1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Cryptographic API. 4 // 5 // Support for Samsung S5PV210 and Exynos HW acceleration. 6 // 7 // Copyright (C) 2011 NetUP Inc. All rights reserved. 8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. 9 // 10 // Hash part based on omap-sham.c driver. 11 12 #include <linux/clk.h> 13 #include <linux/crypto.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/errno.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/platform_device.h> 24 #include <linux/scatterlist.h> 25 26 #include <crypto/ctr.h> 27 #include <crypto/aes.h> 28 #include <crypto/algapi.h> 29 #include <crypto/scatterwalk.h> 30 31 #include <crypto/hash.h> 32 #include <crypto/md5.h> 33 #include <crypto/sha.h> 34 #include <crypto/internal/hash.h> 35 36 #define _SBF(s, v) ((v) << (s)) 37 38 /* Feed control registers */ 39 #define SSS_REG_FCINTSTAT 0x0000 40 #define SSS_FCINTSTAT_HPARTINT BIT(7) 41 #define SSS_FCINTSTAT_HDONEINT BIT(5) 42 #define SSS_FCINTSTAT_BRDMAINT BIT(3) 43 #define SSS_FCINTSTAT_BTDMAINT BIT(2) 44 #define SSS_FCINTSTAT_HRDMAINT BIT(1) 45 #define SSS_FCINTSTAT_PKDMAINT BIT(0) 46 47 #define SSS_REG_FCINTENSET 0x0004 48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7) 49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5) 50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) 51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) 52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) 53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) 54 55 #define SSS_REG_FCINTENCLR 0x0008 56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) 57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) 58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) 59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) 60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) 61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) 62 63 #define SSS_REG_FCINTPEND 0x000C 64 #define SSS_FCINTPEND_HPARTINTP BIT(7) 65 #define SSS_FCINTPEND_HDONEINTP BIT(5) 66 #define SSS_FCINTPEND_BRDMAINTP BIT(3) 67 #define SSS_FCINTPEND_BTDMAINTP BIT(2) 68 #define SSS_FCINTPEND_HRDMAINTP BIT(1) 69 #define SSS_FCINTPEND_PKDMAINTP BIT(0) 70 71 #define SSS_REG_FCFIFOSTAT 0x0010 72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) 73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) 74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) 75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) 76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) 77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) 78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) 79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) 80 81 #define SSS_REG_FCFIFOCTRL 0x0014 82 #define SSS_FCFIFOCTRL_DESSEL BIT(2) 83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) 84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) 85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) 86 #define SSS_HASHIN_MASK _SBF(0, 0x03) 87 88 #define SSS_REG_FCBRDMAS 0x0020 89 #define SSS_REG_FCBRDMAL 0x0024 90 #define SSS_REG_FCBRDMAC 0x0028 91 #define SSS_FCBRDMAC_BYTESWAP BIT(1) 92 #define SSS_FCBRDMAC_FLUSH BIT(0) 93 94 #define SSS_REG_FCBTDMAS 0x0030 95 #define SSS_REG_FCBTDMAL 0x0034 96 #define SSS_REG_FCBTDMAC 0x0038 97 #define SSS_FCBTDMAC_BYTESWAP BIT(1) 98 #define SSS_FCBTDMAC_FLUSH BIT(0) 99 100 #define SSS_REG_FCHRDMAS 0x0040 101 #define SSS_REG_FCHRDMAL 0x0044 102 #define SSS_REG_FCHRDMAC 0x0048 103 #define SSS_FCHRDMAC_BYTESWAP BIT(1) 104 #define SSS_FCHRDMAC_FLUSH BIT(0) 105 106 #define SSS_REG_FCPKDMAS 0x0050 107 #define SSS_REG_FCPKDMAL 0x0054 108 #define SSS_REG_FCPKDMAC 0x0058 109 #define SSS_FCPKDMAC_BYTESWAP BIT(3) 110 #define SSS_FCPKDMAC_DESCEND BIT(2) 111 #define SSS_FCPKDMAC_TRANSMIT BIT(1) 112 #define SSS_FCPKDMAC_FLUSH BIT(0) 113 114 #define SSS_REG_FCPKDMAO 0x005C 115 116 /* AES registers */ 117 #define SSS_REG_AES_CONTROL 0x00 118 #define SSS_AES_BYTESWAP_DI BIT(11) 119 #define SSS_AES_BYTESWAP_DO BIT(10) 120 #define SSS_AES_BYTESWAP_IV BIT(9) 121 #define SSS_AES_BYTESWAP_CNT BIT(8) 122 #define SSS_AES_BYTESWAP_KEY BIT(7) 123 #define SSS_AES_KEY_CHANGE_MODE BIT(6) 124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) 125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) 126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) 127 #define SSS_AES_FIFO_MODE BIT(3) 128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) 129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) 130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) 131 #define SSS_AES_MODE_DECRYPT BIT(0) 132 133 #define SSS_REG_AES_STATUS 0x04 134 #define SSS_AES_BUSY BIT(2) 135 #define SSS_AES_INPUT_READY BIT(1) 136 #define SSS_AES_OUTPUT_READY BIT(0) 137 138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) 139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) 140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) 141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) 142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) 143 144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) 145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) 146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) 147 148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) 149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ 150 SSS_AES_REG(dev, reg)) 151 152 /* HW engine modes */ 153 #define FLAGS_AES_DECRYPT BIT(0) 154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) 155 #define FLAGS_AES_CBC _SBF(1, 0x01) 156 #define FLAGS_AES_CTR _SBF(1, 0x02) 157 158 #define AES_KEY_LEN 16 159 #define CRYPTO_QUEUE_LEN 1 160 161 /* HASH registers */ 162 #define SSS_REG_HASH_CTRL 0x00 163 164 #define SSS_HASH_USER_IV_EN BIT(5) 165 #define SSS_HASH_INIT_BIT BIT(4) 166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) 167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) 168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) 169 170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) 171 172 #define SSS_REG_HASH_CTRL_PAUSE 0x04 173 174 #define SSS_HASH_PAUSE BIT(0) 175 176 #define SSS_REG_HASH_CTRL_FIFO 0x08 177 178 #define SSS_HASH_FIFO_MODE_DMA BIT(0) 179 #define SSS_HASH_FIFO_MODE_CPU 0 180 181 #define SSS_REG_HASH_CTRL_SWAP 0x0C 182 183 #define SSS_HASH_BYTESWAP_DI BIT(3) 184 #define SSS_HASH_BYTESWAP_DO BIT(2) 185 #define SSS_HASH_BYTESWAP_IV BIT(1) 186 #define SSS_HASH_BYTESWAP_KEY BIT(0) 187 188 #define SSS_REG_HASH_STATUS 0x10 189 190 #define SSS_HASH_STATUS_MSG_DONE BIT(6) 191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) 192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0) 193 194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 196 197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C 199 200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) 201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) 202 203 #define HASH_BLOCK_SIZE 64 204 #define HASH_REG_SIZEOF 4 205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) 206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) 207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) 208 209 /* 210 * HASH bit numbers, used by device, setting in dev->hash_flags with 211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), 212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler 213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist 214 */ 215 #define HASH_FLAGS_BUSY 0 216 #define HASH_FLAGS_FINAL 1 217 #define HASH_FLAGS_DMA_ACTIVE 2 218 #define HASH_FLAGS_OUTPUT_READY 3 219 #define HASH_FLAGS_DMA_READY 4 220 #define HASH_FLAGS_SGS_COPIED 5 221 #define HASH_FLAGS_SGS_ALLOCED 6 222 223 /* HASH HW constants */ 224 #define BUFLEN HASH_BLOCK_SIZE 225 226 #define SSS_HASH_DMA_LEN_ALIGN 8 227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1) 228 229 #define SSS_HASH_QUEUE_LENGTH 10 230 231 /** 232 * struct samsung_aes_variant - platform specific SSS driver data 233 * @aes_offset: AES register offset from SSS module's base. 234 * @hash_offset: HASH register offset from SSS module's base. 235 * 236 * Specifies platform specific configuration of SSS module. 237 * Note: A structure for driver specific platform data is used for future 238 * expansion of its usage. 