xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35 
36 #define _SBF(s, v)			((v) << (s))
37 
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT		0x0000
40 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
46 
47 #define SSS_REG_FCINTENSET		0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
54 
55 #define SSS_REG_FCINTENCLR		0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
62 
63 #define SSS_REG_FCINTPEND		0x000C
64 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
70 
71 #define SSS_REG_FCFIFOSTAT		0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
80 
81 #define SSS_REG_FCFIFOCTRL		0x0014
82 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
83 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
86 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
87 
88 #define SSS_REG_FCBRDMAS		0x0020
89 #define SSS_REG_FCBRDMAL		0x0024
90 #define SSS_REG_FCBRDMAC		0x0028
91 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
92 #define SSS_FCBRDMAC_FLUSH		BIT(0)
93 
94 #define SSS_REG_FCBTDMAS		0x0030
95 #define SSS_REG_FCBTDMAL		0x0034
96 #define SSS_REG_FCBTDMAC		0x0038
97 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
98 #define SSS_FCBTDMAC_FLUSH		BIT(0)
99 
100 #define SSS_REG_FCHRDMAS		0x0040
101 #define SSS_REG_FCHRDMAL		0x0044
102 #define SSS_REG_FCHRDMAC		0x0048
103 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
104 #define SSS_FCHRDMAC_FLUSH		BIT(0)
105 
106 #define SSS_REG_FCPKDMAS		0x0050
107 #define SSS_REG_FCPKDMAL		0x0054
108 #define SSS_REG_FCPKDMAC		0x0058
109 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
110 #define SSS_FCPKDMAC_DESCEND		BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
112 #define SSS_FCPKDMAC_FLUSH		BIT(0)
113 
114 #define SSS_REG_FCPKDMAO		0x005C
115 
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL		0x00
118 #define SSS_AES_BYTESWAP_DI		BIT(11)
119 #define SSS_AES_BYTESWAP_DO		BIT(10)
120 #define SSS_AES_BYTESWAP_IV		BIT(9)
121 #define SSS_AES_BYTESWAP_CNT		BIT(8)
122 #define SSS_AES_BYTESWAP_KEY		BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
124 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE		BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT		BIT(0)
132 
133 #define SSS_REG_AES_STATUS		0x04
134 #define SSS_AES_BUSY			BIT(2)
135 #define SSS_AES_INPUT_READY		BIT(1)
136 #define SSS_AES_OUTPUT_READY		BIT(0)
137 
138 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
143 
144 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
147 
148 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
150 						SSS_AES_REG(dev, reg))
151 
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT		BIT(0)
154 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
155 #define FLAGS_AES_CBC			_SBF(1, 0x01)
156 #define FLAGS_AES_CTR			_SBF(1, 0x02)
157 
158 #define AES_KEY_LEN			16
159 #define CRYPTO_QUEUE_LEN		1
160 
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL		0x00
163 
164 #define SSS_HASH_USER_IV_EN		BIT(5)
165 #define SSS_HASH_INIT_BIT		BIT(4)
166 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
169 
170 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
171 
172 #define SSS_REG_HASH_CTRL_PAUSE		0x04
173 
174 #define SSS_HASH_PAUSE			BIT(0)
175 
176 #define SSS_REG_HASH_CTRL_FIFO		0x08
177 
178 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU          0
180 
181 #define SSS_REG_HASH_CTRL_SWAP		0x0C
182 
183 #define SSS_HASH_BYTESWAP_DI		BIT(3)
184 #define SSS_HASH_BYTESWAP_DO		BIT(2)
185 #define SSS_HASH_BYTESWAP_IV		BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
187 
188 #define SSS_REG_HASH_STATUS		0x10
189 
190 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
193 
194 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
196 
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
199 
200 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
202 
203 #define HASH_BLOCK_SIZE			64
204 #define HASH_REG_SIZEOF			4
205 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208 
209 /*
210  * HASH bit numbers, used by device, setting in dev->hash_flags with
211  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214  */
215 #define HASH_FLAGS_BUSY		0
216 #define HASH_FLAGS_FINAL	1
217 #define HASH_FLAGS_DMA_ACTIVE	2
218 #define HASH_FLAGS_OUTPUT_READY	3
219 #define HASH_FLAGS_DMA_READY	4
220 #define HASH_FLAGS_SGS_COPIED	5
221 #define HASH_FLAGS_SGS_ALLOCED	6
222 
223 /* HASH HW constants */
224 #define BUFLEN			HASH_BLOCK_SIZE
225 
226 #define SSS_HASH_DMA_LEN_ALIGN	8
227 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
228 
229 #define SSS_HASH_QUEUE_LENGTH	10
230 
231 /**
232  * struct samsung_aes_variant - platform specific SSS driver data
233  * @aes_offset: AES register offset from SSS module's base.
234  * @hash_offset: HASH register offset from SSS module's base.
235  *
236  * Specifies platform specific configuration of SSS module.
237  * Note: A structure for driver specific platform data is used for future
238  * expansion of its usage.
239  */
240 struct samsung_aes_variant {
241 	unsigned int			aes_offset;
242 	unsigned int			hash_offset;
243 };
244 
245 struct s5p_aes_reqctx {
246 	unsigned long			mode;
247 };
248 
249 struct s5p_aes_ctx {
250 	struct s5p_aes_dev		*dev;
251 
252 	uint8_t				aes_key[AES_MAX_KEY_SIZE];
253 	uint8_t				nonce[CTR_RFC3686_NONCE_SIZE];
254 	int				keylen;
255 };
256 
257 /**
258  * struct s5p_aes_dev - Crypto device state container
259  * @dev:	Associated device
260  * @clk:	Clock for accessing hardware
261  * @ioaddr:	Mapped IO memory region
262  * @aes_ioaddr:	Per-varian offset for AES block IO memory
263  * @irq_fc:	Feed control interrupt line
264  * @req:	Crypto request currently handled by the device
265  * @ctx:	Configuration for currently handled crypto request
266  * @sg_src:	Scatter list with source data for currently handled block
267  *		in device.  This is DMA-mapped into device.
268  * @sg_dst:	Scatter list with destination data for currently handled block
269  *		in device. This is DMA-mapped into device.
270  * @sg_src_cpy:	In case of unaligned access, copied scatter list
271  *		with source data.
272  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
273  *		with destination data.
274  * @tasklet:	New request scheduling jib
275  * @queue:	Crypto queue
276  * @busy:	Indicates whether the device is currently handling some request
277  *		thus it uses some of the fields from this state, like:
278  *		req, ctx, sg_src/dst (and copies).  This essentially
279  *		protects against concurrent access to these fields.
280  * @lock:	Lock for protecting both access to device hardware registers
281  *		and fields related to current request (including the busy field).
282  * @res:	Resources for hash.
283  * @io_hash_base: Per-variant offset for HASH block IO memory.
284  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
285  *		variable.
286  * @hash_flags:	Flags for current HASH op.
287  * @hash_queue:	Async hash queue.
288  * @hash_tasklet: New HASH request scheduling job.
289  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
290  * @hash_req:	Current request sending to SSS HASH block.
291  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292  * @hash_sg_cnt: Counter for hash_sg_iter.
