xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35 
36 #define _SBF(s, v)			((v) << (s))
37 
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT		0x0000
40 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
46 
47 #define SSS_REG_FCINTENSET		0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
54 
55 #define SSS_REG_FCINTENCLR		0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
62 
63 #define SSS_REG_FCINTPEND		0x000C
64 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
70 
71 #define SSS_REG_FCFIFOSTAT		0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
80 
81 #define SSS_REG_FCFIFOCTRL		0x0014
82 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
83 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
86 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
87 
88 #define SSS_REG_FCBRDMAS		0x0020
89 #define SSS_REG_FCBRDMAL		0x0024
90 #define SSS_REG_FCBRDMAC		0x0028
91 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
92 #define SSS_FCBRDMAC_FLUSH		BIT(0)
93 
94 #define SSS_REG_FCBTDMAS		0x0030
95 #define SSS_REG_FCBTDMAL		0x0034
96 #define SSS_REG_FCBTDMAC		0x0038
97 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
98 #define SSS_FCBTDMAC_FLUSH		BIT(0)
99 
100 #define SSS_REG_FCHRDMAS		0x0040
101 #define SSS_REG_FCHRDMAL		0x0044
102 #define SSS_REG_FCHRDMAC		0x0048
103 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
104 #define SSS_FCHRDMAC_FLUSH		BIT(0)
105 
106 #define SSS_REG_FCPKDMAS		0x0050
107 #define SSS_REG_FCPKDMAL		0x0054
108 #define SSS_REG_FCPKDMAC		0x0058
109 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
110 #define SSS_FCPKDMAC_DESCEND		BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
112 #define SSS_FCPKDMAC_FLUSH		BIT(0)
113 
114 #define SSS_REG_FCPKDMAO		0x005C
115 
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL		0x00
118 #define SSS_AES_BYTESWAP_DI		BIT(11)
119 #define SSS_AES_BYTESWAP_DO		BIT(10)
120 #define SSS_AES_BYTESWAP_IV		BIT(9)
121 #define SSS_AES_BYTESWAP_CNT		BIT(8)
122 #define SSS_AES_BYTESWAP_KEY		BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
124 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE		BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT		BIT(0)
132 
133 #define SSS_REG_AES_STATUS		0x04
134 #define SSS_AES_BUSY			BIT(2)
135 #define SSS_AES_INPUT_READY		BIT(1)
136 #define SSS_AES_OUTPUT_READY		BIT(0)
137 
138 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
143 
144 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
147 
148 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
150 						SSS_AES_REG(dev, reg))
151 
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT		BIT(0)
154 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
155 #define FLAGS_AES_CBC			_SBF(1, 0x01)
156 #define FLAGS_AES_CTR			_SBF(1, 0x02)
157 
158 #define AES_KEY_LEN			16
159 #define CRYPTO_QUEUE_LEN		1
160 
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL		0x00
163 
164 #define SSS_HASH_USER_IV_EN		BIT(5)
165 #define SSS_HASH_INIT_BIT		BIT(4)
166 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
169 
170 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
171 
172 #define SSS_REG_HASH_CTRL_PAUSE		0x04
173 
174 #define SSS_HASH_PAUSE			BIT(0)
175 
176 #define SSS_REG_HASH_CTRL_FIFO		0x08
177 
178 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU          0
180 
181 #define SSS_REG_HASH_CTRL_SWAP		0x0C
182 
183 #define SSS_HASH_BYTESWAP_DI		BIT(3)
184 #define SSS_HASH_BYTESWAP_DO		BIT(2)
185 #define SSS_HASH_BYTESWAP_IV		BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
187 
188 #define SSS_REG_HASH_STATUS		0x10
189 
190 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
193 
194 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
196 
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
199 
200 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
202 
203 #define HASH_BLOCK_SIZE			64
204 #define HASH_REG_SIZEOF			4
205 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208 
209 /*
210  * HASH bit numbers, used by device, setting in dev->hash_flags with
211  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214  */
215 #define HASH_FLAGS_BUSY		0
216 #define HASH_FLAGS_FINAL	1
217 #define HASH_FLAGS_DMA_ACTIVE	2
218 #define HASH_FLAGS_OUTPUT_READY	3
219 #define HASH_FLAGS_DMA_READY	4
220 #define HASH_FLAGS_SGS_COPIED	5
221 #define HASH_FLAGS_SGS_ALLOCED	6
222 
223 /* HASH HW constants */
224 #define BUFLEN			HASH_BLOCK_SIZE
225 
226 #define SSS_HASH_DMA_LEN_ALIGN	8
227 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
228 
229 #define SSS_HASH_QUEUE_LENGTH	10
230 
231 /**
232  * struct samsung_aes_variant - platform specific SSS driver data
233  * @aes_offset: AES register offset from SSS module's base.