239 */ 240 struct samsung_aes_variant { 241 unsigned int aes_offset; 242 unsigned int hash_offset; 243 }; 244 245 struct s5p_aes_reqctx { 246 unsigned long mode; 247 }; 248 249 struct s5p_aes_ctx { 250 struct s5p_aes_dev *dev; 251 252 uint8_t aes_key[AES_MAX_KEY_SIZE]; 253 uint8_t nonce[CTR_RFC3686_NONCE_SIZE]; 254 int keylen; 255 }; 256 257 /** 258 * struct s5p_aes_dev - Crypto device state container 259 * @dev: Associated device 260 * @clk: Clock for accessing hardware 261 * @ioaddr: Mapped IO memory region 262 * @aes_ioaddr: Per-varian offset for AES block IO memory 263 * @irq_fc: Feed control interrupt line 264 * @req: Crypto request currently handled by the device 265 * @ctx: Configuration for currently handled crypto request 266 * @sg_src: Scatter list with source data for currently handled block 267 * in device. This is DMA-mapped into device. 268 * @sg_dst: Scatter list with destination data for currently handled block 269 * in device. This is DMA-mapped into device. 270 * @sg_src_cpy: In case of unaligned access, copied scatter list 271 * with source data. 272 * @sg_dst_cpy: In case of unaligned access, copied scatter list 273 * with destination data. 274 * @tasklet: New request scheduling jib 275 * @queue: Crypto queue 276 * @busy: Indicates whether the device is currently handling some request 277 * thus it uses some of the fields from this state, like: 278 * req, ctx, sg_src/dst (and copies). This essentially 279 * protects against concurrent access to these fields. 280 * @lock: Lock for protecting both access to device hardware registers 281 * and fields related to current request (including the busy field). 282 * @res: Resources for hash. 283 * @io_hash_base: Per-variant offset for HASH block IO memory. 284 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags 285 * variable. 286 * @hash_flags: Flags for current HASH op. 287 * @hash_queue: Async hash queue. 288 * @hash_tasklet: New HASH request scheduling job. 289 * @xmit_buf: Buffer for current HASH request transfer into SSS block. 290 * @hash_req: Current request sending to SSS HASH block. 291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. 292 * @hash_sg_cnt: Counter for hash_sg_iter. 293 * 294 * @use_hash: true if HASH algs enabled 295 */ 296 struct s5p_aes_dev { 297 struct device *dev; 298 struct clk *clk; 299 void __iomem *ioaddr; 300 void __iomem *aes_ioaddr; 301 int irq_fc; 302 303 struct ablkcipher_request *req; 304 struct s5p_aes_ctx *ctx; 305 struct scatterlist *sg_src; 306 struct scatterlist *sg_dst; 307 308 struct scatterlist *sg_src_cpy; 309 struct scatterlist *sg_dst_cpy; 310 311 struct tasklet_struct tasklet; 312 struct crypto_queue queue; 313 bool busy; 314 spinlock_t lock; 315 316 struct resource *res; 317 void __iomem *io_hash_base; 318 319 spinlock_t hash_lock; /* protect hash_ vars */ 320 unsigned long hash_flags; 321 struct crypto_queue hash_queue; 322 struct tasklet_struct hash_tasklet; 323 324 u8 xmit_buf[BUFLEN]; 325 struct ahash_request *hash_req; 326 struct scatterlist *hash_sg_iter; 327 unsigned int hash_sg_cnt; 328 329 bool use_hash; 330 }; 331 332 /** 333 * struct s5p_hash_reqctx - HASH request context 334 * @dd: Associated device 335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL) 336 * @digcnt: Number of bytes processed by HW (without buffer[] ones) 337 * @digest: Digest message or IV for partial result 338 * @nregs: Number of HW registers for digest or IV read/write 339 * @engine: Bits for selecting type of HASH in SSS block 340 * @sg: sg for DMA transfer 341 * @sg_len: Length of sg for DMA transfer 342 * @sgl[]: sg for joining buffer and req->src scatterlist 343 * @skip: Skip offset in req->src for current op 344 * @total: Total number of bytes for current request 345 * @finup: Keep state for finup or final. 346 * @error: Keep track of error. 347 * @bufcnt: Number of bytes holded in buffer[] 348 * @buffer[]: For byte(s) from end of req->src in UPDATE op 349 */ 350 struct s5p_hash_reqctx { 351 struct s5p_aes_dev *dd; 352 bool op_update; 353 354 u64 digcnt; 355 u8 digest[SHA256_DIGEST_SIZE]; 356 357 unsigned int nregs; /* digest_size / sizeof(reg) */ 358 u32 engine; 359 360 struct scatterlist *sg; 361 unsigned int sg_len; 362 struct scatterlist sgl[2]; 363 unsigned int skip; 364 unsigned int total; 365 bool finup; 366 bool error; 367 368 u32 bufcnt; 369 u8 buffer[0]; 370 }; 371 372 /** 373 * struct s5p_hash_ctx - HASH transformation context 374 * @dd: Associated device 375 * @flags: Bits for algorithm HASH. 376 * @fallback: Software transformation for zero message or size < BUFLEN. 377 */ 378 struct s5p_hash_ctx { 379 struct s5p_aes_dev *dd; 380 unsigned long flags; 381 struct crypto_shash *fallback; 382 }; 383 384 static const struct samsung_aes_variant s5p_aes_data = { 385 .aes_offset = 0x4000, 386 .hash_offset = 0x6000, 387 }; 388 389 static const struct samsung_aes_variant exynos_aes_data = { 390 .aes_offset = 0x200, 391 .hash_offset = 0x400, 392 }; 393 394 static const struct of_device_id s5p_sss_dt_match[] = { 395 { 396 .compatible = "samsung,s5pv210-secss", 397 .data = &s5p_aes_data, 398 }, 399 { 400 .compatible = "samsung,exynos4210-secss", 401 .data = &exynos_aes_data, 402 }, 403 { }, 404 }; 405 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); 406 407 static inline struct samsung_aes_variant *find_s5p_sss_version 408 (struct platform_device *pdev) 409 { 410 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) { 411 const struct of_device_id *match; 412 413 match = of_match_node(s5p_sss_dt_match, 414 pdev->dev.of_node); 415 return (struct samsung_aes_variant *)match->data; 416 } 417 return (struct samsung_aes_variant *) 418 platform_get_device_id(pdev)->driver_data; 419 } 420 421 static struct s5p_aes_dev *s5p_dev; 422 423 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) 424 { 425 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); 426 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); 427 } 428 429 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) 430 { 431 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); 432 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); 433 } 434 435 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) 436 { 437 int len; 438 439 if (!*sg) 440 return; 441 442 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE); 443 free_pages((unsigned long)sg_virt(*sg), get_order(len)); 444 445 kfree(*sg); 446 *sg = NULL; 447 } 448 449 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, 450 unsigned int nbytes, int out) 451 { 452 struct scatter_walk walk; 453 454 if (!nbytes) 455 return; 456 457 scatterwalk_start(&walk, sg); 458 scatterwalk_copychunks(buf, &walk, nbytes, out); 459 scatterwalk_done(&walk, out, 0); 460 } 461 462 static void s5p_sg_done(struct s5p_aes_dev *dev) 463 { 464 if (dev->sg_dst_cpy) { 465 dev_dbg(dev->dev, 466 "Copying %d bytes of output data back to original place\n", 467 dev->req->nbytes); 468 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, 469 dev->req->nbytes, 1); 470 } 471 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 472 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 473 } 474 475 /* Calls the completion. Cannot be called with dev->lock hold. */ 476 static void s5p_aes_complete(struct s5p_aes_dev *dev, int err) 477 { 478 dev->req->base.complete(&dev->req->base, err); 479 } 480 481 static void s5p_unset_outdata(struct s5p_aes_dev *dev) 482 { 483 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); 484 } 485 486 static void s5p_unset_indata(struct s5p_aes_dev *dev) 487 { 488 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); 489 } 490 491 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, 492 struct scatterlist **dst) 493 { 494 void *pages; 495 int len; 496 497 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); 498 if (!*dst) 499 return -ENOMEM; 500 501 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE); 502 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); 503 if (!pages) { 504 kfree(*dst); 505 *dst = NULL; 506 return -ENOMEM; 507 } 508 509 s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0); 510 511 sg_init_table(*dst, 1); 512 sg_set_buf(*dst, pages, len); 513 514 return 0; 515 } 516 517 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) 518 { 519 int err; 520 521 if (!sg->length) { 522 err = -EINVAL; 523 goto exit; 524 } 525 526 err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE); 527 if (!err) { 528 err = -ENOMEM; 529 goto exit; 530 } 531 532 dev->sg_dst = sg; 533 err = 0; 534 535 exit: 536 return err; 537 } 538 539 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) 540 { 541 int err; 542 543 if (!sg->length) { 544 err = -EINVAL; 545 goto exit; 546 } 547 548 err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE); 549 if (!err) { 550 err = -ENOMEM; 551 goto exit; 552 } 553 554 dev->sg_src = sg; 555 err = 0; 556 557 exit: 558 return err; 559 } 560 561 /* 562 * Returns -ERRNO on error (mapping of new data failed). 