRC_DR);
207 
208 	spin_unlock(&crc->lock);
209 
210 pm_out:
211 	pm_runtime_mark_last_busy(crc->dev);
212 	pm_runtime_put_autosuspend(crc->dev);
213 
214 	return 0;
215 }
216 
217 static int stm32_crc_update(struct shash_desc *desc, const u8 *d8,
218 			    unsigned int length)
219 {
220 	const unsigned int burst_sz = burst_size;
221 	unsigned int rem_sz;
222 	const u8 *cur;
223 	size_t size;
224 	int ret;
225 
226 	if (!burst_sz)
227 		return burst_update(desc, d8, length);
228 
229 	/* Digest first bytes not 32bit aligned at first pass in the loop */
230 	size = min_t(size_t, length, burst_sz + (size_t)d8 -
231 				     ALIGN_DOWN((size_t)d8, sizeof(u32)));
232 	for (rem_sz = length, cur = d8; rem_sz;
233 	     rem_sz -= size, cur += size, size = min(rem_sz, burst_sz)) {
234 		ret = burst_update(desc, cur, size);
235 		if (ret)
236 			return ret;
237 	}
238 
239 	return 0;
240 }
241 
242 static int stm32_crc_final(struct shash_desc *desc, u8 *out)
243 {
244 	struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc);
245 	struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
246 
247 	/* Send computed CRC */
248 	put_unaligned_le32(mctx->poly == CRC32C_POLY_LE ?
249 			   ~ctx->partial : ctx->partial, out);
250 
251 	return 0;
252 }
253 
254 static int stm32_crc_finup(struct shash_desc *desc, const u8 *data,
255 			   unsigned int length, u8 *out)
256 {
257 	return stm32_crc_update(desc, data, length) ?:
258 	       stm32_crc_final(desc, out);
259 }
260 
261 static int stm32_crc_digest(struct shash_desc *desc, const u8 *data,
262 			    unsigned int length, u8 *out)
263 {
264 	return stm32_crc_init(desc) ?: stm32_crc_finup(desc, data, length, out);
265 }
266 
267 static unsigned int refcnt;
268 static DEFINE_MUTEX(refcnt_lock);
269 static struct shash_alg algs[] = {
270 	/* CRC-32 */
271 	{
272 		.setkey         = stm32_crc_setkey,
273 		.init           = stm32_crc_init,
274 		.update         = stm32_crc_update,
275 		.final          = stm32_crc_final,
276 		.finup          = stm32_crc_finup,
277 		.digest         = stm32_crc_digest,
278 		.descsize       = sizeof(struct stm32_crc_desc_ctx),
279 		.digestsize     = CHKSUM_DIGEST_SIZE,
280 		.base           = {
281 			.cra_name               = "crc32",
282 			.cra_driver_name        = DRIVER_NAME,
283 			.cra_priority           = 200,
284 			.cra_flags		= CRYPTO_ALG_OPTIONAL_KEY,
285 			.cra_blocksize          = CHKSUM_BLOCK_SIZE,
286 			.cra_alignmask          = 3,
287 			.cra_ctxsize            = sizeof(struct stm32_crc_ctx),
288 			.cra_module             = THIS_MODULE,
289 			.cra_init               = stm32_crc32_cra_init,
290 		}
291 	},
292 	/* CRC-32Castagnoli */
293 	{
294 		.setkey         = stm32_crc_setkey,
295 		.init           = stm32_crc_init,
296 		.update         = stm32_crc_update,
297 		.final          = stm32_crc_final,
298 		.finup          = stm32_crc_finup,
299 		.digest         = stm32_crc_digest,
300 		.descsize       = sizeof(struct stm32_crc_desc_ctx),
301 		.digestsize     = CHKSUM_DIGEST_SIZE,
302 		.base           = {
303 			.cra_name               = "crc32c",
304 			.cra_driver_name        = DRIVER_NAME,
305 			.cra_priority           = 200,
306 			.cra_flags		= CRYPTO_ALG_OPTIONAL_KEY,
307 			.cra_blocksize          = CHKSUM_BLOCK_SIZE,
308 			.cra_alignmask          = 3,
309 			.cra_ctxsize            = sizeof(struct stm32_crc_ctx),
310 			.cra_module             = THIS_MODULE,
311 			.cra_init               = stm32_crc32c_cra_init,
312 		}
313 	}
314 };
315 
316 static int stm32_crc_probe(struct platform_device *pdev)
317 {
318 	struct device *dev = &pdev->dev;
319 	struct stm32_crc *crc;
320 	int ret;
321 
322 	crc = devm_kzalloc(dev, sizeof(*crc), GFP_KERNEL);
323 	if (!crc)
324 		return -ENOMEM;
325 
326 	crc->dev = dev;
327 
328 	crc->regs = devm_platform_ioremap_resource(pdev, 0);
329 	if (IS_ERR(crc->regs)) {