234  * @hash_offset: HASH register offset from SSS module's base.
235  * @clk_names: names of clocks needed to run SSS IP
236  *
237  * Specifies platform specific configuration of SSS module.
238  * Note: A structure for driver specific platform data is used for future
239  * expansion of its usage.
240  */
241 struct samsung_aes_variant {
242 	unsigned int			aes_offset;
243 	unsigned int			hash_offset;
244 	const char			*clk_names[2];
245 };
246 
247 struct s5p_aes_reqctx {
248 	unsigned long			mode;
249 };
250 
251 struct s5p_aes_ctx {
252 	struct s5p_aes_dev		*dev;
253 
254 	u8				aes_key[AES_MAX_KEY_SIZE];
255 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
256 	int				keylen;
257 };
258 
259 /**
260  * struct s5p_aes_dev - Crypto device state container
261  * @dev:	Associated device
262  * @clk:	Clock for accessing hardware
263  * @pclk:	APB bus clock necessary to access the hardware
264  * @ioaddr:	Mapped IO memory region
265  * @aes_ioaddr:	Per-varian offset for AES block IO memory
266  * @irq_fc:	Feed control interrupt line
267  * @req:	Crypto request currently handled by the device
268  * @ctx:	Configuration for currently handled crypto request
269  * @sg_src:	Scatter list with source data for currently handled block
270  *		in device.  This is DMA-mapped into device.
271  * @sg_dst:	Scatter list with destination data for currently handled block
272  *		in device. This is DMA-mapped into device.
273  * @sg_src_cpy:	In case of unaligned access, copied scatter list
274  *		with source data.
275  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
276  *		with destination data.
277  * @tasklet:	New request scheduling jib
278  * @queue:	Crypto queue
279  * @busy:	Indicates whether the device is currently handling some request
280  *		thus it uses some of the fields from this state, like:
281  *		req, ctx, sg_src/dst (and copies).  This essentially
282  *		protects against concurrent access to these fields.
283  * @lock:	Lock for protecting both access to device hardware registers
284  *		and fields related to current request (including the busy field).
285  * @res:	Resources for hash.
286  * @io_hash_base: Per-variant offset for HASH block IO memory.
287  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
288  *		variable.
289  * @hash_flags:	Flags for current HASH op.
290  * @hash_queue:	Async hash queue.
291  * @hash_tasklet: New HASH request scheduling job.
292  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
293  * @hash_req:	Current request sending to SSS HASH block.
294  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
295  * @hash_sg_cnt: Counter for hash_sg_iter.
296  *
297  * @use_hash:	true if HASH algs enabled
298  */
299 struct s5p_aes_dev {
300 	struct device			*dev;
301 	struct clk			*clk;
302 	struct clk			*pclk;
303 	void __iomem			*ioaddr;
304 	void __iomem			*aes_ioaddr;
305 	int				irq_fc;
306 
307 	struct skcipher_request		*req;
308 	struct s5p_aes_ctx		*ctx;
309 	struct scatterlist		*sg_src;
310 	struct scatterlist		*sg_dst;
311 
312 	struct scatterlist		*sg_src_cpy;
313 	struct scatterlist		*sg_dst_cpy;
314 
315 	struct tasklet_struct		tasklet;
316 	struct crypto_queue		queue;
317 	bool				busy;
318 	spinlock_t			lock;
319 
320 	struct resource			*res;
321 	void __iomem			*io_hash_base;
322 
323 	spinlock_t			hash_lock; /* protect hash_ vars */
324 	unsigned long			hash_flags;
325 	struct crypto_queue		hash_queue;
326 	struct tasklet_struct		hash_tasklet;
327 
328 	u8				xmit_buf[BUFLEN];
329 	struct ahash_request		*hash_req;
330 	struct scatterlist		*hash_sg_iter;
331 	unsigned int			hash_sg_cnt;
332 
333 	bool				use_hash;
334 };
335 
336 /**
337  * struct s5p_hash_reqctx - HASH request context
338  * @dd:		Associated device
339  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
340  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
341  * @digest:	Digest message or IV for partial result
342  * @nregs:	Number of HW registers for digest or IV read/write
343  * @engine:	Bits for selecting type of HASH in SSS block
344  * @sg:		sg for DMA transfer
345  * @sg_len:	Length of sg for DMA transfer
346  * @sgl:	sg for joining buffer and req->src scatterlist
347  * @skip:	Skip offset in req->src for current op
348  * @total:	Total number of bytes for current request
349  * @finup:	Keep state for finup or final.