563 * On success returns: 564 * - 0 if there is no more data, 565 * - 1 if new transmitting (output) data is ready and its address+length 566 * have to be written to device (by calling s5p_set_dma_outdata()). 567 */ 568 static int s5p_aes_tx(struct s5p_aes_dev *dev) 569 { 570 int ret = 0; 571 572 s5p_unset_outdata(dev); 573 574 if (!sg_is_last(dev->sg_dst)) { 575 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); 576 if (!ret) 577 ret = 1; 578 } 579 580 return ret; 581 } 582 583 /* 584 * Returns -ERRNO on error (mapping of new data failed). 585 * On success returns: 586 * - 0 if there is no more data, 587 * - 1 if new receiving (input) data is ready and its address+length 588 * have to be written to device (by calling s5p_set_dma_indata()). 589 */ 590 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) 591 { 592 int ret = 0; 593 594 s5p_unset_indata(dev); 595 596 if (!sg_is_last(dev->sg_src)) { 597 ret = s5p_set_indata(dev, sg_next(dev->sg_src)); 598 if (!ret) 599 ret = 1; 600 } 601 602 return ret; 603 } 604 605 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) 606 { 607 return __raw_readl(dd->io_hash_base + offset); 608 } 609 610 static inline void s5p_hash_write(struct s5p_aes_dev *dd, 611 u32 offset, u32 value) 612 { 613 __raw_writel(value, dd->io_hash_base + offset); 614 } 615 616 /** 617 * s5p_set_dma_hashdata() - start DMA with sg 618 * @dev: device 619 * @sg: scatterlist ready to DMA transmit 620 */ 621 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, 622 struct scatterlist *sg) 623 { 624 dev->hash_sg_cnt--; 625 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); 626 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ 627 } 628 629 /** 630 * s5p_hash_rx() - get next hash_sg_iter 631 * @dev: device 632 * 633 * Return: 634 * 2 if there is no more data and it is UPDATE op 635 * 1 if new receiving (input) data is ready and can be written to device 636 * 0 if there is no more data and it is FINAL op 637 */ 638 static int s5p_hash_rx(struct s5p_aes_dev *dev) 639 { 640 if (dev->hash_sg_cnt > 0) { 641 dev->hash_sg_iter = sg_next(dev->hash_sg_iter); 642 return 1; 643 } 644 645 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); 646 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) 647 return 0; 648 649 return 2; 650 } 651 652 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) 653 { 654 struct platform_device *pdev = dev_id; 655 struct s5p_aes_dev *dev = platform_get_drvdata(pdev); 656 int err_dma_tx = 0; 657 int err_dma_rx = 0; 658 int err_dma_hx = 0; 659 bool tx_end = false; 660 bool hx_end = false; 661 unsigned long flags; 662 uint32_t status; 663 u32 st_bits; 664 int err; 665 666 spin_lock_irqsave(&dev->lock, flags); 667 668 /* 669 * Handle rx or tx interrupt. If there is still data (scatterlist did not 670 * reach end), then map next scatterlist entry. 671 * In case of such mapping error, s5p_aes_complete() should be called. 672 * 673 * If there is no more data in tx scatter list, call s5p_aes_complete() 674 * and schedule new tasklet. 675 * 676 * Handle hx interrupt. If there is still data map next entry. 677 */ 678 status = SSS_READ(dev, FCINTSTAT); 679 if (status & SSS_FCINTSTAT_BRDMAINT) 680 err_dma_rx = s5p_aes_rx(dev); 681 682 if (status & SSS_FCINTSTAT_BTDMAINT) { 683 if (sg_is_last(dev->sg_dst)) 684 tx_end = true; 685 err_dma_tx = s5p_aes_tx(dev); 686 } 687 688 if (status & SSS_FCINTSTAT_HRDMAINT) 689 err_dma_hx = s5p_hash_rx(dev); 690 691 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | 692 SSS_FCINTSTAT_HRDMAINT); 693 /* clear DMA bits */ 694 SSS_WRITE(dev, FCINTPEND, st_bits); 695 696 /* clear HASH irq bits */ 697 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { 698 /* cannot have both HPART and HDONE */ 699 if (status & SSS_FCINTSTAT_HPARTINT) 700 st_bits = SSS_HASH_STATUS_PARTIAL_DONE; 701 702 if (status & SSS_FCINTSTAT_HDONEINT) 703 st_bits = SSS_HASH_STATUS_MSG_DONE; 704 705 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); 706 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); 707 hx_end = true; 708 /* when DONE or PART, do not handle HASH DMA */ 709 err_dma_hx = 0; 710 } 711 712 if (err_dma_rx < 0) { 713 err = err_dma_rx; 714 goto error; 715 } 716 if (err_dma_tx < 0) { 717 err = err_dma_tx; 718 goto error; 719 } 720 721 if (tx_end) { 722 s5p_sg_done(dev); 723 if (err_dma_hx == 1) 724 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 725 726 spin_unlock_irqrestore(&dev->lock, flags); 727 728 s5p_aes_complete(dev, 0); 729 /* Device is still busy */ 730 tasklet_schedule(&dev->tasklet); 731 } else { 732 /* 733 * Writing length of DMA block (either receiving or 734 * transmitting) will start the operation immediately, so this 735 * should be done at the end (even after clearing pending 736 * interrupts to not miss the interrupt). 737 */ 738 if (err_dma_tx == 1) 739 s5p_set_dma_outdata(dev, dev->sg_dst); 740 if (err_dma_rx == 1) 741 s5p_set_dma_indata(dev, dev->sg_src); 742 if (err_dma_hx == 1) 743 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 744 745 spin_unlock_irqrestore(&dev->lock, flags); 746 } 747 748 goto hash_irq_end; 749 750 error: 751 s5p_sg_done(dev); 752 dev->busy = false; 753 if (err_dma_hx == 1) 754 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 755 756 spin_unlock_irqrestore(&dev->lock, flags); 757 s5p_aes_complete(dev, err); 758 759 hash_irq_end: 760 /* 761 * Note about else if: 762 * when hash_sg_iter reaches end and its UPDATE op, 763 * issue SSS_HASH_PAUSE and wait for HPART irq 764 */ 765 if (hx_end) 766 tasklet_schedule(&dev->hash_tasklet); 767 else if (err_dma_hx == 2) 768 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, 769 SSS_HASH_PAUSE); 770 771 return IRQ_HANDLED; 772 } 773 774 /** 775 * s5p_hash_read_msg() - read message or IV from HW 776 * @req: AHASH request 777 */ 778 static void s5p_hash_read_msg(struct ahash_request *req) 779 { 780 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 781 struct s5p_aes_dev *dd = ctx->dd; 782 u32 *hash = (u32 *)ctx->digest; 783 unsigned int i; 784 785 for (i = 0; i < ctx->nregs; i++) 786 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); 787 } 788 789 /** 790 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. 791 * @dd: device 792 * @ctx: request context 793 */ 794 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, 795 struct s5p_hash_reqctx *ctx) 796 { 797 u32 *hash = (u32 *)ctx->digest; 798 unsigned int i; 799 800 for (i = 0; i < ctx->nregs; i++) 801 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); 802 } 803 804 /** 805 * s5p_hash_write_iv() - write IV for next partial/finup op. 806 * @req: AHASH request 807 */ 808 static void s5p_hash_write_iv(struct ahash_request *req) 809 { 810 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 811 812 s5p_hash_write_ctx_iv(ctx->dd, ctx); 813 } 814 815 /** 816 * s5p_hash_copy_result() - copy digest into req->result 817 * @req: AHASH request 818 */ 819 static void s5p_hash_copy_result(struct ahash_request *req) 820 { 821 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 822 823 if (!req->result) 824 return; 825 826 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); 827 } 828 829 /** 830 * s5p_hash_dma_flush() - flush HASH DMA 831 * @dev: secss device 832 */ 833 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) 834 { 835 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); 836 } 837 838 /** 839 * s5p_hash_dma_enable() - enable DMA mode for HASH 840 * @dev: secss device 841 * 842 * enable DMA mode for HASH 843 */ 844 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) 845 { 846 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); 847 } 848 849 /** 850 * s5p_hash_irq_disable() - disable irq HASH signals 851 * @dev: secss device 852 * @flags: bitfield with irq's to be