293  *
294  * @use_hash:	true if HASH algs enabled
295  */
296 struct s5p_aes_dev {
297 	struct device			*dev;
298 	struct clk			*clk;
299 	void __iomem			*ioaddr;
300 	void __iomem			*aes_ioaddr;
301 	int				irq_fc;
302 
303 	struct ablkcipher_request	*req;
304 	struct s5p_aes_ctx		*ctx;
305 	struct scatterlist		*sg_src;
306 	struct scatterlist		*sg_dst;
307 
308 	struct scatterlist		*sg_src_cpy;
309 	struct scatterlist		*sg_dst_cpy;
310 
311 	struct tasklet_struct		tasklet;
312 	struct crypto_queue		queue;
313 	bool				busy;
314 	spinlock_t			lock;
315 
316 	struct resource			*res;
317 	void __iomem			*io_hash_base;
318 
319 	spinlock_t			hash_lock; /* protect hash_ vars */
320 	unsigned long			hash_flags;
321 	struct crypto_queue		hash_queue;
322 	struct tasklet_struct		hash_tasklet;
323 
324 	u8				xmit_buf[BUFLEN];
325 	struct ahash_request		*hash_req;
326 	struct scatterlist		*hash_sg_iter;
327 	unsigned int			hash_sg_cnt;
328 
329 	bool				use_hash;
330 };
331 
332 /**
333  * struct s5p_hash_reqctx - HASH request context
334  * @dd:		Associated device
335  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
336  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
337  * @digest:	Digest message or IV for partial result
338  * @nregs:	Number of HW registers for digest or IV read/write
339  * @engine:	Bits for selecting type of HASH in SSS block
340  * @sg:		sg for DMA transfer
341  * @sg_len:	Length of sg for DMA transfer
342  * @sgl[]:	sg for joining buffer and req->src scatterlist
343  * @skip:	Skip offset in req->src for current op
344  * @total:	Total number of bytes for current request
345  * @finup:	Keep state for finup or final.
346  * @error:	Keep track of error.
347  * @bufcnt:	Number of bytes holded in buffer[]
348  * @buffer[]:	For byte(s) from end of req->src in UPDATE op
349  */
350 struct s5p_hash_reqctx {
351 	struct s5p_aes_dev	*dd;
352 	bool			op_update;
353 
354 	u64			digcnt;
355 	u8			digest[SHA256_DIGEST_SIZE];
356 
357 	unsigned int		nregs; /* digest_size / sizeof(reg) */
358 	u32			engine;
359 
360 	struct scatterlist	*sg;
361 	unsigned int		sg_len;
362 	struct scatterlist	sgl[2];
363 	unsigned int		skip;
364 	unsigned int		total;
365 	bool			finup;
366 	bool			error;
367 
368 	u32			bufcnt;
369 	u8			buffer[0];
370 };
371 
372 /**
373  * struct s5p_hash_ctx - HASH transformation context
374  * @dd:		Associated device
375  * @flags:	Bits for algorithm HASH.
376  * @fallback:	Software transformation for zero message or size < BUFLEN.
377  */
378 struct s5p_hash_ctx {
379 	struct s5p_aes_dev	*dd;
380 	unsigned long		flags;
381 	struct crypto_shash	*fallback;
382 };
383 
384 static const struct samsung_aes_variant s5p_aes_data = {
385 	.aes_offset	= 0x4000,
386 	.hash_offset	= 0x6000,
387 };
388 
389 static const struct samsung_aes_variant exynos_aes_data = {
390 	.aes_offset	= 0x200,
391 	.hash_offset	= 0x400,
392 };
393 
394 static const struct of_device_id s5p_sss_dt_match[] = {
395 	{
396 		.compatible = "samsung,s5pv210-secss",
397 		.data = &s5p_aes_data,
398 	},
399 	{
400 		.compatible = "samsung,exynos4210-secss",
401 		.data = &exynos_aes_data,
402 	},
403 	{ },
404 };
405 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
406 
407 static inline const struct samsung_aes_variant *find_s5p_sss_version
408 				   (const struct platform_device *pdev)
409 {
410 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
411 		const struct of_device_id *match;
412 
413 		match = of_match_node(s5p_sss_dt_match,
414 					pdev->dev.of_node);
415 		return (const struct samsung_aes_variant *)match->data;
416 	}
417 	return (const struct samsung_aes_variant *)
418 			platform_get_device_id(pdev)->driver_data;
419 }
420 
421 static struct s5p_aes_dev *s5p_dev;
422 
423 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
424 			       const struct scatterlist *sg)
425 {
426 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
427 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
428 }
429 
430 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
431 				const struct scatterlist *sg)
432 {
433 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
434 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
435 }
436 
437 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
438 {
439 	int len;
440 
441 	if (!*sg)
442 		return;
443 
444 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
445 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
446 
447 	kfree(*sg);
448 	*sg = NULL;
449 }
450 
451 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
452 			    unsigned int nbytes, int out)
453 {
454 	struct scatter_walk walk;
455 
456 	if (!nbytes)
457 		return;
458 
459 	scatterwalk_start(&walk, sg);
460 	scatterwalk_copychunks(buf, &walk, nbytes, out);
461 	scatterwalk_done(&walk, out, 0);
462 }
463 
464 static void s5p_sg_done(struct s5p_aes_dev *dev)
465 {
466 	if (dev->sg_dst_cpy) {
467 		dev_dbg(dev->dev,
468 			"Copying %d bytes of output data back to original place\n",
469 			dev->req->nbytes);
470 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
471 				dev->req->nbytes, 1);
472 	}
473 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
474 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
475 }
476 
477 /* Calls the completion. Cannot be called with dev->lock hold. */
478 static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
479 {
480 	dev->req->base.complete(&dev->req->base, err);
481 }
482 
483 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
484 {
485 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
486 }
487 
488 static void s5p_unset_indata(struct s5p_aes_dev *dev)
489 {
490 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
491 }
492 
493 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
494 			    struct scatterlist **dst)
495 {
496 	void *pages;
497 	int len;
498 
499 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
500 	if (!*dst)
501 		return -ENOMEM;
502 
503 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
504 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
505 	if (!pages) {
506 		kfree(*dst);
507 		*dst = NULL;
508 		return -ENOMEM;
509 	}
510 
511 	s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
512 
513 	sg_init_table(*dst, 1);
514 	sg_set_buf(*dst, pages, len);
515 
516 	return 0;
517 }
518 
519 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
520 {
521 	int err;
522 
523 	if (!sg->length) {
524 		err = -EINVAL;
525 		goto exit;
526 	}
527 
528 	err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
529 	if (!err) {
530 		err = -ENOMEM;
531 		goto exit;
532 	}
533 
534 	dev->sg_dst = sg;
535 	err = 0;
536 
537 exit:
538 	return err;
539 }
540 
541 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
542 {
543 	int err;
544 
545 	if (!sg->length) {
546 		err = -EINVAL;
547 		goto exit;
548 	}
549 
550 	err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
551 	if (!err) {
552 		err = -ENOMEM;
553 		goto exit;
554 	}
555 
556 	dev->sg_src = sg;
557 	err = 0;
558 
559 exit:
560 	return err;
561 }
562 
563 /*
564  * Returns -ERRNO on error (mapping of new data failed).
565  * On success returns:
566  *  - 0 if there is no more data,
567  *  - 1 if new transmitting (output) data is ready and its address+length
568  *     have to be written to device (by calling s5p_set_dma_outdata()).
569  */
570 static int s5p_aes_tx(struct s5p_aes_dev *dev)
571 {
572 	int ret = 0;
573 
574 	s5p_unset_outdata(dev);
575 
576 	if (!sg_is_last(dev->sg_dst)) {
577 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
578 		if (!ret)
579 			ret = 1;
580 	}
581 
582 	return ret;
583 }
584 
585 /*
586  * Returns -ERRNO on error (mapping of new data failed).
587  * On success returns:
588  *  - 0 if there is no more data,
589  *  - 1 if new receiving (input) data is ready and its address+length
590  *     have to be written to device (by calling s5p_set_dma_indata()).