350  * @error:	Keep track of error.
351  * @bufcnt:	Number of bytes holded in buffer[]
352  * @buffer:	For byte(s) from end of req->src in UPDATE op
353  */
354 struct s5p_hash_reqctx {
355 	struct s5p_aes_dev	*dd;
356 	bool			op_update;
357 
358 	u64			digcnt;
359 	u8			digest[SHA256_DIGEST_SIZE];
360 
361 	unsigned int		nregs; /* digest_size / sizeof(reg) */
362 	u32			engine;
363 
364 	struct scatterlist	*sg;
365 	unsigned int		sg_len;
366 	struct scatterlist	sgl[2];
367 	unsigned int		skip;
368 	unsigned int		total;
369 	bool			finup;
370 	bool			error;
371 
372 	u32			bufcnt;
373 	u8			buffer[];
374 };
375 
376 /**
377  * struct s5p_hash_ctx - HASH transformation context
378  * @dd:		Associated device
379  * @flags:	Bits for algorithm HASH.
380  * @fallback:	Software transformation for zero message or size < BUFLEN.
381  */
382 struct s5p_hash_ctx {
383 	struct s5p_aes_dev	*dd;
384 	unsigned long		flags;
385 	struct crypto_shash	*fallback;
386 };
387 
388 static const struct samsung_aes_variant s5p_aes_data = {
389 	.aes_offset	= 0x4000,
390 	.hash_offset	= 0x6000,
391 	.clk_names	= { "secss", },
392 };
393 
394 static const struct samsung_aes_variant exynos_aes_data = {
395 	.aes_offset	= 0x200,
396 	.hash_offset	= 0x400,
397 	.clk_names	= { "secss", },
398 };
399 
400 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
401 	.aes_offset	= 0x400,
402 	.hash_offset	= 0x800,
403 	.clk_names	= { "pclk", "aclk", },
404 };
405 
406 static const struct of_device_id s5p_sss_dt_match[] = {
407 	{
408 		.compatible = "samsung,s5pv210-secss",
409 		.data = &s5p_aes_data,
410 	},
411 	{
412 		.compatible = "samsung,exynos4210-secss",
413 		.data = &exynos_aes_data,
414 	},
415 	{
416 		.compatible = "samsung,exynos5433-slim-sss",
417 		.data = &exynos5433_slim_aes_data,
418 	},
419 	{ },
420 };
421 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
422 
423 static inline const struct samsung_aes_variant *find_s5p_sss_version
424 				   (const struct platform_device *pdev)
425 {
426 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
427 		const struct of_device_id *match;
428 
429 		match = of_match_node(s5p_sss_dt_match,
430 					pdev->dev.of_node);
431 		return (const struct samsung_aes_variant *)match->data;
432 	}
433 	return (const struct samsung_aes_variant *)
434 			platform_get_device_id(pdev)->driver_data;
435 }
436 
437 static struct s5p_aes_dev *s5p_dev;
438 
439 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
440 			       const struct scatterlist *sg)
441 {
442 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
443 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
444 }
445 
446 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
447 				const struct scatterlist *sg)
448 {
449 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
450 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
451 }
452 
453 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
454 {
455 	int len;
456 
457 	if (!*sg)
458 		return;
459 
460 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
461 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
462 
463 	kfree(*sg);
464 	*sg = NULL;
465 }
466 
467 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
468 			    unsigned int nbytes, int out)
469 {
470 	struct scatter_walk walk;
471 
472 	if (!nbytes)
473 		return;
474 
475 	scatterwalk_start(&walk, sg);
476 	scatterwalk_copychunks(buf, &walk, nbytes, out);
477 	scatterwalk_done(&walk, out, 0);
478 }
479 
480 static void s5p_sg_done(struct s5p_aes_dev *dev)
481 {
482 	struct skcipher_request *req = dev->req;
483 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
484 
485 	if (dev->sg_dst_cpy) {
486 		dev_dbg(dev->dev,
487 			"Copying %d bytes of output data back to original place\n",
488 			dev->req->cryptlen);
489 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
490 				dev->req->cryptlen, 1);
491 	}
492 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
493 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
494 	if (reqctx->mode & FLAGS_AES_CBC)
495 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
496 
497 	else if (reqctx->mode & FLAGS_AES_CTR)
498 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
499 }
500 
501 /* Calls the completion. Cannot be called with dev->lock hold. */
502 static void s5p_aes_complete(struct skcipher_request *req, int err)
503 {
504 	req->base.complete(&req->base, err);