disabled 853 */ 854 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) 855 { 856 SSS_WRITE(dev, FCINTENCLR, flags); 857 } 858 859 /** 860 * s5p_hash_irq_enable() - enable irq signals 861 * @dev: secss device 862 * @flags: bitfield with irq's to be enabled 863 */ 864 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) 865 { 866 SSS_WRITE(dev, FCINTENSET, flags); 867 } 868 869 /** 870 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH 871 * @dev: secss device 872 * @hashflow: HASH stream flow with/without crypto AES/DES 873 */ 874 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) 875 { 876 unsigned long flags; 877 u32 flow; 878 879 spin_lock_irqsave(&dev->lock, flags); 880 881 flow = SSS_READ(dev, FCFIFOCTRL); 882 flow &= ~SSS_HASHIN_MASK; 883 flow |= hashflow; 884 SSS_WRITE(dev, FCFIFOCTRL, flow); 885 886 spin_unlock_irqrestore(&dev->lock, flags); 887 } 888 889 /** 890 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS 891 * @dev: secss device 892 * @hashflow: HASH stream flow with/without AES/DES 893 * 894 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, 895 * enable HASH irq's HRDMA, HDONE, HPART 896 */ 897 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) 898 { 899 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | 900 SSS_FCINTENCLR_HDONEINTENCLR | 901 SSS_FCINTENCLR_HPARTINTENCLR); 902 s5p_hash_dma_flush(dev); 903 904 s5p_hash_dma_enable(dev); 905 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); 906 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | 907 SSS_FCINTENSET_HDONEINTENSET | 908 SSS_FCINTENSET_HPARTINTENSET); 909 } 910 911 /** 912 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing 913 * @dd: secss device 914 * @length: length for request 915 * @final: true if final op 916 * 917 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called 918 * after previous updates, fill up IV words. For final, calculate and set 919 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH 920 * length as 2^63 so it will be never reached and set to zero prelow and 921 * prehigh. 922 * 923 * This function does not start DMA transfer. 924 */ 925 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, 926 bool final) 927 { 928 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 929 u32 prelow, prehigh, low, high; 930 u32 configflags, swapflags; 931 u64 tmplen; 932 933 configflags = ctx->engine | SSS_HASH_INIT_BIT; 934 935 if (likely(ctx->digcnt)) { 936 s5p_hash_write_ctx_iv(dd, ctx); 937 configflags |= SSS_HASH_USER_IV_EN; 938 } 939 940 if (final) { 941 /* number of bytes for last part */ 942 low = length; 943 high = 0; 944 /* total number of bits prev hashed */ 945 tmplen = ctx->digcnt * 8; 946 prelow = (u32)tmplen; 947 prehigh = (u32)(tmplen >> 32); 948 } else { 949 prelow = 0; 950 prehigh = 0; 951 low = 0; 952 high = BIT(31); 953 } 954 955 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | 956 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; 957 958 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); 959 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); 960 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); 961 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); 962 963 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); 964 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); 965 } 966 967 /** 968 * s5p_hash_xmit_dma() - start DMA hash processing 969 * @dd: secss device 970 * @length: length for request 971 * @final: true if final op 972 * 973 * Update digcnt here, as it is needed for finup/final op. 974 */ 975 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, 976 bool final) 977 { 978 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 979 unsigned int cnt; 980 981 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 982 if (!cnt) { 983 dev_err(dd->dev, "dma_map_sg error\n"); 984 ctx->error = true; 985 return -EINVAL; 986 } 987 988 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 989 dd->hash_sg_iter = ctx->sg; 990 dd->hash_sg_cnt = cnt; 991 s5p_hash_write_ctrl(dd, length, final); 992 ctx->digcnt += length; 993 ctx->total -= length; 994 995 /* catch last interrupt */ 996 if (final) 997 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); 998 999 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ 1000 1001 return -EINPROGRESS; 1002 } 1003 1004 /** 1005 * s5p_hash_copy_sgs() - copy request's bytes into new buffer 1006 * @ctx: request context 1007 * @sg: source scatterlist request 1008 * @new_len: number of bytes to process from sg 1009 * 1010 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf 1011 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] 1012 * with allocated buffer. 1013 * 1014 * Set bit in dd->hash_flag so we can free it after irq ends processing. 1015 */ 1016 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, 1017 struct scatterlist *sg, unsigned int new_len) 1018 { 1019 unsigned int pages, len; 1020 void *buf; 1021 1022 len = new_len + ctx->bufcnt; 1023 pages = get_order(len); 1024 1025 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 1026 if (!buf) { 1027 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); 1028 ctx->error = true; 1029 return -ENOMEM; 1030 } 1031 1032 if (ctx->bufcnt) 1033 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 1034 1035 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, 1036 new_len, 0); 1037 sg_init_table(ctx->sgl, 1); 1038 sg_set_buf(ctx->sgl, buf, len); 1039 ctx->sg = ctx->sgl; 1040 ctx->sg_len = 1; 1041 ctx->bufcnt = 0; 1042 ctx->skip = 0; 1043 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); 1044 1045 return 0; 1046 } 1047 1048 /** 1049 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy 1050 * @ctx: request context 1051 * @sg: source scatterlist request 1052 * @new_len: number of bytes to process from sg 1053 * 1054 * Allocate new scatterlist table, copy data for HASH into it. If there was 1055 * xmit_buf filled, prepare it first, then copy page, length and offset from 1056 * source sg into it, adjusting begin and/or end for skip offset and 1057 * hash_later value. 1058 * 1059 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free 1060 * it after irq ends processing. 1061 */ 1062 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, 1063 struct scatterlist *sg, unsigned int new_len) 1064 { 1065 unsigned int skip = ctx->skip, n = sg_nents(sg); 1066 struct scatterlist *tmp; 1067 unsigned int len; 1068 1069 if (ctx->bufcnt) 1070 n++; 1071 1072 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 1073 if (!ctx->sg) { 1074 ctx->error = true; 1075 return -ENOMEM; 1076 } 1077 1078 sg_init_table(ctx->sg, n); 1079 1080 tmp = ctx->sg; 1081 1082 ctx->sg_len = 0; 1083 1084 if (ctx->bufcnt) { 1085 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 1086 tmp = sg_next(tmp); 1087 ctx->sg_len++; 1088 } 1089 1090 while (sg && skip >= sg->length) { 1091 skip -= sg->length; 1092 sg = sg_next(sg); 1093 } 1094 1095 while (sg && new_len) { 1096 len = sg->length - skip; 1097 if (new_len < len) 1098 len = new_len; 1099 1100 new_len -= len; 1101 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); 1102 skip = 0; 1103 if (new_len <= 0) 1104 sg_mark_end(tmp); 1105 1106 tmp = sg_next(tmp); 1107 ctx->sg_len++; 1108 sg = sg_next(sg); 1109 } 1110 1111 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); 1112 1113 return 0; 1114 } 1115 1116 /** 1117 * s5p_hash_prepare_sgs() - prepare sg for processing 1118 * @ctx: request context 1119 * @sg: source scatterlist request 1120 * @nbytes: number of bytes to process from sg 1121 * @final: final flag 1122 * 1123 * Check two conditions: (1) if buffers in sg have len aligned data, and (2) 1124 * sg table have good aligned elements (list_ok). If one of this checks fails, 1125 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy 1126 * data into this buffer and prepare request in sgl, or (2) allocates new sg 1127 * table and prepare sg elements. 1128 * 1129 * For digest or finup all conditions can be good, and we may not need any 1130 * fixes. 