591  */
592 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
593 {
594 	int ret = 0;
595 
596 	s5p_unset_indata(dev);
597 
598 	if (!sg_is_last(dev->sg_src)) {
599 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
600 		if (!ret)
601 			ret = 1;
602 	}
603 
604 	return ret;
605 }
606 
607 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
608 {
609 	return __raw_readl(dd->io_hash_base + offset);
610 }
611 
612 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
613 				  u32 offset, u32 value)
614 {
615 	__raw_writel(value, dd->io_hash_base + offset);
616 }
617 
618 /**
619  * s5p_set_dma_hashdata() - start DMA with sg
620  * @dev:	device
621  * @sg:		scatterlist ready to DMA transmit
622  */
623 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
624 				 const struct scatterlist *sg)
625 {
626 	dev->hash_sg_cnt--;
627 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
628 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
629 }
630 
631 /**
632  * s5p_hash_rx() - get next hash_sg_iter
633  * @dev:	device
634  *
635  * Return:
636  * 2	if there is no more data and it is UPDATE op
637  * 1	if new receiving (input) data is ready and can be written to device
638  * 0	if there is no more data and it is FINAL op
639  */
640 static int s5p_hash_rx(struct s5p_aes_dev *dev)
641 {
642 	if (dev->hash_sg_cnt > 0) {
643 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
644 		return 1;
645 	}
646 
647 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
648 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
649 		return 0;
650 
651 	return 2;
652 }
653 
654 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
655 {
656 	struct platform_device *pdev = dev_id;
657 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
658 	int err_dma_tx = 0;
659 	int err_dma_rx = 0;
660 	int err_dma_hx = 0;
661 	bool tx_end = false;
662 	bool hx_end = false;
663 	unsigned long flags;
664 	uint32_t status;
665 	u32 st_bits;
666 	int err;
667 
668 	spin_lock_irqsave(&dev->lock, flags);
669 
670 	/*
671 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
672 	 * reach end), then map next scatterlist entry.
673 	 * In case of such mapping error, s5p_aes_complete() should be called.
674 	 *
675 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
676 	 * and schedule new tasklet.
677 	 *
678 	 * Handle hx interrupt. If there is still data map next entry.
679 	 */
680 	status = SSS_READ(dev, FCINTSTAT);
681 	if (status & SSS_FCINTSTAT_BRDMAINT)
682 		err_dma_rx = s5p_aes_rx(dev);
683 
684 	if (status & SSS_FCINTSTAT_BTDMAINT) {
685 		if (sg_is_last(dev->sg_dst))
686 			tx_end = true;
687 		err_dma_tx = s5p_aes_tx(dev);
688 	}
689 
690 	if (status & SSS_FCINTSTAT_HRDMAINT)
691 		err_dma_hx = s5p_hash_rx(dev);
692 
693 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
694 				SSS_FCINTSTAT_HRDMAINT);
695 	/* clear DMA bits */
696 	SSS_WRITE(dev, FCINTPEND, st_bits);
697 
698 	/* clear HASH irq bits */
699 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
700 		/* cannot have both HPART and HDONE */
701 		if (status & SSS_FCINTSTAT_HPARTINT)
702 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
703 
704 		if (status & SSS_FCINTSTAT_HDONEINT)
705 			st_bits = SSS_HASH_STATUS_MSG_DONE;
706 
707 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
708 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
709 		hx_end = true;
710 		/* when DONE or PART, do not handle HASH DMA */
711 		err_dma_hx = 0;
712 	}
713 
714 	if (err_dma_rx < 0) {
715 		err = err_dma_rx;
716 		goto error;
717 	}
718 	if (err_dma_tx < 0) {
719 		err = err_dma_tx;
720 		goto error;
721 	}
722 
723 	if (tx_end) {
724 		s5p_sg_done(dev);
725 		if (err_dma_hx == 1)
726 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
727 
728 		spin_unlock_irqrestore(&dev->lock, flags);
729 
730 		s5p_aes_complete(dev, 0);
731 		/* Device is still busy */
732 		tasklet_schedule(&dev->tasklet);
733 	} else {
734 		/*
735 		 * Writing length of DMA block (either receiving or
736 		 * transmitting) will start the operation immediately, so this
737 		 * should be done at the end (even after clearing pending
738 		 * interrupts to not miss the interrupt).
739 		 */
740 		if (err_dma_tx == 1)
741 			s5p_set_dma_outdata(dev, dev->sg_dst);
742 		if (err_dma_rx == 1)
743 			s5p_set_dma_indata(dev, dev->sg_src);
744 		if (err_dma_hx == 1)
745 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
746 
747 		spin_unlock_irqrestore(&dev->lock, flags);
748 	}
749 
750 	goto hash_irq_end;
751 
752 error:
753 	s5p_sg_done(dev);
754 	dev->busy = false;
755 	if (err_dma_hx == 1)
756 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
757 
758 	spin_unlock_irqrestore(&dev->lock, flags);
759 	s5p_aes_complete(dev, err);
760 
761 hash_irq_end:
762 	/*
763 	 * Note about else if:
764 	 *   when hash_sg_iter reaches end and its UPDATE op,
765 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
766 	 */
767 	if (hx_end)
768 		tasklet_schedule(&dev->hash_tasklet);
769 	else if (err_dma_hx == 2)
770 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
771 			       SSS_HASH_PAUSE);
772 
773 	return IRQ_HANDLED;
774 }
775 
776 /**
777  * s5p_hash_read_msg() - read message or IV from HW
778  * @req:	AHASH request
779  */
780 static void s5p_hash_read_msg(struct ahash_request *req)
781 {
782 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
783 	struct s5p_aes_dev *dd = ctx->dd;
784 	u32 *hash = (u32 *)ctx->digest;
785 	unsigned int i;
786 
787 	for (i = 0; i < ctx->nregs; i++)
788 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
789 }
790 
791 /**
792  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
793  * @dd:		device
794  * @ctx:	request context
795  */
796 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
797 				  const struct s5p_hash_reqctx *ctx)
798 {
799 	const u32 *hash = (const u32 *)ctx->digest;
800 	unsigned int i;
801 
802 	for (i = 0; i < ctx->nregs; i++)
803 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
804 }
805 
806 /**
807  * s5p_hash_write_iv() - write IV for next partial/finup op.
808  * @req:	AHASH request
809  */
810 static void s5p_hash_write_iv(struct ahash_request *req)
811 {
812 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
813 
814 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
815 }
816 
817 /**
818  * s5p_hash_copy_result() - copy digest into req->result
819  * @req:	AHASH request
820  */
821 static void s5p_hash_copy_result(struct ahash_request *req)
822 {
823 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
824 
825 	if (!req->result)
826 		return;
827 
828 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
829 }
830 
831 /**
832  * s5p_hash_dma_flush() - flush HASH DMA
833  * @dev:	secss device
834  */
835 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
836 {
837 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
838 }
839 
840 /**
841  * s5p_hash_dma_enable() - enable DMA mode for HASH
842  * @dev:	secss device
843  *
844  * enable DMA mode for HASH
845  */
846 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
847 {
848 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
849 }
850 
851 /**
852  * s5p_hash_irq_disable() - disable irq HASH signals
853  * @dev:	secss device
854  * @flags:	bitfield with irq's to be disabled
855  */
856 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
857 {
858 	SSS_WRITE(dev, FCINTENCLR, flags);
859 }
860 
861 /**
862  * s5p_hash_irq_enable() - enable irq signals
863  * @dev:	secss device
864  * @flags:	bitfield with irq's to be enabled
865  */
866 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
867 {
868 	SSS_WRITE(dev, FCINTENSET, flags);
869 }
870 
871 /**
872  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
873  * @dev:	secss device
874  * @hashflow:	HASH stream flow with/without crypto AES/DES
875  */
876 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
877 {
878 	unsigned long flags;
879 	u32 flow;
880 
881 	spin_lock_irqsave(&dev->lock, flags);
882 
883 	flow = SSS_READ(dev, FCFIFOCTRL);
884 	flow &= ~SSS_HASHIN_MASK;
885 	flow |= hashflow;
886 	SSS_WRITE(dev, FCFIFOCTRL, flow);
887 
888 	spin_unlock_irqrestore(&dev->lock, flags);
889 }
890 
891 /**
892  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
893  * @dev:	secss device
894  * @hashflow:	HASH stream flow with/without AES/DES
895  *
896  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
897  * enable HASH irq's HRDMA, HDONE, HPART
898  */
899 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
900 {
901 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
902 			     SSS_FCINTENCLR_HDONEINTENCLR |
903 			     SSS_FCINTENCLR_HPARTINTENCLR);
904 	s5p_hash_dma_flush(dev);
905 
906 	s5p_hash_dma_enable(dev);
907 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
908 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
909 			    SSS_FCINTENSET_HDONEINTENSET |
910 			    SSS_FCINTENSET_HPARTINTENSET);
911 }
912 
913 /**
914  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
915  * @dd:		secss device
916  * @length:	length for request
917  * @final:	true if final op
918  *
919  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
920  * after previous updates, fill up IV words. For final, calculate and set
921  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
922  * length as 2^63 so it will be never reached and set to zero prelow and
923  * prehigh.