505 }
506 
507 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
508 {
509 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
510 }
511 
512 static void s5p_unset_indata(struct s5p_aes_dev *dev)
513 {
514 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
515 }
516 
517 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
518 			   struct scatterlist **dst)
519 {
520 	void *pages;
521 	int len;
522 
523 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
524 	if (!*dst)
525 		return -ENOMEM;
526 
527 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
528 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
529 	if (!pages) {
530 		kfree(*dst);
531 		*dst = NULL;
532 		return -ENOMEM;
533 	}
534 
535 	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
536 
537 	sg_init_table(*dst, 1);
538 	sg_set_buf(*dst, pages, len);
539 
540 	return 0;
541 }
542 
543 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
544 {
545 	if (!sg->length)
546 		return -EINVAL;
547 
548 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
549 		return -ENOMEM;
550 
551 	dev->sg_dst = sg;
552 
553 	return 0;
554 }
555 
556 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
557 {
558 	if (!sg->length)
559 		return -EINVAL;
560 
561 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
562 		return -ENOMEM;
563 
564 	dev->sg_src = sg;
565 
566 	return 0;
567 }
568 
569 /*
570  * Returns -ERRNO on error (mapping of new data failed).
571  * On success returns:
572  *  - 0 if there is no more data,
573  *  - 1 if new transmitting (output) data is ready and its address+length
574  *     have to be written to device (by calling s5p_set_dma_outdata()).
575  */
576 static int s5p_aes_tx(struct s5p_aes_dev *dev)
577 {
578 	int ret = 0;
579 
580 	s5p_unset_outdata(dev);
581 
582 	if (!sg_is_last(dev->sg_dst)) {
583 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
584 		if (!ret)
585 			ret = 1;
586 	}
587 
588 	return ret;
589 }
590 
591 /*
592  * Returns -ERRNO on error (mapping of new data failed).
593  * On success returns:
594  *  - 0 if there is no more data,
595  *  - 1 if new receiving (input) data is ready and its address+length
596  *     have to be written to device (by calling s5p_set_dma_indata()).
597  */
598 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
599 {
600 	int ret = 0;
601 
602 	s5p_unset_indata(dev);
603 
604 	if (!sg_is_last(dev->sg_src)) {
605 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
606 		if (!ret)
607 			ret = 1;
608 	}
609 
610 	return ret;
611 }
612 
613 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
614 {
615 	return __raw_readl(dd->io_hash_base + offset);
616 }
617 
618 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
619 				  u32 offset, u32 value)
620 {
621 	__raw_writel(value, dd->io_hash_base + offset);
622 }
623 
624 /**
625  * s5p_set_dma_hashdata() - start DMA with sg
626  * @dev:	device
627  * @sg:		scatterlist ready to DMA transmit
628  */
629 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
630 				 const struct scatterlist *sg)
631 {
632 	dev->hash_sg_cnt--;
633 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
634 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
635 }
636 
637 /**
638  * s5p_hash_rx() - get next hash_sg_iter
639  * @dev:	device
640  *
641  * Return:
642  * 2	if there is no more data and it is UPDATE op
643  * 1	if new receiving (input) data is ready and can be written to device
644  * 0	if there is no more data and it is FINAL op
645  */
646 static int s5p_hash_rx(struct s5p_aes_dev *dev)
647 {
648 	if (dev->hash_sg_cnt > 0) {
649 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
650 		return 1;
651 	}
652 
653 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
654 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
655 		return 0;
656 
657 	return 2;
658 }
659 
660 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
661 {
662 	struct platform_device *pdev = dev_id;
663 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
664 	struct skcipher_request *req;
665 	int err_dma_tx = 0;
666 	int err_dma_rx = 0;
667 	int err_dma_hx = 0;
668 	bool tx_end = false;
669 	bool hx_end = false;
670 	unsigned long flags;
671 	u32 status, st_bits;
672 	int err;
673 
674 	spin_lock_irqsave(&dev->lock, flags);
675 
676 	/*
677 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
678 	 * reach end), then map next scatterlist entry.