330 		dev_err(dev, "Cannot map CRC IO\n");
331 		return PTR_ERR(crc->regs);
332 	}
333 
334 	crc->clk = devm_clk_get(dev, NULL);
335 	if (IS_ERR(crc->clk)) {
336 		dev_err(dev, "Could not get clock\n");
337 		return PTR_ERR(crc->clk);
338 	}
339 
340 	ret = clk_prepare_enable(crc->clk);
341 	if (ret) {
342 		dev_err(crc->dev, "Failed to enable clock\n");
343 		return ret;
344 	}
345 
346 	pm_runtime_set_autosuspend_delay(dev, CRC_AUTOSUSPEND_DELAY);
347 	pm_runtime_use_autosuspend(dev);
348 
349 	pm_runtime_get_noresume(dev);
350 	pm_runtime_set_active(dev);
351 	pm_runtime_irq_safe(dev);
352 	pm_runtime_enable(dev);
353 
354 	spin_lock_init(&crc->lock);
355 
356 	platform_set_drvdata(pdev, crc);
357 
358 	spin_lock(&crc_list.lock);
359 	list_add(&crc->list, &crc_list.dev_list);
360 	spin_unlock(&crc_list.lock);
361 
362 	mutex_lock(&refcnt_lock);
363 	if (!refcnt) {
364 		ret = crypto_register_shashes(algs, ARRAY_SIZE(algs));
365 		if (ret) {
366 			mutex_unlock(&refcnt_lock);
367 			dev_err(dev, "Failed to register\n");
368 			clk_disable_unprepare(crc->clk);
369 			return ret;
370 		}
371 	}
372 	refcnt++;
373 	mutex_unlock(&refcnt_lock);
374 
375 	dev_info(dev, "Initialized\n");
376 
377 	pm_runtime_put_sync(dev);
378 
379 	return 0;
380 }
381 
382 static int stm32_crc_remove(struct platform_device *pdev)
383 {
384 	struct stm32_crc *crc = platform_get_drvdata(pdev);
385 	int ret = pm_runtime_get_sync(crc->dev);
386 
387 	if (ret < 0)
388 		return ret;
389 
390 	spin_lock(&crc_list.lock);
391 	list_del(&crc->list);
392 	spin_unlock(&crc_list.lock);
393 
394 	mutex_lock(&refcnt_lock);
395 	if (!--refcnt)
396 		crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
397 	mutex_unlock(&refcnt_lock);
398 
399 	pm_runtime_disable(crc->dev);
400 	pm_runtime_put_noidle(crc->dev);
401 
402 	clk_disable_unprepare(crc->clk);
403 
404 	return 0;
405 }
406 
407 static int __maybe_unused stm32_crc_suspend(struct device *dev)
408 {
409 	struct stm32_crc *crc = dev_get_drvdata(dev);
410 	int ret;
411 
412 	ret = pm_runtime_force_suspend(dev);
413 	if (ret)
414 		return ret;
415 
416 	clk_unprepare(crc->clk);
417 
418 	return 0;
419 }
420 
421 static int __maybe_unused stm32_crc_resume(struct device *dev)
422 {
423 	struct stm32_crc *crc = dev_get_drvdata(dev);
424 	int ret;
425 
426 	ret = clk_prepare(crc->clk);
427 	if (ret) {
428 		dev_err(crc->dev, "Failed to prepare clock\n");
429 		return ret;
430 	}
431 
432 	return pm_runtime_force_resume(dev);
433 }
434 
435 static int __maybe_unused stm32_crc_runtime_suspend(struct device *dev)
436 {
437 	struct stm32_crc *crc = dev_get_drvdata(dev);
438 
439 	clk_disable(crc->clk);
440 
441 	return 0;
442 }
443 
444 static int __maybe_unused stm32_crc_runtime_resume(struct device *dev)
445 {
446 	struct stm32_crc *crc = dev_get_drvdata(dev);
447 	int ret;
448 
449 	ret = clk_enable(crc->clk);
450 	if (ret) {
451 		dev_err(crc->dev, "Failed to enable clock\n");
452 		return ret;
453 	}
454 
455 	return 0;
456 }
457 
458 static const struct dev_pm_ops stm32_crc_pm_ops = {
459 	SET_SYSTEM_SLEEP_PM_OPS(stm32_crc_suspend,
460 				stm32_crc_resume)
461 	SET_RUNTIME_PM_OPS(stm32_crc_runtime_suspend,
462 			   stm32_crc_runtime_resume, NULL)
463 };
464 
465 static const struct of_device_id stm32_dt_ids[] = {
466 	{ .compatible = "st,stm32f7-crc", },
467 	{},
468 };
469 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
470 
471 static struct platform_driver stm32_crc_driver = {
472 	.probe  = stm32_crc_probe,
473 	.remove = stm32_crc_remove,
474 	.driver = {
475 		.name           = DRIVER_NAME,
476 		.pm		= &stm32_crc_pm_ops,
477 		.of_match_table = stm32_dt_ids,
478 	},
479 };
480 
481 module_platform_driver(stm32_crc_driver);
482 
483 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
484 MODULE_DESCRIPTION("STMicrolectronics STM32 CRC32 hardware driver");
485 MODULE_LICENSE("GPL");
486