924  *
925  * This function does not start DMA transfer.
926  */
927 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
928 				bool final)
929 {
930 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
931 	u32 prelow, prehigh, low, high;
932 	u32 configflags, swapflags;
933 	u64 tmplen;
934 
935 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
936 
937 	if (likely(ctx->digcnt)) {
938 		s5p_hash_write_ctx_iv(dd, ctx);
939 		configflags |= SSS_HASH_USER_IV_EN;
940 	}
941 
942 	if (final) {
943 		/* number of bytes for last part */
944 		low = length;
945 		high = 0;
946 		/* total number of bits prev hashed */
947 		tmplen = ctx->digcnt * 8;
948 		prelow = (u32)tmplen;
949 		prehigh = (u32)(tmplen >> 32);
950 	} else {
951 		prelow = 0;
952 		prehigh = 0;
953 		low = 0;
954 		high = BIT(31);
955 	}
956 
957 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
958 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
959 
960 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
961 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
962 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
963 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
964 
965 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
966 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
967 }
968 
969 /**
970  * s5p_hash_xmit_dma() - start DMA hash processing
971  * @dd:		secss device
972  * @length:	length for request
973  * @final:	true if final op
974  *
975  * Update digcnt here, as it is needed for finup/final op.
976  */
977 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
978 			     bool final)
979 {
980 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
981 	unsigned int cnt;
982 
983 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
984 	if (!cnt) {
985 		dev_err(dd->dev, "dma_map_sg error\n");
986 		ctx->error = true;
987 		return -EINVAL;
988 	}
989 
990 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
991 	dd->hash_sg_iter = ctx->sg;
992 	dd->hash_sg_cnt = cnt;
993 	s5p_hash_write_ctrl(dd, length, final);
994 	ctx->digcnt += length;
995 	ctx->total -= length;
996 
997 	/* catch last interrupt */
998 	if (final)
999 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1000 
1001 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1002 
1003 	return -EINPROGRESS;
1004 }
1005 
1006 /**
1007  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1008  * @ctx:	request context
1009  * @sg:		source scatterlist request
1010  * @new_len:	number of bytes to process from sg
1011  *
1012  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1013  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1014  * with allocated buffer.
1015  *
1016  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1017  */
1018 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1019 			     struct scatterlist *sg, unsigned int new_len)
1020 {
1021 	unsigned int pages, len;
1022 	void *buf;
1023 
1024 	len = new_len + ctx->bufcnt;
1025 	pages = get_order(len);
1026 
1027 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1028 	if (!buf) {
1029 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1030 		ctx->error = true;
1031 		return -ENOMEM;
1032 	}
1033 
1034 	if (ctx->bufcnt)
1035 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1036 
1037 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1038 				 new_len, 0);
1039 	sg_init_table(ctx->sgl, 1);
1040 	sg_set_buf(ctx->sgl, buf, len);
1041 	ctx->sg = ctx->sgl;
1042 	ctx->sg_len = 1;
1043 	ctx->bufcnt = 0;
1044 	ctx->skip = 0;
1045 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1052  * @ctx:	request context
1053  * @sg:		source scatterlist request
1054  * @new_len:	number of bytes to process from sg
1055  *
1056  * Allocate new scatterlist table, copy data for HASH into it. If there was
1057  * xmit_buf filled, prepare it first, then copy page, length and offset from
1058  * source sg into it, adjusting begin and/or end for skip offset and
1059  * hash_later value.
1060  *
1061  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1062  * it after irq ends processing.
1063  */
1064 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1065 				  struct scatterlist *sg, unsigned int new_len)
1066 {
1067 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1068 	struct scatterlist *tmp;
1069 	unsigned int len;
1070 
1071 	if (ctx->bufcnt)
1072 		n++;
1073 
1074 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1075 	if (!ctx->sg) {
1076 		ctx->error = true;
1077 		return -ENOMEM;
1078 	}
1079 
1080 	sg_init_table(ctx->sg, n);
1081 
1082 	tmp = ctx->sg;
1083 
1084 	ctx->sg_len = 0;
1085 
1086 	if (ctx->bufcnt) {
1087 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1088 		tmp = sg_next(tmp);
1089 		ctx->sg_len++;
1090 	}
1091 
1092 	while (sg && skip >= sg->length) {
1093 		skip -= sg->length;
1094 		sg = sg_next(sg);
1095 	}
1096 
1097 	while (sg && new_len) {
1098 		len = sg->length - skip;
1099 		if (new_len < len)
1100 			len = new_len;
1101 
1102 		new_len -= len;
1103 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1104 		skip = 0;
1105 		if (new_len <= 0)
1106 			sg_mark_end(tmp);
1107 
1108 		tmp = sg_next(tmp);
1109 		ctx->sg_len++;
1110 		sg = sg_next(sg);
1111 	}
1112 
1113 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1114 
1115 	return 0;
1116 }
1117 
1118 /**
1119  * s5p_hash_prepare_sgs() - prepare sg for processing
1120  * @ctx:	request context
1121  * @sg:		source scatterlist request
1122  * @nbytes:	number of bytes to process from sg
1123  * @final:	final flag
1124  *
1125  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1126  * sg table have good aligned elements (list_ok). If one of this checks fails,
1127  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1128  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1129  * table and prepare sg elements.
1130  *
1131  * For digest or finup all conditions can be good, and we may not need any
1132  * fixes.
1133  */
1134 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1135 				struct scatterlist *sg,
1136 				unsigned int new_len, bool final)
1137 {
1138 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1139 	bool aligned = true, list_ok = true;
1140 	struct scatterlist *sg_tmp = sg;
1141 
1142 	if (!sg || !sg->length || !new_len)
1143 		return 0;
1144 
1145 	if (skip || !final)
1146 		list_ok = false;
1147 
1148 	while (nbytes > 0 && sg_tmp) {
1149 		n++;
1150 		if (skip >= sg_tmp->length) {
1151 			skip -= sg_tmp->length;
1152 			if (!sg_tmp->length) {
1153 				aligned = false;
1154 				break;
1155 			}
1156 		} else {
1157 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1158 				aligned = false;
1159 				break;
1160 			}
1161 
1162 			if (nbytes < sg_tmp->length - skip) {
1163 				list_ok = false;
1164 				break;
1165 			}
1166 
1167 			nbytes -= sg_tmp->length - skip;
1168 			skip = 0;
1169 		}
1170 
1171 		sg_tmp = sg_next(sg_tmp);
1172 	}
1173 
1174 	if (!aligned)
1175 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1176 	else if (!list_ok)
1177 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1178 
1179 	/*
1180 	 * Have aligned data from previous operation and/or current
1181 	 * Note: will enter here only if (digest or finup) and aligned
1182 	 */
1183 	if (ctx->bufcnt) {
1184 		ctx->sg_len = n;
1185 		sg_init_table(ctx->sgl, 2);
1186 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1187 		sg_chain(ctx->sgl, 2, sg);
1188 		ctx->sg = ctx->sgl;
1189 		ctx->sg_len++;
1190 	} else {
1191 		ctx->sg = sg;
1192 		ctx->sg_len = n;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 /**
1199  * s5p_hash_prepare_request() - prepare request for processing
1200  * @req:	AHASH request
1201  * @update:	true if UPDATE op
1202  *
1203  * Note 1: we can have update flag _and_ final flag at the same time.