679 	 * In case of such mapping error, s5p_aes_complete() should be called.
680 	 *
681 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
682 	 * and schedule new tasklet.
683 	 *
684 	 * Handle hx interrupt. If there is still data map next entry.
685 	 */
686 	status = SSS_READ(dev, FCINTSTAT);
687 	if (status & SSS_FCINTSTAT_BRDMAINT)
688 		err_dma_rx = s5p_aes_rx(dev);
689 
690 	if (status & SSS_FCINTSTAT_BTDMAINT) {
691 		if (sg_is_last(dev->sg_dst))
692 			tx_end = true;
693 		err_dma_tx = s5p_aes_tx(dev);
694 	}
695 
696 	if (status & SSS_FCINTSTAT_HRDMAINT)
697 		err_dma_hx = s5p_hash_rx(dev);
698 
699 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
700 				SSS_FCINTSTAT_HRDMAINT);
701 	/* clear DMA bits */
702 	SSS_WRITE(dev, FCINTPEND, st_bits);
703 
704 	/* clear HASH irq bits */
705 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
706 		/* cannot have both HPART and HDONE */
707 		if (status & SSS_FCINTSTAT_HPARTINT)
708 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
709 
710 		if (status & SSS_FCINTSTAT_HDONEINT)
711 			st_bits = SSS_HASH_STATUS_MSG_DONE;
712 
713 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
714 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
715 		hx_end = true;
716 		/* when DONE or PART, do not handle HASH DMA */
717 		err_dma_hx = 0;
718 	}
719 
720 	if (err_dma_rx < 0) {
721 		err = err_dma_rx;
722 		goto error;
723 	}
724 	if (err_dma_tx < 0) {
725 		err = err_dma_tx;
726 		goto error;
727 	}
728 
729 	if (tx_end) {
730 		s5p_sg_done(dev);
731 		if (err_dma_hx == 1)
732 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
733 
734 		spin_unlock_irqrestore(&dev->lock, flags);
735 
736 		s5p_aes_complete(dev->req, 0);
737 		/* Device is still busy */
738 		tasklet_schedule(&dev->tasklet);
739 	} else {
740 		/*
741 		 * Writing length of DMA block (either receiving or
742 		 * transmitting) will start the operation immediately, so this
743 		 * should be done at the end (even after clearing pending
744 		 * interrupts to not miss the interrupt).
745 		 */
746 		if (err_dma_tx == 1)
747 			s5p_set_dma_outdata(dev, dev->sg_dst);
748 		if (err_dma_rx == 1)
749 			s5p_set_dma_indata(dev, dev->sg_src);
750 		if (err_dma_hx == 1)
751 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
752 
753 		spin_unlock_irqrestore(&dev->lock, flags);
754 	}
755 
756 	goto hash_irq_end;
757 
758 error:
759 	s5p_sg_done(dev);
760 	dev->busy = false;
761 	req = dev->req;
762 	if (err_dma_hx == 1)
763 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
764 
765 	spin_unlock_irqrestore(&dev->lock, flags);
766 	s5p_aes_complete(req, err);
767 
768 hash_irq_end:
769 	/*
770 	 * Note about else if:
771 	 *   when hash_sg_iter reaches end and its UPDATE op,
772 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
773 	 */
774 	if (hx_end)
775 		tasklet_schedule(&dev->hash_tasklet);
776 	else if (err_dma_hx == 2)
777 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
778 			       SSS_HASH_PAUSE);
779 
780 	return IRQ_HANDLED;
781 }
782 
783 /**
784  * s5p_hash_read_msg() - read message or IV from HW
785  * @req:	AHASH request
786  */
787 static void s5p_hash_read_msg(struct ahash_request *req)
788 {
789 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
790 	struct s5p_aes_dev *dd = ctx->dd;
791 	u32 *hash = (u32 *)ctx->digest;
792 	unsigned int i;
793 
794 	for (i = 0; i < ctx->nregs; i++)
795 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
796 }
797 
798 /**
799  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
800  * @dd:		device
801  * @ctx:	request context
802  */
803 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
804 				  const struct s5p_hash_reqctx *ctx)
805 {
806 	const u32 *hash = (const u32 *)ctx->digest;
807 	unsigned int i;
808 
809 	for (i = 0; i < ctx->nregs; i++)
810 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
811 }
812 
813 /**
814  * s5p_hash_write_iv() - write IV for next partial/finup op.