1131 */ 1132 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, 1133 struct scatterlist *sg, 1134 unsigned int new_len, bool final) 1135 { 1136 unsigned int skip = ctx->skip, nbytes = new_len, n = 0; 1137 bool aligned = true, list_ok = true; 1138 struct scatterlist *sg_tmp = sg; 1139 1140 if (!sg || !sg->length || !new_len) 1141 return 0; 1142 1143 if (skip || !final) 1144 list_ok = false; 1145 1146 while (nbytes > 0 && sg_tmp) { 1147 n++; 1148 if (skip >= sg_tmp->length) { 1149 skip -= sg_tmp->length; 1150 if (!sg_tmp->length) { 1151 aligned = false; 1152 break; 1153 } 1154 } else { 1155 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { 1156 aligned = false; 1157 break; 1158 } 1159 1160 if (nbytes < sg_tmp->length - skip) { 1161 list_ok = false; 1162 break; 1163 } 1164 1165 nbytes -= sg_tmp->length - skip; 1166 skip = 0; 1167 } 1168 1169 sg_tmp = sg_next(sg_tmp); 1170 } 1171 1172 if (!aligned) 1173 return s5p_hash_copy_sgs(ctx, sg, new_len); 1174 else if (!list_ok) 1175 return s5p_hash_copy_sg_lists(ctx, sg, new_len); 1176 1177 /* 1178 * Have aligned data from previous operation and/or current 1179 * Note: will enter here only if (digest or finup) and aligned 1180 */ 1181 if (ctx->bufcnt) { 1182 ctx->sg_len = n; 1183 sg_init_table(ctx->sgl, 2); 1184 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); 1185 sg_chain(ctx->sgl, 2, sg); 1186 ctx->sg = ctx->sgl; 1187 ctx->sg_len++; 1188 } else { 1189 ctx->sg = sg; 1190 ctx->sg_len = n; 1191 } 1192 1193 return 0; 1194 } 1195 1196 /** 1197 * s5p_hash_prepare_request() - prepare request for processing 1198 * @req: AHASH request 1199 * @update: true if UPDATE op 1200 * 1201 * Note 1: we can have update flag _and_ final flag at the same time. 1202 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or 1203 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or 1204 * we have final op 1205 */ 1206 static int s5p_hash_prepare_request(struct ahash_request *req, bool update) 1207 { 1208 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1209 bool final = ctx->finup; 1210 int xmit_len, hash_later, nbytes; 1211 int ret; 1212 1213 if (!req) 1214 return 0; 1215 1216 if (update) 1217 nbytes = req->nbytes; 1218 else 1219 nbytes = 0; 1220 1221 ctx->total = nbytes + ctx->bufcnt; 1222 if (!ctx->total) 1223 return 0; 1224 1225 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { 1226 /* bytes left from previous request, so fill up to BUFLEN */ 1227 int len = BUFLEN - ctx->bufcnt % BUFLEN; 1228 1229 if (len > nbytes) 1230 len = nbytes; 1231 1232 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1233 0, len, 0); 1234 ctx->bufcnt += len; 1235 nbytes -= len; 1236 ctx->skip = len; 1237 } else { 1238 ctx->skip = 0; 1239 } 1240 1241 if (ctx->bufcnt) 1242 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); 1243 1244 xmit_len = ctx->total; 1245 if (final) { 1246 hash_later = 0; 1247 } else { 1248 if (IS_ALIGNED(xmit_len, BUFLEN)) 1249 xmit_len -= BUFLEN; 1250 else 1251 xmit_len -= xmit_len & (BUFLEN - 1); 1252 1253 hash_later = ctx->total - xmit_len; 1254 /* copy hash_later bytes from end of req->src */ 1255 /* previous bytes are in xmit_buf, so no overwrite */ 1256 scatterwalk_map_and_copy(ctx->buffer, req->src, 1257 req->nbytes - hash_later, 1258 hash_later, 0); 1259 } 1260 1261 if (xmit_len > BUFLEN) { 1262 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, 1263 final); 1264 if (ret) 1265 return ret; 1266 } else { 1267 /* have buffered data only */ 1268 if (unlikely(!ctx->bufcnt)) { 1269 /* first update didn't fill up buffer */ 1270 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, 1271 0, xmit_len, 0); 1272 } 1273 1274 sg_init_table(ctx->sgl, 1); 1275 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); 1276 1277 ctx->sg = ctx->sgl; 1278 ctx->sg_len = 1; 1279 } 1280 1281 ctx->bufcnt = hash_later; 1282 if (!final) 1283 ctx->total = xmit_len; 1284 1285 return 0; 1286 } 1287 1288 /** 1289 * s5p_hash_update_dma_stop() - unmap DMA 1290 * @dd: secss device 1291 * 1292 * Unmap scatterlist ctx->sg. 1293 */ 1294 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) 1295 { 1296 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 1297 1298 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 1299 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 1300 } 1301 1302 /** 1303 * s5p_hash_finish() - copy calculated digest to crypto layer 1304 * @req: AHASH request 1305 */ 1306 static void s5p_hash_finish(struct ahash_request *req) 1307 { 1308 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1309 struct s5p_aes_dev *dd = ctx->dd; 1310 1311 if (ctx->digcnt) 1312 s5p_hash_copy_result(req); 1313 1314 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); 1315 } 1316 1317 /** 1318 * s5p_hash_finish_req() - finish request 1319 * @req: AHASH request 1320 * @err: error 1321 */ 1322 static void s5p_hash_finish_req(struct ahash_request *req, int err) 1323 { 1324 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1325 struct s5p_aes_dev *dd = ctx->dd; 1326 unsigned long flags; 1327 1328 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) 1329 free_pages((unsigned long)sg_virt(ctx->sg), 1330 get_order(ctx->sg->length)); 1331 1332 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) 1333 kfree(ctx->sg); 1334 1335 ctx->sg = NULL; 1336 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | 1337 BIT(HASH_FLAGS_SGS_COPIED)); 1338 1339 if (!err && !ctx->error) { 1340 s5p_hash_read_msg(req); 1341 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) 1342 s5p_hash_finish(req); 1343 } else { 1344 ctx->error = true; 1345 } 1346 1347 spin_lock_irqsave(&dd->hash_lock, flags); 1348 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | 1349 BIT(HASH_FLAGS_DMA_READY) | 1350 BIT(HASH_FLAGS_OUTPUT_READY)); 1351 spin_unlock_irqrestore(&dd->hash_lock, flags); 1352 1353 if (req->base.complete) 1354 req->base.complete(&req->base, err); 1355 } 1356 1357 /** 1358 * s5p_hash_handle_queue() - handle hash queue 1359 * @dd: device s5p_aes_dev 1360 * @req: AHASH request 1361 * 1362 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the 1363 * device then processes the first request from the dd->queue 1364 * 1365 * Returns: see s5p_hash_final below. 1366 */ 1367 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, 1368 struct ahash_request *req) 1369 { 1370 struct crypto_async_request *async_req, *backlog; 1371 struct s5p_hash_reqctx *ctx; 1372 unsigned long flags; 1373 int err = 0, ret = 0; 1374 1375 retry: 1376 spin_lock_irqsave(&dd->hash_lock, flags); 1377 if (req) 1378 ret = ahash_enqueue_request(&dd->hash_queue, req); 1379 1380 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1381 spin_unlock_irqrestore(&dd->hash_lock, flags); 1382 return ret; 1383 } 1384 1385 backlog = crypto_get_backlog(&dd->hash_queue); 1386 async_req = crypto_dequeue_request(&dd->hash_queue); 1387 if (async_req) 1388 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); 1389 1390 spin_unlock_irqrestore(&dd->hash_lock, flags); 1391 1392 if (!async_req) 1393 return ret; 1394 1395 if (backlog) 1396 backlog->complete(backlog, -EINPROGRESS); 1397 1398 req = ahash_request_cast(async_req); 1399 dd->hash_req = req; 1400 ctx = ahash_request_ctx(req); 1401 1402 err = s5p_hash_prepare_request(req, ctx->op_update); 1403 if (err || !ctx->total) 1404 goto out; 1405 1406 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", 1407 ctx->op_update, req->nbytes); 1408 1409 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); 1410 if (ctx->digcnt) 1411 s5p_hash_write_iv(req); /* restore hash IV */ 1412 1413 if (ctx->op_update) { /* HASH_OP_UPDATE */ 1414 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); 1415 if (err != -EINPROGRESS && ctx->finup && !ctx->error) 1416 /* no final() after finup() */ 1417 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1418 } else { /* HASH_OP_FINAL */ 1419 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1420 } 1421 out: 1422 if (err != -EINPROGRESS) { 1423 /* hash_tasklet_cb will not finish it, so do it here */ 1424 s5p_hash_finish_req(req, err); 1425 req = NULL; 1426 1427 /* 1428 * Execute next request immediately if there is anything 1429 * in queue. 