1204  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1205  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1206  *	   we have final op
1207  */
1208 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1209 {
1210 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1211 	bool final = ctx->finup;
1212 	int xmit_len, hash_later, nbytes;
1213 	int ret;
1214 
1215 	if (update)
1216 		nbytes = req->nbytes;
1217 	else
1218 		nbytes = 0;
1219 
1220 	ctx->total = nbytes + ctx->bufcnt;
1221 	if (!ctx->total)
1222 		return 0;
1223 
1224 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1225 		/* bytes left from previous request, so fill up to BUFLEN */
1226 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1227 
1228 		if (len > nbytes)
1229 			len = nbytes;
1230 
1231 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1232 					 0, len, 0);
1233 		ctx->bufcnt += len;
1234 		nbytes -= len;
1235 		ctx->skip = len;
1236 	} else {
1237 		ctx->skip = 0;
1238 	}
1239 
1240 	if (ctx->bufcnt)
1241 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1242 
1243 	xmit_len = ctx->total;
1244 	if (final) {
1245 		hash_later = 0;
1246 	} else {
1247 		if (IS_ALIGNED(xmit_len, BUFLEN))
1248 			xmit_len -= BUFLEN;
1249 		else
1250 			xmit_len -= xmit_len & (BUFLEN - 1);
1251 
1252 		hash_later = ctx->total - xmit_len;
1253 		/* copy hash_later bytes from end of req->src */
1254 		/* previous bytes are in xmit_buf, so no overwrite */
1255 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1256 					 req->nbytes - hash_later,
1257 					 hash_later, 0);
1258 	}
1259 
1260 	if (xmit_len > BUFLEN) {
1261 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1262 					   final);
1263 		if (ret)
1264 			return ret;
1265 	} else {
1266 		/* have buffered data only */
1267 		if (unlikely(!ctx->bufcnt)) {
1268 			/* first update didn't fill up buffer */
1269 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1270 						 0, xmit_len, 0);
1271 		}
1272 
1273 		sg_init_table(ctx->sgl, 1);
1274 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1275 
1276 		ctx->sg = ctx->sgl;
1277 		ctx->sg_len = 1;
1278 	}
1279 
1280 	ctx->bufcnt = hash_later;
1281 	if (!final)
1282 		ctx->total = xmit_len;
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  * s5p_hash_update_dma_stop() - unmap DMA
1289  * @dd:		secss device
1290  *
1291  * Unmap scatterlist ctx->sg.
1292  */
1293 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1294 {
1295 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1296 
1297 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1298 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1299 }
1300 
1301 /**
1302  * s5p_hash_finish() - copy calculated digest to crypto layer
1303  * @req:	AHASH request
1304  */
1305 static void s5p_hash_finish(struct ahash_request *req)
1306 {
1307 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1308 	struct s5p_aes_dev *dd = ctx->dd;
1309 
1310 	if (ctx->digcnt)
1311 		s5p_hash_copy_result(req);
1312 
1313 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1314 }
1315 
1316 /**
1317  * s5p_hash_finish_req() - finish request
1318  * @req:	AHASH request
1319  * @err:	error
1320  */
1321 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1322 {
1323 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1324 	struct s5p_aes_dev *dd = ctx->dd;
1325 	unsigned long flags;
1326 
1327 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1328 		free_pages((unsigned long)sg_virt(ctx->sg),
1329 			   get_order(ctx->sg->length));
1330 
1331 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1332 		kfree(ctx->sg);
1333 
1334 	ctx->sg = NULL;
1335 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1336 			    BIT(HASH_FLAGS_SGS_COPIED));
1337 
1338 	if (!err && !ctx->error) {
1339 		s5p_hash_read_msg(req);
1340 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1341 			s5p_hash_finish(req);
1342 	} else {
1343 		ctx->error = true;
1344 	}
1345 
1346 	spin_lock_irqsave(&dd->hash_lock, flags);
1347 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1348 			    BIT(HASH_FLAGS_DMA_READY) |
1349 			    BIT(HASH_FLAGS_OUTPUT_READY));
1350 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1351 
1352 	if (req->base.complete)
1353 		req->base.complete(&req->base, err);
1354 }
1355 
1356 /**
1357  * s5p_hash_handle_queue() - handle hash queue
1358  * @dd:		device s5p_aes_dev
1359  * @req:	AHASH request
1360  *
1361  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1362  * device then processes the first request from the dd->queue
1363  *
1364  * Returns: see s5p_hash_final below.
1365  */
1366 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1367 				 struct ahash_request *req)
1368 {
1369 	struct crypto_async_request *async_req, *backlog;
1370 	struct s5p_hash_reqctx *ctx;
1371 	unsigned long flags;
1372 	int err = 0, ret = 0;
1373 
1374 retry:
1375 	spin_lock_irqsave(&dd->hash_lock, flags);
1376 	if (req)
1377 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1378 
1379 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1380 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1381 		return ret;
1382 	}
1383 
1384 	backlog = crypto_get_backlog(&dd->hash_queue);
1385 	async_req = crypto_dequeue_request(&dd->hash_queue);
1386 	if (async_req)
1387 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1388 
1389 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1390 
1391 	if (!async_req)
1392 		return ret;
1393 
1394 	if (backlog)
1395 		backlog->complete(backlog, -EINPROGRESS);
1396 
1397 	req = ahash_request_cast(async_req);
1398 	dd->hash_req = req;
1399 	ctx = ahash_request_ctx(req);
1400 
1401 	err = s5p_hash_prepare_request(req, ctx->op_update);
1402 	if (err || !ctx->total)
1403 		goto out;
1404 
1405 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1406 		ctx->op_update, req->nbytes);
1407 
1408 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1409 	if (ctx->digcnt)
1410 		s5p_hash_write_iv(req); /* restore hash IV */
1411 
1412 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1413 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1414 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1415 			/* no final() after finup() */
1416 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1417 	} else { /* HASH_OP_FINAL */
1418 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1419 	}
1420 out:
1421 	if (err != -EINPROGRESS) {
1422 		/* hash_tasklet_cb will not finish it, so do it here */
1423 		s5p_hash_finish_req(req, err);
1424 		req = NULL;
1425 
1426 		/*
1427 		 * Execute next request immediately if there is anything
1428 		 * in queue.
1429 		 */
1430 		goto retry;
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 /**
1437  * s5p_hash_tasklet_cb() - hash tasklet
1438  * @data:	ptr to s5p_aes_dev
1439  */
1440 static void s5p_hash_tasklet_cb(unsigned long data)
1441 {
1442 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1443 
1444 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1445 		s5p_hash_handle_queue(dd, NULL);
1446 		return;
1447 	}
1448 
1449 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1450 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1451 				       &dd->hash_flags)) {
1452 			s5p_hash_update_dma_stop(dd);
1453 		}
1454 
1455 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1456 				       &dd->hash_flags)) {
1457 			/* hash or semi-hash ready */
1458 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1459 			goto finish;
1460 		}
1461 	}
1462 
1463 	return;
1464 
1465 finish:
1466 	/* finish curent request */
1467 	s5p_hash_finish_req(dd->hash_req, 0);
1468 
1469 	/* If we are not busy, process next req */
1470 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1471 		s5p_hash_handle_queue(dd, NULL);
1472 }
1473 
1474 /**
1475  * s5p_hash_enqueue() - enqueue request
1476  * @req:	AHASH request
1477  * @op:		operation UPDATE (true) or FINAL (false)
1478  *
1479  * Returns: see s5p_hash_final below.
1480  */
1481 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1482 {
1483 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1484 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1485 
1486 	ctx->op_update = op;
1487 
1488 	return s5p_hash_handle_queue(tctx->dd, req);
1489 }
1490 
1491 /**
1492  * s5p_hash_update() - process the hash input data
1493  * @req:	AHASH request
1494  *
1495  * If request will fit in buffer, copy it and return immediately
1496  * else enqueue it with OP_UPDATE.
1497  *
1498  * Returns: see s5p_hash_final below.