815  * @req:	AHASH request
816  */
817 static void s5p_hash_write_iv(struct ahash_request *req)
818 {
819 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
820 
821 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
822 }
823 
824 /**
825  * s5p_hash_copy_result() - copy digest into req->result
826  * @req:	AHASH request
827  */
828 static void s5p_hash_copy_result(struct ahash_request *req)
829 {
830 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
831 
832 	if (!req->result)
833 		return;
834 
835 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
836 }
837 
838 /**
839  * s5p_hash_dma_flush() - flush HASH DMA
840  * @dev:	secss device
841  */
842 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
843 {
844 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
845 }
846 
847 /**
848  * s5p_hash_dma_enable() - enable DMA mode for HASH
849  * @dev:	secss device
850  *
851  * enable DMA mode for HASH
852  */
853 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
854 {
855 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
856 }
857 
858 /**
859  * s5p_hash_irq_disable() - disable irq HASH signals
860  * @dev:	secss device
861  * @flags:	bitfield with irq's to be disabled
862  */
863 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
864 {
865 	SSS_WRITE(dev, FCINTENCLR, flags);
866 }
867 
868 /**
869  * s5p_hash_irq_enable() - enable irq signals
870  * @dev:	secss device
871  * @flags:	bitfield with irq's to be enabled
872  */
873 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
874 {
875 	SSS_WRITE(dev, FCINTENSET, flags);
876 }
877 
878 /**
879  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
880  * @dev:	secss device
881  * @hashflow:	HASH stream flow with/without crypto AES/DES
882  */
883 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
884 {
885 	unsigned long flags;
886 	u32 flow;
887 
888 	spin_lock_irqsave(&dev->lock, flags);
889 
890 	flow = SSS_READ(dev, FCFIFOCTRL);
891 	flow &= ~SSS_HASHIN_MASK;
892 	flow |= hashflow;
893 	SSS_WRITE(dev, FCFIFOCTRL, flow);
894 
895 	spin_unlock_irqrestore(&dev->lock, flags);
896 }
897 
898 /**
899  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
900  * @dev:	secss device
901  * @hashflow:	HASH stream flow with/without AES/DES
902  *
903  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
904  * enable HASH irq's HRDMA, HDONE, HPART
905  */
906 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
907 {
908 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
909 			     SSS_FCINTENCLR_HDONEINTENCLR |
910 			     SSS_FCINTENCLR_HPARTINTENCLR);
911 	s5p_hash_dma_flush(dev);
912 
913 	s5p_hash_dma_enable(dev);
914 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
915 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
916 			    SSS_FCINTENSET_HDONEINTENSET |
917 			    SSS_FCINTENSET_HPARTINTENSET);
918 }
919 
920 /**
921  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
922  * @dd:		secss device
923  * @length:	length for request
924  * @final:	true if final op
925  *
926  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
927  * after previous updates, fill up IV words. For final, calculate and set
928  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
929  * length as 2^63 so it will be never reached and set to zero prelow and
930  * prehigh.
931  *
932  * This function does not start DMA transfer.