1430 */ 1431 goto retry; 1432 } 1433 1434 return ret; 1435 } 1436 1437 /** 1438 * s5p_hash_tasklet_cb() - hash tasklet 1439 * @data: ptr to s5p_aes_dev 1440 */ 1441 static void s5p_hash_tasklet_cb(unsigned long data) 1442 { 1443 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; 1444 1445 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1446 s5p_hash_handle_queue(dd, NULL); 1447 return; 1448 } 1449 1450 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { 1451 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, 1452 &dd->hash_flags)) { 1453 s5p_hash_update_dma_stop(dd); 1454 } 1455 1456 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, 1457 &dd->hash_flags)) { 1458 /* hash or semi-hash ready */ 1459 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); 1460 goto finish; 1461 } 1462 } 1463 1464 return; 1465 1466 finish: 1467 /* finish curent request */ 1468 s5p_hash_finish_req(dd->hash_req, 0); 1469 1470 /* If we are not busy, process next req */ 1471 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) 1472 s5p_hash_handle_queue(dd, NULL); 1473 } 1474 1475 /** 1476 * s5p_hash_enqueue() - enqueue request 1477 * @req: AHASH request 1478 * @op: operation UPDATE (true) or FINAL (false) 1479 * 1480 * Returns: see s5p_hash_final below. 1481 */ 1482 static int s5p_hash_enqueue(struct ahash_request *req, bool op) 1483 { 1484 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1485 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1486 1487 ctx->op_update = op; 1488 1489 return s5p_hash_handle_queue(tctx->dd, req); 1490 } 1491 1492 /** 1493 * s5p_hash_update() - process the hash input data 1494 * @req: AHASH request 1495 * 1496 * If request will fit in buffer, copy it and return immediately 1497 * else enqueue it with OP_UPDATE. 1498 * 1499 * Returns: see s5p_hash_final below. 1500 */ 1501 static int s5p_hash_update(struct ahash_request *req) 1502 { 1503 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1504 1505 if (!req->nbytes) 1506 return 0; 1507 1508 if (ctx->bufcnt + req->nbytes <= BUFLEN) { 1509 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1510 0, req->nbytes, 0); 1511 ctx->bufcnt += req->nbytes; 1512 return 0; 1513 } 1514 1515 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ 1516 } 1517 1518 /** 1519 * s5p_hash_shash_digest() - calculate shash digest 1520 * @tfm: crypto transformation 1521 * @flags: tfm flags 1522 * @data: input data 1523 * @len: length of data 1524 * @out: output buffer 1525 */ 1526 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags, 1527 const u8 *data, unsigned int len, u8 *out) 1528 { 1529 SHASH_DESC_ON_STACK(shash, tfm); 1530 1531 shash->tfm = tfm; 1532 shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP; 1533 1534 return crypto_shash_digest(shash, data, len, out); 1535 } 1536 1537 /** 1538 * s5p_hash_final_shash() - calculate shash digest 1539 * @req: AHASH request 1540 */ 1541 static int s5p_hash_final_shash(struct ahash_request *req) 1542 { 1543 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1544 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1545 1546 return s5p_hash_shash_digest(tctx->fallback, req->base.flags, 1547 ctx->buffer, ctx->bufcnt, req->result); 1548 } 1549 1550 /** 1551 * s5p_hash_final() - close up hash and calculate digest 1552 * @req: AHASH request 1553 * 1554 * Note: in final req->src do not have any data, and req->nbytes can be 1555 * non-zero. 1556 * 1557 * If there were no input data processed yet and the buffered hash data is 1558 * less than BUFLEN (64) then calculate the final hash immediately by using 1559 * SW algorithm fallback. 1560 * 1561 * Otherwise enqueues the current AHASH request with OP_FINAL operation op 1562 * and finalize hash message in HW. Note that if digcnt!=0 then there were 1563 * previous update op, so there are always some buffered bytes in ctx->buffer, 1564 * which means that ctx->bufcnt!=0 1565 * 1566 * Returns: 1567 * 0 if the request has been processed immediately, 1568 * -EINPROGRESS if the operation has been queued for later execution or is set 1569 * to processing by HW, 1570 * -EBUSY if queue is full and request should be resubmitted later, 1571 * other negative values denotes an error. 1572 */ 1573 static int s5p_hash_final(struct ahash_request *req) 1574 { 1575 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1576 1577 ctx->finup = true; 1578 if (ctx->error) 1579 return -EINVAL; /* uncompleted hash is not needed */ 1580 1581 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) 1582 return s5p_hash_final_shash(req); 1583 1584 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ 1585 } 1586 1587 /** 1588 * s5p_hash_finup() - process last req->src and calculate digest 1589 * @req: AHASH request containing the last update data 1590 * 1591 * Return values: see s5p_hash_final above. 1592 */ 1593 static int s5p_hash_finup(struct ahash_request *req) 1594 { 1595 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1596 int err1, err2; 1597 1598 ctx->finup = true; 1599 1600 err1 = s5p_hash_update(req); 1601 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1602 return err1; 1603 1604 /* 1605 * final() has to be always called to cleanup resources even if 1606 * update() failed, except EINPROGRESS or calculate digest for small 1607 * size 1608 */ 1609 err2 = s5p_hash_final(req); 1610 1611 return err1 ?: err2; 1612 } 1613 1614 /** 1615 * s5p_hash_init() - initialize AHASH request contex 1616 * @req: AHASH request 1617 * 1618 * Init async hash request context. 1619 */ 1620 static int s5p_hash_init(struct ahash_request *req) 1621 { 1622 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1623 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1624 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1625 1626 ctx->dd = tctx->dd; 1627 ctx->error = false; 1628 ctx->finup = false; 1629 ctx->bufcnt = 0; 1630 ctx->digcnt = 0; 1631 ctx->total = 0; 1632 ctx->skip = 0; 1633 1634 dev_dbg(tctx->dd->dev, "init: digest size: %d\n", 1635 crypto_ahash_digestsize(tfm)); 1636 1637 switch (crypto_ahash_digestsize(tfm)) { 1638 case MD5_DIGEST_SIZE: 1639 ctx->engine = SSS_HASH_ENGINE_MD5; 1640 ctx->nregs = HASH_MD5_MAX_REG; 1641 break; 1642 case SHA1_DIGEST_SIZE: 1643 ctx->engine = SSS_HASH_ENGINE_SHA1; 1644 ctx->nregs = HASH_SHA1_MAX_REG; 1645 break; 1646 case SHA256_DIGEST_SIZE: 1647 ctx->engine = SSS_HASH_ENGINE_SHA256; 1648 ctx->nregs = HASH_SHA256_MAX_REG; 1649 break; 1650 default: 1651 ctx->error = true; 1652 return -EINVAL; 1653 } 1654 1655 return 0; 1656 } 1657 1658 /** 1659 * s5p_hash_digest - calculate digest from req->src 1660 * @req: AHASH request 1661 * 1662 * Return values: see s5p_hash_final above. 1663 */ 1664 static int s5p_hash_digest(struct ahash_request *req) 1665 { 1666 return s5p_hash_init(req) ?: s5p_hash_finup(req); 1667 } 1668 1669 /** 1670 * s5p_hash_cra_init_alg - init crypto alg transformation 1671 * @tfm: crypto transformation 1672 */ 1673 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) 1674 { 1675 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1676 const char *alg_name = crypto_tfm_alg_name(tfm); 1677 1678 tctx->dd = s5p_dev; 1679 /* Allocate a fallback and abort if it failed. */ 1680 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1681 CRYPTO_ALG_NEED_FALLBACK); 1682 if (IS_ERR(tctx->fallback)) { 1683 pr_err("fallback alloc fails for '%s'\n", alg_name); 1684 return PTR_ERR(tctx->fallback); 1685 } 1686 1687 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1688 sizeof(struct s5p_hash_reqctx) + BUFLEN); 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * s5p_hash_cra_init - init crypto tfm 1695 * @tfm: crypto transformation 1696 */ 1697 static int s5p_hash_cra_init(struct crypto_tfm *tfm) 1698 { 1699 return s5p_hash_cra_init_alg(tfm); 1700 } 1701 1702 /** 1703 * s5p_hash_cra_exit - exit crypto tfm 1704 * @tfm: crypto transformation 1705 * 1706 * free allocated fallback 1707 */ 1708 static void s5p_hash_cra_exit(struct crypto_tfm *tfm) 1709 { 1710 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1711 1712 crypto_free_shash(tctx->fallback); 1713 tctx->fallback = NULL; 1714 } 1715 1716 /** 1717 * s5p_hash_export - export hash state 1718 * @req: AHASH request 1719 * @out: buffer for exported state 1720 */ 1721 static int s5p_hash_export(struct ahash_request *req, void *out) 1722 { 1723 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1724 1725 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); 1726 1727 return 0; 1728 } 1729 1730 /** 1731 * s5p_hash_import - import hash state 1732 * @req: AHASH request 1733 * @in: buffer with state to be imported from 1734 */ 1735 static int s5p_hash_import(struct ahash_request *req, const void *in) 1736 { 1737 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1738 