1499  */
1500 static int s5p_hash_update(struct ahash_request *req)
1501 {
1502 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1503 
1504 	if (!req->nbytes)
1505 		return 0;
1506 
1507 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1508 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1509 					 0, req->nbytes, 0);
1510 		ctx->bufcnt += req->nbytes;
1511 		return 0;
1512 	}
1513 
1514 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1515 }
1516 
1517 /**
1518  * s5p_hash_shash_digest() - calculate shash digest
1519  * @tfm:	crypto transformation
1520  * @flags:	tfm flags
1521  * @data:	input data
1522  * @len:	length of data
1523  * @out:	output buffer
1524  */
1525 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1526 				 const u8 *data, unsigned int len, u8 *out)
1527 {
1528 	SHASH_DESC_ON_STACK(shash, tfm);
1529 
1530 	shash->tfm = tfm;
1531 	shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1532 
1533 	return crypto_shash_digest(shash, data, len, out);
1534 }
1535 
1536 /**
1537  * s5p_hash_final_shash() - calculate shash digest
1538  * @req:	AHASH request
1539  */
1540 static int s5p_hash_final_shash(struct ahash_request *req)
1541 {
1542 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1543 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1544 
1545 	return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1546 				     ctx->buffer, ctx->bufcnt, req->result);
1547 }
1548 
1549 /**
1550  * s5p_hash_final() - close up hash and calculate digest
1551  * @req:	AHASH request
1552  *
1553  * Note: in final req->src do not have any data, and req->nbytes can be
1554  * non-zero.
1555  *
1556  * If there were no input data processed yet and the buffered hash data is
1557  * less than BUFLEN (64) then calculate the final hash immediately by using
1558  * SW algorithm fallback.
1559  *
1560  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1561  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1562  * previous update op, so there are always some buffered bytes in ctx->buffer,
1563  * which means that ctx->bufcnt!=0
1564  *
1565  * Returns:
1566  * 0 if the request has been processed immediately,
1567  * -EINPROGRESS if the operation has been queued for later execution or is set
1568  *		to processing by HW,
1569  * -EBUSY if queue is full and request should be resubmitted later,
1570  * other negative values denotes an error.
1571  */
1572 static int s5p_hash_final(struct ahash_request *req)
1573 {
1574 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1575 
1576 	ctx->finup = true;
1577 	if (ctx->error)
1578 		return -EINVAL; /* uncompleted hash is not needed */
1579 
1580 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1581 		return s5p_hash_final_shash(req);
1582 
1583 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1584 }
1585 
1586 /**
1587  * s5p_hash_finup() - process last req->src and calculate digest
1588  * @req:	AHASH request containing the last update data
1589  *
1590  * Return values: see s5p_hash_final above.
1591  */
1592 static int s5p_hash_finup(struct ahash_request *req)
1593 {
1594 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1595 	int err1, err2;
1596 
1597 	ctx->finup = true;
1598 
1599 	err1 = s5p_hash_update(req);
1600 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1601 		return err1;
1602 
1603 	/*
1604 	 * final() has to be always called to cleanup resources even if
1605 	 * update() failed, except EINPROGRESS or calculate digest for small
1606 	 * size
1607 	 */
1608 	err2 = s5p_hash_final(req);
1609 
1610 	return err1 ?: err2;
1611 }
1612 
1613 /**
1614  * s5p_hash_init() - initialize AHASH request contex
1615  * @req:	AHASH request
1616  *
1617  * Init async hash request context.
1618  */
1619 static int s5p_hash_init(struct ahash_request *req)
1620 {
1621 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1622 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1623 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1624 
1625 	ctx->dd = tctx->dd;
1626 	ctx->error = false;
1627 	ctx->finup = false;
1628 	ctx->bufcnt = 0;
1629 	ctx->digcnt = 0;
1630 	ctx->total = 0;
1631 	ctx->skip = 0;
1632 
1633 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1634 		crypto_ahash_digestsize(tfm));
1635 
1636 	switch (crypto_ahash_digestsize(tfm)) {
1637 	case MD5_DIGEST_SIZE:
1638 		ctx->engine = SSS_HASH_ENGINE_MD5;
1639 		ctx->nregs = HASH_MD5_MAX_REG;
1640 		break;
1641 	case SHA1_DIGEST_SIZE:
1642 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1643 		ctx->nregs = HASH_SHA1_MAX_REG;
1644 		break;
1645 	case SHA256_DIGEST_SIZE:
1646 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1647 		ctx->nregs = HASH_SHA256_MAX_REG;
1648 		break;
1649 	default:
1650 		ctx->error = true;
1651 		return -EINVAL;
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 /**
1658  * s5p_hash_digest - calculate digest from req->src
1659  * @req:	AHASH request
1660  *
1661  * Return values: see s5p_hash_final above.
1662  */
1663 static int s5p_hash_digest(struct ahash_request *req)
1664 {
1665 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1666 }
1667 
1668 /**
1669  * s5p_hash_cra_init_alg - init crypto alg transformation
1670  * @tfm:	crypto transformation
1671  */
1672 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1673 {
1674 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1675 	const char *alg_name = crypto_tfm_alg_name(tfm);
1676 
1677 	tctx->dd = s5p_dev;
1678 	/* Allocate a fallback and abort if it failed. */
1679 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1680 					    CRYPTO_ALG_NEED_FALLBACK);
1681 	if (IS_ERR(tctx->fallback)) {
1682 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1683 		return PTR_ERR(tctx->fallback);
1684 	}
1685 
1686 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1687 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  * s5p_hash_cra_init - init crypto tfm
1694  * @tfm:	crypto transformation
1695  */
1696 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1697 {
1698 	return s5p_hash_cra_init_alg(tfm);
1699 }
1700 
1701 /**
1702  * s5p_hash_cra_exit - exit crypto tfm
1703  * @tfm:	crypto transformation
1704  *
1705  * free allocated fallback
1706  */
1707 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1708 {
1709 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1710 
1711 	crypto_free_shash(tctx->fallback);
1712 	tctx->fallback = NULL;
1713 }
1714 
1715 /**
1716  * s5p_hash_export - export hash state
1717  * @req:	AHASH request
1718  * @out:	buffer for exported state
1719  */
1720 static int s5p_hash_export(struct ahash_request *req, void *out)
1721 {
1722 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1723 
1724 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1725 
1726 	return 0;
1727 }
1728 
1729 /**
1730  * s5p_hash_import - import hash state
1731  * @req:	AHASH request
1732  * @in:		buffer with state to be imported from
1733  */
1734 static int s5p_hash_import(struct ahash_request *req, const void *in)
1735 {
1736 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1737 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1738 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1739 	const struct s5p_hash_reqctx *ctx_in = in;
1740 
1741 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1742 	if (ctx_in->bufcnt > BUFLEN) {
1743 		ctx->error = true;
1744 		return -EINVAL;
1745 	}
1746 
1747 	ctx->dd = tctx->dd;
1748 	ctx->error = false;
1749 
1750 	return 0;
1751 }
1752 
1753 static struct ahash_alg algs_sha1_md5_sha256[] = {
1754 {
1755 	.init		= s5p_hash_init,
1756 	.update		= s5p_hash_update,
1757 	.final		= s5p_hash_final,
1758 	.finup		= s5p_hash_finup,
1759 	.digest		= s5p_hash_digest,
1760 	.export		= s5p_hash_export,
1761 	.import		= s5p_hash_import,
1762 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1763 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1764 	.halg.base	= {
1765 		.cra_name		= "sha1",
1766 		.cra_driver_name	= "exynos-sha1",
1767 		.cra_priority		= 100,
1768 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1769 					  CRYPTO_ALG_ASYNC |
1770 					  CRYPTO_ALG_NEED_FALLBACK,