933  */
934 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
935 				bool final)
936 {
937 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
938 	u32 prelow, prehigh, low, high;
939 	u32 configflags, swapflags;
940 	u64 tmplen;
941 
942 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
943 
944 	if (likely(ctx->digcnt)) {
945 		s5p_hash_write_ctx_iv(dd, ctx);
946 		configflags |= SSS_HASH_USER_IV_EN;
947 	}
948 
949 	if (final) {
950 		/* number of bytes for last part */
951 		low = length;
952 		high = 0;
953 		/* total number of bits prev hashed */
954 		tmplen = ctx->digcnt * 8;
955 		prelow = (u32)tmplen;
956 		prehigh = (u32)(tmplen >> 32);
957 	} else {
958 		prelow = 0;
959 		prehigh = 0;
960 		low = 0;
961 		high = BIT(31);
962 	}
963 
964 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
965 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
966 
967 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
968 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
969 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
970 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
971 
972 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
973 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
974 }
975 
976 /**
977  * s5p_hash_xmit_dma() - start DMA hash processing
978  * @dd:		secss device
979  * @length:	length for request
980  * @final:	true if final op
981  *
982  * Update digcnt here, as it is needed for finup/final op.
983  */
984 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
985 			     bool final)
986 {
987 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
988 	unsigned int cnt;
989 
990 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
991 	if (!cnt) {
992 		dev_err(dd->dev, "dma_map_sg error\n");
993 		ctx->error = true;
994 		return -EINVAL;
995 	}
996 
997 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
998 	dd->hash_sg_iter = ctx->sg;
999 	dd->hash_sg_cnt = cnt;
1000 	s5p_hash_write_ctrl(dd, length, final);
1001 	ctx->digcnt += length;
1002 	ctx->total -= length;
1003 
1004 	/* catch last interrupt */
1005 	if (final)
1006 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1007 
1008 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1009 
1010 	return -EINPROGRESS;
1011 }
1012 
1013 /**
1014  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1015  * @ctx:	request context
1016  * @sg:		source scatterlist request
1017  * @new_len:	number of bytes to process from sg
1018  *
1019  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1020  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1021  * with allocated buffer.
1022  *
1023  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1024  */
1025 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1026 			     struct scatterlist *sg, unsigned int new_len)
1027 {
1028 	unsigned int pages, len;
1029 	void *buf;
1030 
1031 	len = new_len + ctx->bufcnt;
1032 	pages = get_order(len);
1033 
1034 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1035 	if (!buf) {
1036 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1037 		ctx->error = true;
1038 		return -ENOMEM;
1039 	}
1040 
1041 	if (ctx->bufcnt)
1042 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1043 
1044 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1045 				 new_len, 0);
1046 	sg_init_table(ctx->sgl, 1);
1047 	sg_set_buf(ctx->sgl, buf, len);
1048 	ctx->sg = ctx->sgl;
1049 	ctx->sg_len = 1;
1050 	ctx->bufcnt = 0;
1051 	ctx->skip = 0;
1052 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1053 
1054 	return 0;
1055 }
1056 
1057 /**
1058  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1059  * @ctx:	request context
1060  * @sg:		source scatterlist request
1061  * @new_len:	number of bytes to process from sg
1062  *
1063  * Allocate new scatterlist table, copy data for HASH into it. If there was
1064  * xmit_buf filled, prepare it first, then copy page, length and offset from
1065  * source sg into it, adjusting begin and/or end for skip offset and
1066  * hash_later value.
1067  *
1068  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1069  * it after irq ends processing.
1070  */
1071 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1072 				  struct scatterlist *sg, unsigned int new_len)
1073 {
1074 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1075 	struct scatterlist *tmp;
1076 	unsigned int len;
1077 
1078 	if (ctx->bufcnt)
1079 		n++;
1080 
1081 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1082 	if (!ctx->sg) {
1083 		ctx->error = true;
1084 		return -ENOMEM;
1085 	}
1086 
1087 	sg_init_table(ctx->sg, n);
1088 
1089 	tmp = ctx->sg;
1090 
1091 	ctx->sg_len = 0;
1092 
1093 	if (ctx->bufcnt) {
1094 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1095 		tmp = sg_next(tmp);
1096 		ctx->sg_len++;
1097 	}
1098 
1099 	while (sg && skip >= sg->length) {
1100 		skip -= sg->length;
1101 		sg = sg_next(sg);
1102 	}
1103 
1104 	while (sg && new_len) {
1105 		len = sg->length - skip;
1106 		if (new_len < len)
1107 			len = new_len;
1108 
1109 		new_len -= len;
1110 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1111 		skip = 0;
1112 		if (new_len <= 0)
1113 			sg_mark_end(tmp);
1114 
1115 		tmp = sg_next(tmp);
1116 		ctx->sg_len++;
1117 		sg = sg_next(sg);
1118 	}
1119 
1120 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  * s5p_hash_prepare_sgs() - prepare sg for processing
1127  * @ctx:	request context
1128  * @sg:		source scatterlist request
1129  * @new_len:	number of bytes to process from sg
1130  * @final:	final flag
1131  *
1132  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1133  * sg table have good aligned elements (list_ok). If one of this checks fails,
1134  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1135  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1136  * table and prepare sg elements.