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1739 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1740 const struct s5p_hash_reqctx *ctx_in = in; 1741 1742 memcpy(ctx, in, sizeof(*ctx) + BUFLEN); 1743 if (ctx_in->bufcnt > BUFLEN) { 1744 ctx->error = true; 1745 return -EINVAL; 1746 } 1747 1748 ctx->dd = tctx->dd; 1749 ctx->error = false; 1750 1751 return 0; 1752 } 1753 1754 static struct ahash_alg algs_sha1_md5_sha256[] = { 1755 { 1756 .init = s5p_hash_init, 1757 .update = s5p_hash_update, 1758 .final = s5p_hash_final, 1759 .finup = s5p_hash_finup, 1760 .digest = s5p_hash_digest, 1761 .export = s5p_hash_export, 1762 .import = s5p_hash_import, 1763 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1764 .halg.digestsize = SHA1_DIGEST_SIZE, 1765 .halg.base = { 1766 .cra_name = "sha1", 1767 .cra_driver_name = "exynos-sha1", 1768 .cra_priority = 100, 1769 .cra_flags = CRYPTO_ALG_TYPE_AHASH | 1770 CRYPTO_ALG_KERN_DRIVER_ONLY | 1771 CRYPTO_ALG_ASYNC | 1772 CRYPTO_ALG_NEED_FALLBACK, 1773 .cra_blocksize = HASH_BLOCK_SIZE, 1774 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1775 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1776 .cra_module = THIS_MODULE, 1777 .cra_init = s5p_hash_cra_init, 1778 .cra_exit = s5p_hash_cra_exit, 1779 } 1780 }, 1781 { 1782 .init = s5p_hash_init, 1783 .update = s5p_hash_update, 1784 .final = s5p_hash_final, 1785 .finup = s5p_hash_finup, 1786 .digest = s5p_hash_digest, 1787 .export = s5p_hash_export, 1788 .import = s5p_hash_import, 1789 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1790 .halg.digestsize = MD5_DIGEST_SIZE, 1791 .halg.base = { 1792 .cra_name = "md5", 1793 .cra_driver_name = "exynos-md5", 1794 .cra_priority = 100, 1795 .cra_flags = CRYPTO_ALG_TYPE_AHASH | 1796 CRYPTO_ALG_KERN_DRIVER_ONLY | 1797 CRYPTO_ALG_ASYNC | 1798 CRYPTO_ALG_NEED_FALLBACK, 1799 .cra_blocksize = HASH_BLOCK_SIZE, 1800 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1801 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1802 .cra_module = THIS_MODULE, 1803 .cra_init = s5p_hash_cra_init, 1804 .cra_exit = s5p_hash_cra_exit, 1805 } 1806 }, 1807 { 1808 .init = s5p_hash_init, 1809 .update = s5p_hash_update, 1810 .final = s5p_hash_final, 1811 .finup = s5p_hash_finup, 1812 .digest = s5p_hash_digest, 1813 .export = s5p_hash_export, 1814 .import = s5p_hash_import, 1815 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1816 .halg.digestsize = SHA256_DIGEST_SIZE, 1817 .halg.base = { 1818 .cra_name = "sha256", 1819 .cra_driver_name = "exynos-sha256", 1820 .cra_priority = 100, 1821 .cra_flags = CRYPTO_ALG_TYPE_AHASH | 1822 CRYPTO_ALG_KERN_DRIVER_ONLY | 1823 CRYPTO_ALG_ASYNC | 1824 CRYPTO_ALG_NEED_FALLBACK, 1825 .cra_blocksize = HASH_BLOCK_SIZE, 1826 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1827 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1828 .cra_module = THIS_MODULE, 1829 .cra_init = s5p_hash_cra_init, 1830 .cra_exit = s5p_hash_cra_exit, 1831 } 1832 } 1833 1834 }; 1835 1836 static void s5p_set_aes(struct s5p_aes_dev *dev, 1837 uint8_t *key, uint8_t *iv, unsigned int keylen) 1838 { 1839 void __iomem *keystart; 1840 1841 if (iv) 1842 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10); 1843 1844 if (keylen == AES_KEYSIZE_256) 1845 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); 1846 else if (keylen == AES_KEYSIZE_192) 1847 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); 1848 else 1849 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); 1850 1851 memcpy_toio(keystart, key, keylen); 1852 } 1853 1854 static bool s5p_is_sg_aligned(struct scatterlist *sg) 1855 { 1856 while (sg) { 1857 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) 1858 return false; 1859 sg = sg_next(sg); 1860 } 1861 1862 return true; 1863 } 1864 1865 static int s5p_set_indata_start(struct s5p_aes_dev *dev, 1866 struct ablkcipher_request *req) 1867 { 1868 struct scatterlist *sg; 1869 int err; 1870 1871 dev->sg_src_cpy = NULL; 1872 sg = req->src; 1873 if (!s5p_is_sg_aligned(sg)) { 1874 dev_dbg(dev->dev, 1875 "At least one unaligned source scatter list, making a copy\n"); 1876 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); 1877 if (err) 1878 return err; 1879 1880 sg = dev->sg_src_cpy; 1881 } 1882 1883 err = s5p_set_indata(dev, sg); 1884 if (err) { 1885 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 1886 return err; 1887 } 1888 1889 return 0; 1890 } 1891 1892 static int s5p_set_outdata_start(struct s5p_aes_dev *dev, 1893 struct ablkcipher_request *req) 1894 { 1895 struct scatterlist *sg; 1896 int err; 1897 1898 dev->sg_dst_cpy = NULL; 1899 sg = req->dst; 1900 if (!s5p_is_sg_aligned(sg)) { 1901 dev_dbg(dev->dev, 1902 "At least one unaligned dest scatter list, making a copy\n"); 1903 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); 1904 if (err) 1905 return err; 1906 1907 sg = dev->sg_dst_cpy; 1908 } 1909 1910 err = s5p_set_outdata(dev, sg); 1911 if (err) { 1912 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 1913 return err; 1914 } 1915 1916 return 0; 1917 } 1918 1919 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) 1920 { 1921 struct ablkcipher_request *req = dev->req; 1922 uint32_t aes_control; 1923 unsigned long flags; 1924 int err; 1925 u8 *iv; 1926 1927 aes_control = SSS_AES_KEY_CHANGE_MODE; 1928 if (mode & FLAGS_AES_DECRYPT) 1929 aes_control |= SSS_AES_MODE_DECRYPT; 1930 1931 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { 1932 aes_control |= SSS_AES_CHAIN_MODE_CBC; 1933 iv = req->info; 1934 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { 1935 aes_control |= SSS_AES_CHAIN_MODE_CTR; 1936 iv = req->info; 1937 } else { 1938 iv = NULL; /* AES_ECB */ 1939 } 1940 1941 if (dev->ctx->keylen == AES_KEYSIZE_192) 1942 aes_control |= SSS_AES_KEY_SIZE_192; 1943 else if (dev->ctx->keylen == AES_KEYSIZE_256) 1944 aes_control |= SSS_AES_KEY_SIZE_256; 1945 1946 aes_control |= SSS_AES_FIFO_MODE; 1947 1948 /* as a variant it is possible to use byte swapping on DMA side */ 1949 aes_control |= SSS_AES_BYTESWAP_DI 1950 | SSS_AES_BYTESWAP_DO 1951 | SSS_AES_BYTESWAP_IV 1952 | SSS_AES_BYTESWAP_KEY 1953 | SSS_AES_BYTESWAP_CNT; 1954 1955 spin_lock_irqsave(&dev->lock, flags); 1956 1957 SSS_WRITE(dev, FCINTENCLR, 1958 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); 1959 SSS_WRITE(dev, FCFIFOCTRL, 0x00); 1960 1961 err = s5p_set_indata_start(dev, req); 1962 if (err) 1963 goto indata_error; 1964 1965 err = s5p_set_outdata_start(dev, req); 1966 if (err) 1967 goto outdata_error; 1968 1969 SSS_AES_WRITE(dev, AES_CONTROL, aes_control); 1970 s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen); 1971 1972 s5p_set_dma_indata(dev, dev->sg_src); 1973 s5p_set_dma_outdata(dev, dev->sg_dst); 1974 1975 SSS_WRITE(dev, FCINTENSET, 1976 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); 1977 1978 spin_unlock_irqrestore(&dev->lock, flags); 1979 1980 return; 1981 1982 outdata_error: 1983 s5p_unset_indata(dev); 1984 1985 indata_error: 1986 s5p_sg_done(dev); 1987 dev->busy = false; 1988 spin_unlock_irqrestore(&dev->lock, flags); 1989 s5p_aes_complete(dev, err); 1990 } 1991 1992 static void s5p_tasklet_cb(unsigned long data) 1993 { 1994 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; 1995 struct crypto_async_request *async_req, *backlog; 1996 struct s5p_aes_reqctx *reqctx; 1997 unsigned long flags; 1998 1999 spin_lock_irqsave(&dev->lock, flags); 2000 backlog = crypto_get_backlog(&dev->queue); 2001 async_req = crypto_dequeue_request(&dev->queue); 2002 2003 if (!async_req) { 2004 dev->busy = false; 2005 spin_unlock_irqrestore(&dev->lock, flags); 2006 return; 2007 } 2008 spin_unlock_irqrestore(&dev->lock, flags); 2009 2010 if (backlog) 2011 backlog->complete(backlog, -EINPROGRESS); 2012 2013 dev->req = ablkcipher_request_cast(async_req); 2014 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); 2015 reqctx = ablkcipher_request_ctx(dev->req); 2016 2017 s5p_aes_crypt_start(dev, reqctx->mode); 2018 } 2019 2020 static int s5p_aes_handle_req(struct s5p_aes_dev *dev, 2021 struct ablkcipher_request *req) 2022 { 2023 unsigned long flags; 2024 int err; 2025 2026 spin_lock_irqsave(&dev->lock, flags); 2027 err = ablkcipher_enqueue_request(&dev->queue, req); 2028 if (dev->busy) { 2029 spin_unlock_irqrestore(&dev->lock, flags); 2030 goto exit; 2031 } 2032 dev->busy = true; 2033 2034 spin_unlock_irqrestore(&dev->lock, flags); 