1771 		.cra_blocksize		= HASH_BLOCK_SIZE,
1772 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1773 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1774 		.cra_module		= THIS_MODULE,
1775 		.cra_init		= s5p_hash_cra_init,
1776 		.cra_exit		= s5p_hash_cra_exit,
1777 	}
1778 },
1779 {
1780 	.init		= s5p_hash_init,
1781 	.update		= s5p_hash_update,
1782 	.final		= s5p_hash_final,
1783 	.finup		= s5p_hash_finup,
1784 	.digest		= s5p_hash_digest,
1785 	.export		= s5p_hash_export,
1786 	.import		= s5p_hash_import,
1787 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1788 	.halg.digestsize	= MD5_DIGEST_SIZE,
1789 	.halg.base	= {
1790 		.cra_name		= "md5",
1791 		.cra_driver_name	= "exynos-md5",
1792 		.cra_priority		= 100,
1793 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1794 					  CRYPTO_ALG_ASYNC |
1795 					  CRYPTO_ALG_NEED_FALLBACK,
1796 		.cra_blocksize		= HASH_BLOCK_SIZE,
1797 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1798 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1799 		.cra_module		= THIS_MODULE,
1800 		.cra_init		= s5p_hash_cra_init,
1801 		.cra_exit		= s5p_hash_cra_exit,
1802 	}
1803 },
1804 {
1805 	.init		= s5p_hash_init,
1806 	.update		= s5p_hash_update,
1807 	.final		= s5p_hash_final,
1808 	.finup		= s5p_hash_finup,
1809 	.digest		= s5p_hash_digest,
1810 	.export		= s5p_hash_export,
1811 	.import		= s5p_hash_import,
1812 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1813 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1814 	.halg.base	= {
1815 		.cra_name		= "sha256",
1816 		.cra_driver_name	= "exynos-sha256",
1817 		.cra_priority		= 100,
1818 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1819 					  CRYPTO_ALG_ASYNC |
1820 					  CRYPTO_ALG_NEED_FALLBACK,
1821 		.cra_blocksize		= HASH_BLOCK_SIZE,
1822 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1823 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1824 		.cra_module		= THIS_MODULE,
1825 		.cra_init		= s5p_hash_cra_init,
1826 		.cra_exit		= s5p_hash_cra_exit,
1827 	}
1828 }
1829 
1830 };
1831 
1832 static void s5p_set_aes(struct s5p_aes_dev *dev,
1833 			const uint8_t *key, const uint8_t *iv,
1834 			unsigned int keylen)
1835 {
1836 	void __iomem *keystart;
1837 
1838 	if (iv)
1839 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
1840 
1841 	if (keylen == AES_KEYSIZE_256)
1842 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1843 	else if (keylen == AES_KEYSIZE_192)
1844 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1845 	else
1846 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1847 
1848 	memcpy_toio(keystart, key, keylen);
1849 }
1850 
1851 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1852 {
1853 	while (sg) {
1854 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1855 			return false;
1856 		sg = sg_next(sg);
1857 	}
1858 
1859 	return true;
1860 }
1861 
1862 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1863 				struct ablkcipher_request *req)
1864 {
1865 	struct scatterlist *sg;
1866 	int err;
1867 
1868 	dev->sg_src_cpy = NULL;
1869 	sg = req->src;
1870 	if (!s5p_is_sg_aligned(sg)) {
1871 		dev_dbg(dev->dev,
1872 			"At least one unaligned source scatter list, making a copy\n");
1873 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1874 		if (err)
1875 			return err;
1876 
1877 		sg = dev->sg_src_cpy;
1878 	}
1879 
1880 	err = s5p_set_indata(dev, sg);
1881 	if (err) {
1882 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1883 		return err;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1890 				struct ablkcipher_request *req)
1891 {
1892 	struct scatterlist *sg;
1893 	int err;
1894 
1895 	dev->sg_dst_cpy = NULL;
1896 	sg = req->dst;
1897 	if (!s5p_is_sg_aligned(sg)) {
1898 		dev_dbg(dev->dev,
1899 			"At least one unaligned dest scatter list, making a copy\n");
1900 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1901 		if (err)
1902 			return err;
1903 
1904 		sg = dev->sg_dst_cpy;
1905 	}
1906 
1907 	err = s5p_set_outdata(dev, sg);
1908 	if (err) {
1909 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1910 		return err;
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1917 {
1918 	struct ablkcipher_request *req = dev->req;
1919 	uint32_t aes_control;
1920 	unsigned long flags;
1921 	int err;
1922 	u8 *iv;
1923 
1924 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1925 	if (mode & FLAGS_AES_DECRYPT)
1926 		aes_control |= SSS_AES_MODE_DECRYPT;
1927 
1928 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1929 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1930 		iv = req->info;
1931 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1932 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1933 		iv = req->info;
1934 	} else {
1935 		iv = NULL; /* AES_ECB */
1936 	}
1937 
1938 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1939 		aes_control |= SSS_AES_KEY_SIZE_192;
1940 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1941 		aes_control |= SSS_AES_KEY_SIZE_256;
1942 
1943 	aes_control |= SSS_AES_FIFO_MODE;
1944 
1945 	/* as a variant it is possible to use byte swapping on DMA side */
1946 	aes_control |= SSS_AES_BYTESWAP_DI
1947 		    |  SSS_AES_BYTESWAP_DO
1948 		    |  SSS_AES_BYTESWAP_IV
1949 		    |  SSS_AES_BYTESWAP_KEY
1950 		    |  SSS_AES_BYTESWAP_CNT;
1951 
1952 	spin_lock_irqsave(&dev->lock, flags);
1953 
1954 	SSS_WRITE(dev, FCINTENCLR,
1955 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1956 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1957 
1958 	err = s5p_set_indata_start(dev, req);
1959 	if (err)
1960 		goto indata_error;
1961 
1962 	err = s5p_set_outdata_start(dev, req);
1963 	if (err)
1964 		goto outdata_error;
1965 
1966 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1967 	s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen);
1968 
1969 	s5p_set_dma_indata(dev,  dev->sg_src);
1970 	s5p_set_dma_outdata(dev, dev->sg_dst);
1971 
1972 	SSS_WRITE(dev, FCINTENSET,
1973 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1974 
1975 	spin_unlock_irqrestore(&dev->lock, flags);
1976 
1977 	return;
1978 
1979 outdata_error:
1980 	s5p_unset_indata(dev);
1981 
1982 indata_error:
1983 	s5p_sg_done(dev);
1984 	dev->busy = false;
1985 	spin_unlock_irqrestore(&dev->lock, flags);
1986 	s5p_aes_complete(dev, err);
1987 }
1988 
1989 static void s5p_tasklet_cb(unsigned long data)
1990 {
1991 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1992 	struct crypto_async_request *async_req, *backlog;
1993 	struct s5p_aes_reqctx *reqctx;
1994 	unsigned long flags;
1995 
1996 	spin_lock_irqsave(&dev->lock, flags);
1997 	backlog   = crypto_get_backlog(&dev->queue);
1998 	async_req = crypto_dequeue_request(&dev->queue);
1999 
2000 	if (!async_req) {
2001 		dev->busy = false;
2002 		spin_unlock_irqrestore(&dev->lock, flags);
2003 		return;
2004 	}
2005 	spin_unlock_irqrestore(&dev->lock, flags);
2006 
2007 	if (backlog)
2008 		backlog->complete(backlog, -EINPROGRESS);
2009 
2010 	dev->req = ablkcipher_request_cast(async_req);
2011 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2012 	reqctx   = ablkcipher_request_ctx(dev->req);
2013 
2014 	s5p_aes_crypt_start(dev, reqctx->mode);
2015 }
2016 
2017 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2018 			      struct ablkcipher_request *req)
2019 {
2020 	unsigned long flags;
2021 	int err;
2022 
2023 	spin_lock_irqsave(&dev->lock, flags);
2024 	err = ablkcipher_enqueue_request(&dev->queue, req);
2025 	if (dev->busy) {
2026 		spin_unlock_irqrestore(&dev->lock, flags);
2027 		goto exit;
2028 	}
2029 	dev->busy = true;
2030 
2031 	spin_unlock_irqrestore(&dev->lock, flags);
2032 
2033 	tasklet_schedule(&dev->tasklet);
2034 
2035 exit:
2036 	return err;
2037 }
2038 
2039 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2040 {
2041 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2042 	struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2043 	struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2044 	struct s5p_aes_dev *dev = ctx->dev;
2045 
2046 	if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
2047 		dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2048 		return -EINVAL;
2049 	}
2050 
2051 	reqctx->mode = mode;
2052 
2053 	return s5p_aes_handle_req(dev, req);
2054 }
2055 
2056 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2057 			  const uint8_t *key, unsigned int keylen)
2058 {
2059 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2060 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2061 
2062 	if (keylen != AES_KEYSIZE_128 &&
2063 	    keylen != AES_KEYSIZE_192 &&
2064 	    keylen != AES_KEYSIZE_256)
2065 		return -EINVAL;
2066 
2067 	memcpy(ctx->aes_key, key, keylen);
2068 	ctx->keylen = keylen;
2069 
2070 	return 0;
2071 }
2072 
2073 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2074 {
2075 	return s5p_aes_crypt(req, 0);
2076 }
2077 
2078 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2079 {
2080 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2081 }
2082 
2083 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2084 {
2085 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2086 }
2087 
2088 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2089 {
2090 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2091 }
2092 
2093 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2094 {
2095 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2096 
2097 	ctx->dev = s5p_dev;
2098 	tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2099 
2100 	return 0;
2101 }
2102 
2103 static struct crypto_alg algs[] = {
2104 	{
2105 		.cra_name		= "ecb(aes)",
2106 		.cra_driver_name	= "ecb-aes-s5p",
2107 		.cra_priority		= 100,
2108 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2109 					  CRYPTO_ALG_ASYNC |
2110 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2111 		.cra_blocksize		= AES_BLOCK_SIZE,
2112 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2113 		.cra_alignmask		= 0x0f,
2114 		.cra_type		= &crypto_ablkcipher_type,
2115 		.cra_module		= THIS_MODULE,
2116 		.cra_init		= s5p_aes_cra_init,
2117 		.cra_u.ablkcipher = {
2118 			.min_keysize	= AES_MIN_KEY_SIZE,
2119 			.max_keysize	= AES_MAX_KEY_SIZE,
2120 			.setkey		= s5p_aes_setkey,
2121 			.encrypt	= s5p_aes_ecb_encrypt,
2122 			.decrypt	= s5p_aes_ecb_decrypt,
2123 		}
2124 	},
2125 	{
2126 		.cra_name		= "cbc(aes)",
2127 		.cra_driver_name	= "cbc-aes-s5p",
2128 		.cra_priority		= 100,
2129 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2130 					  CRYPTO_ALG_ASYNC |
2131 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2132 		.cra_blocksize		= AES_BLOCK_SIZE,
2133 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2134 		.cra_alignmask		= 0x0f,
2135 		.cra_type		= &crypto_ablkcipher_type,
2136 		.cra_module		= THIS_MODULE,
2137 		.cra_init		= s5p_aes_cra_init,
2138 		.cra_u.ablkcipher = {
2139 			.min_keysize	= AES_MIN_KEY_SIZE,
2140 			.max_keysize	= AES_MAX_KEY_SIZE,
2141 			.ivsize		= AES_BLOCK_SIZE,
2142 			.setkey		= s5p_aes_setkey,
2143 			.encrypt	= s5p_aes_cbc_encrypt,
2144 			.decrypt	= s5p_aes_cbc_decrypt,
2145 		}
2146 	},
2147 };
2148 
2149 static int s5p_aes_probe(struct platform_device *pdev)
2150 {
2151 	struct device *dev = &pdev->dev;
2152 	int i, j, err = -ENODEV;
2153 	const struct samsung_aes_variant *variant;
2154 	struct s5p_aes_dev *pdata;
2155 	struct resource *res;
2156 	unsigned int hash_i;
2157 
2158 	if (s5p_dev)
2159 		return -EEXIST;
2160 
2161 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2162 	if (!pdata)
2163 		return -ENOMEM;
2164 
2165 	variant = find_s5p_sss_version(pdev);
2166 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2167 
2168 	/*
2169 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2170 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2171 	 * is enabled in config. We need larger size for HASH registers in
2172 	 * secss, current describe only AES/DES
2173 	 */
2174 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2175 		if (variant == &exynos_aes_data) {
2176 			res->end += 0x300;
2177 			pdata->use_hash = true;
2178 		}
2179 	}
2180 
2181 	pdata->res = res;
2182 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2183 	if (IS_ERR(pdata->ioaddr)) {
2184 		if (!pdata->use_hash)
2185 			return PTR_ERR(pdata->ioaddr);
2186 		/* try AES without HASH */
2187 		res->end -= 0x300;
2188 		pdata->use_hash = false;
2189 		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2190 		if (IS_ERR(pdata->ioaddr))
2191 			return PTR_ERR(pdata->ioaddr);
2192 	}
2193 
2194 	pdata->clk = devm_clk_get(dev, "secss");
2195 	if (IS_ERR(pdata->clk)) {
2196 		dev_err(dev, "failed to find secss clock source\n");
2197 		return -ENOENT;
2198 	}
2199 
2200 	err = clk_prepare_enable(pdata->clk);
2201 	if (err < 0) {
2202 		dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2203 		return err;
2204 	}
2205 
2206 	spin_lock_init(&pdata->lock);
2207 	spin_lock_init(&pdata->hash_lock);
2208 
2209 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2210 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2211 
2212 	pdata->irq_fc = platform_get_irq(pdev, 0);
2213 	if (pdata->irq_fc < 0) {
2214 		err = pdata->irq_fc;
2215 		dev_warn(dev, "feed control interrupt is not available.\n");
2216 		goto err_irq;
2217 	}
2218 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2219 					s5p_aes_interrupt, IRQF_ONESHOT,
2220 					pdev->name, pdev);
2221 	if (err < 0) {
2222 		dev_warn(dev, "feed control interrupt is not available.\n");
2223 		goto err_irq;
2224 	}
2225 
2226 	pdata->busy = false;
2227 	pdata->dev = dev;
2228 	platform_set_drvdata(pdev, pdata);
2229 	s5p_dev = pdata;
2230 
2231 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2232 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2233 
2234 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2235 		err = crypto_register_alg(&algs[i]);
2236 		if (err)
2237 			goto err_algs;
2238 	}
2239 
2240 	if (pdata->use_hash) {
2241 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2242 			     (unsigned long)pdata);
2243 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2244 
2245 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2246 		     hash_i++) {
2247 			struct ahash_alg *alg;
2248 
2249 			alg = &algs_sha1_md5_sha256[hash_i];
2250 			err = crypto_register_ahash(alg);
2251 			if (err) {
2252 				dev_err(dev, "can't register '%s': %d\n",
2253 					alg->halg.base.cra_driver_name, err);
2254 				goto err_hash;
2255 			}
2256 		}
2257 	}
2258 
2259 	dev_info(dev, "s5p-sss driver registered\n");
2260 
2261 	return 0;
2262 
2263 err_hash:
2264 	for (j = hash_i - 1; j >= 0; j--)
2265 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2266 
2267 	tasklet_kill(&pdata->hash_tasklet);
2268 	res->end -= 0x300;
2269 
2270 err_algs:
2271 	if (i < ARRAY_SIZE(algs))
2272 		dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2273 			err);
2274 
2275 	for (j = 0; j < i; j++)
2276 		crypto_unregister_alg(&algs[j]);
2277 
2278 	tasklet_kill(&pdata->tasklet);
2279 
2280 err_irq:
2281 	clk_disable_unprepare(pdata->clk);
2282 
2283 	s5p_dev = NULL;
2284 
2285 	return err;
2286 }
2287 
2288 static int s5p_aes_remove(struct platform_device *pdev)
2289 {
2290 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2291 	int i;
2292 
2293 	if (!pdata)
2294 		return -ENODEV;
2295 
2296 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2297 		crypto_unregister_alg(&algs[i]);
2298 
2299 	tasklet_kill(&pdata->tasklet);
2300 	if (pdata->use_hash) {
2301 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2302 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2303 
2304 		pdata->res->end -= 0x300;
2305 		tasklet_kill(&pdata->hash_tasklet);
2306 		pdata->use_hash = false;
2307 	}
2308 
2309 	clk_disable_unprepare(pdata->clk);
2310 	s5p_dev = NULL;
2311 
2312 	return 0;
2313 }
2314 
2315 static struct platform_driver s5p_aes_crypto = {
2316 	.probe	= s5p_aes_probe,
2317 	.remove	= s5p_aes_remove,
2318 	.driver	= {
2319 		.name	= "s5p-secss",
2320 		.of_match_table = s5p_sss_dt_match,
2321 	},
2322 };
2323 
2324 module_platform_driver(s5p_aes_crypto);
2325 
2326 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2327 MODULE_LICENSE("GPL v2");
2328 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2329 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2330