2035 2036 tasklet_schedule(&dev->tasklet); 2037 2038 exit: 2039 return err; 2040 } 2041 2042 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode) 2043 { 2044 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); 2045 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req); 2046 struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); 2047 struct s5p_aes_dev *dev = ctx->dev; 2048 2049 if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) { 2050 dev_err(dev->dev, "request size is not exact amount of AES blocks\n"); 2051 return -EINVAL; 2052 } 2053 2054 reqctx->mode = mode; 2055 2056 return s5p_aes_handle_req(dev, req); 2057 } 2058 2059 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher, 2060 const uint8_t *key, unsigned int keylen) 2061 { 2062 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 2063 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2064 2065 if (keylen != AES_KEYSIZE_128 && 2066 keylen != AES_KEYSIZE_192 && 2067 keylen != AES_KEYSIZE_256) 2068 return -EINVAL; 2069 2070 memcpy(ctx->aes_key, key, keylen); 2071 ctx->keylen = keylen; 2072 2073 return 0; 2074 } 2075 2076 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req) 2077 { 2078 return s5p_aes_crypt(req, 0); 2079 } 2080 2081 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req) 2082 { 2083 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); 2084 } 2085 2086 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req) 2087 { 2088 return s5p_aes_crypt(req, FLAGS_AES_CBC); 2089 } 2090 2091 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req) 2092 { 2093 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); 2094 } 2095 2096 static int s5p_aes_cra_init(struct crypto_tfm *tfm) 2097 { 2098 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2099 2100 ctx->dev = s5p_dev; 2101 tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx); 2102 2103 return 0; 2104 } 2105 2106 static struct crypto_alg algs[] = { 2107 { 2108 .cra_name = "ecb(aes)", 2109 .cra_driver_name = "ecb-aes-s5p", 2110 .cra_priority = 100, 2111 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2112 CRYPTO_ALG_ASYNC | 2113 CRYPTO_ALG_KERN_DRIVER_ONLY, 2114 .cra_blocksize = AES_BLOCK_SIZE, 2115 .cra_ctxsize = sizeof(struct s5p_aes_ctx), 2116 .cra_alignmask = 0x0f, 2117 .cra_type = &crypto_ablkcipher_type, 2118 .cra_module = THIS_MODULE, 2119 .cra_init = s5p_aes_cra_init, 2120 .cra_u.ablkcipher = { 2121 .min_keysize = AES_MIN_KEY_SIZE, 2122 .max_keysize = AES_MAX_KEY_SIZE, 2123 .setkey = s5p_aes_setkey, 2124 .encrypt = s5p_aes_ecb_encrypt, 2125 .decrypt = s5p_aes_ecb_decrypt, 2126 } 2127 }, 2128 { 2129 .cra_name = "cbc(aes)", 2130 .cra_driver_name = "cbc-aes-s5p", 2131 .cra_priority = 100, 2132 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2133 CRYPTO_ALG_ASYNC | 2134 CRYPTO_ALG_KERN_DRIVER_ONLY, 2135 .cra_blocksize = AES_BLOCK_SIZE, 2136 .cra_ctxsize = sizeof(struct s5p_aes_ctx), 2137 .cra_alignmask = 0x0f, 2138 .cra_type = &crypto_ablkcipher_type, 2139 .cra_module = THIS_MODULE, 2140 .cra_init = s5p_aes_cra_init, 2141 .cra_u.ablkcipher = { 2142 .min_keysize = AES_MIN_KEY_SIZE, 2143 .max_keysize = AES_MAX_KEY_SIZE, 2144 .ivsize = AES_BLOCK_SIZE, 2145 .setkey = s5p_aes_setkey, 2146 .encrypt = s5p_aes_cbc_encrypt, 2147 .decrypt = s5p_aes_cbc_decrypt, 2148 } 2149 }, 2150 }; 2151 2152 static int s5p_aes_probe(struct platform_device *pdev) 2153 { 2154 struct device *dev = &pdev->dev; 2155 int i, j, err = -ENODEV; 2156 struct samsung_aes_variant *variant; 2157 struct s5p_aes_dev *pdata; 2158 struct resource *res; 2159 unsigned int hash_i; 2160 2161 if (s5p_dev) 2162 return -EEXIST; 2163 2164 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2165 if (!pdata) 2166 return -ENOMEM; 2167 2168 variant = find_s5p_sss_version(pdev); 2169 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2170 2171 /* 2172 * Note: HASH and PRNG uses the same registers in secss, avoid 2173 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG 2174 * is enabled in config. We need larger size for HASH registers in 2175 * secss, current describe only AES/DES 2176 */ 2177 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { 2178 if (variant == &exynos_aes_data) { 2179 res->end += 0x300; 2180 pdata->use_hash = true; 2181 } 2182 } 2183 2184 pdata->res = res; 2185 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 2186 if (IS_ERR(pdata->ioaddr)) { 2187 if (!pdata->use_hash) 2188 return PTR_ERR(pdata->ioaddr); 2189 /* try AES without HASH */ 2190 res->end -= 0x300; 2191 pdata->use_hash = false; 2192 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 2193 if (IS_ERR(pdata->ioaddr)) 2194 return PTR_ERR(pdata->ioaddr); 2195 } 2196 2197 pdata->clk = devm_clk_get(dev, "secss"); 2198 if (IS_ERR(pdata->clk)) { 2199 dev_err(dev, "failed to find secss clock source\n"); 2200 return -ENOENT; 2201 } 2202 2203 err = clk_prepare_enable(pdata->clk); 2204 if (err < 0) { 2205 dev_err(dev, "Enabling SSS clk failed, err %d\n", err); 2206 return err; 2207 } 2208 2209 spin_lock_init(&pdata->lock); 2210 spin_lock_init(&pdata->hash_lock); 2211 2212 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; 2213 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; 2214 2215 pdata->irq_fc = platform_get_irq(pdev, 0); 2216 if (pdata->irq_fc < 0) { 2217 err = pdata->irq_fc; 2218 dev_warn(dev, "feed control interrupt is not available.\n"); 2219 goto err_irq; 2220 } 2221 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, 2222 s5p_aes_interrupt, IRQF_ONESHOT, 2223 pdev->name, pdev); 2224 if (err < 0) { 2225 dev_warn(dev, "feed control interrupt is not available.\n"); 2226 goto err_irq; 2227 } 2228 2229 pdata->busy = false; 2230 pdata->dev = dev; 2231 platform_set_drvdata(pdev, pdata); 2232 s5p_dev = pdata; 2233 2234 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); 2235 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); 2236 2237 for (i = 0; i < ARRAY_SIZE(algs); i++) { 2238 err = crypto_register_alg(&algs[i]); 2239 if (err) 2240 goto err_algs; 2241 } 2242 2243 if (pdata->use_hash) { 2244 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, 2245 (unsigned long)pdata); 2246 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); 2247 2248 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); 2249 hash_i++) { 2250 struct ahash_alg *alg; 2251 2252 alg = &algs_sha1_md5_sha256[hash_i]; 2253 err = crypto_register_ahash(alg); 2254 if (err) { 2255 dev_err(dev, "can't register '%s': %d\n", 2256 alg->halg.base.cra_driver_name, err); 2257 goto err_hash; 2258 } 2259 } 2260 } 2261 2262 dev_info(dev, "s5p-sss driver registered\n"); 2263 2264 return 0; 2265 2266 err_hash: 2267 for (j = hash_i - 1; j >= 0; j--) 2268 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); 2269 2270 tasklet_kill(&pdata->hash_tasklet); 2271 res->end -= 0x300; 2272 2273 err_algs: 2274 if (i < ARRAY_SIZE(algs)) 2275 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, 2276 err); 2277 2278 for (j = 0; j < i; j++) 2279 crypto_unregister_alg(&algs[j]); 2280 2281 tasklet_kill(&pdata->tasklet); 2282 2283 err_irq: 2284 clk_disable_unprepare(pdata->clk); 2285 2286 s5p_dev = NULL; 2287 2288 return err; 2289 } 2290 2291 static int s5p_aes_remove(struct platform_device *pdev) 2292 { 2293 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); 2294 int i; 2295 2296 if (!pdata) 2297 return -ENODEV; 2298 2299 for (i = 0; i < ARRAY_SIZE(algs); i++) 2300 crypto_unregister_alg(&algs[i]); 2301 2302 tasklet_kill(&pdata->tasklet); 2303 if (pdata->use_hash) { 2304 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) 2305 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); 2306 2307 pdata->res->end -= 0x300; 2308 tasklet_kill(&pdata->hash_tasklet); 2309 pdata->use_hash = false; 2310 } 2311 2312 clk_disable_unprepare(pdata->clk); 2313 s5p_dev = NULL; 2314 2315 return 0; 2316 } 2317 2318 static struct platform_driver s5p_aes_crypto = { 2319 .probe = s5p_aes_probe, 2320 .remove = s5p_aes_remove, 2321 .driver = { 2322 .name = "s5p-secss", 2323 .of_match_table = s5p_sss_dt_match, 2324 }, 2325 }; 2326 2327 module_platform_driver(s5p_aes_crypto); 2328 2329 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); 2330 MODULE_LICENSE("GPL v2"); 2331 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); 2332 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); 2333