1137  *
1138  * For digest or finup all conditions can be good, and we may not need any
1139  * fixes.
1140  */
1141 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1142 				struct scatterlist *sg,
1143 				unsigned int new_len, bool final)
1144 {
1145 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1146 	bool aligned = true, list_ok = true;
1147 	struct scatterlist *sg_tmp = sg;
1148 
1149 	if (!sg || !sg->length || !new_len)
1150 		return 0;
1151 
1152 	if (skip || !final)
1153 		list_ok = false;
1154 
1155 	while (nbytes > 0 && sg_tmp) {
1156 		n++;
1157 		if (skip >= sg_tmp->length) {
1158 			skip -= sg_tmp->length;
1159 			if (!sg_tmp->length) {
1160 				aligned = false;
1161 				break;
1162 			}
1163 		} else {
1164 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1165 				aligned = false;
1166 				break;
1167 			}
1168 
1169 			if (nbytes < sg_tmp->length - skip) {
1170 				list_ok = false;
1171 				break;
1172 			}
1173 
1174 			nbytes -= sg_tmp->length - skip;
1175 			skip = 0;
1176 		}
1177 
1178 		sg_tmp = sg_next(sg_tmp);
1179 	}
1180 
1181 	if (!aligned)
1182 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1183 	else if (!list_ok)
1184 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1185 
1186 	/*
1187 	 * Have aligned data from previous operation and/or current
1188 	 * Note: will enter here only if (digest or finup) and aligned
1189 	 */
1190 	if (ctx->bufcnt) {
1191 		ctx->sg_len = n;
1192 		sg_init_table(ctx->sgl, 2);
1193 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1194 		sg_chain(ctx->sgl, 2, sg);
1195 		ctx->sg = ctx->sgl;
1196 		ctx->sg_len++;
1197 	} else {
1198 		ctx->sg = sg;
1199 		ctx->sg_len = n;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /**
1206  * s5p_hash_prepare_request() - prepare request for processing
1207  * @req:	AHASH request
1208  * @update:	true if UPDATE op
1209  *
1210  * Note 1: we can have update flag _and_ final flag at the same time.
1211  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1212  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1213  *	   we have final op
1214  */
1215 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1216 {
1217 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1218 	bool final = ctx->finup;
1219 	int xmit_len, hash_later, nbytes;
1220 	int ret;
1221 
1222 	if (update)
1223 		nbytes = req->nbytes;
1224 	else
1225 		nbytes = 0;
1226 
1227 	ctx->total = nbytes + ctx->bufcnt;
1228 	if (!ctx->total)
1229 		return 0;
1230 
1231 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1232 		/* bytes left from previous request, so fill up to BUFLEN */
1233 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1234 
1235 		if (len > nbytes)
1236 			len = nbytes;
1237 
1238 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1239 					 0, len, 0);
1240 		ctx->bufcnt += len;
1241 		nbytes -= len;
1242 		ctx->skip = len;
1243 	} else {
1244 		ctx->skip = 0;
1245 	}
1246 
1247 	if (ctx->bufcnt)
1248 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1249 
1250 	xmit_len = ctx->total;
1251 	if (final) {
1252 		hash_later = 0;
1253 	} else {
1254 		if (IS_ALIGNED(xmit_len, BUFLEN))
1255 			xmit_len -= BUFLEN;
1256 		else
1257 			xmit_len -= xmit_len & (BUFLEN - 1);
1258 
1259 		hash_later = ctx->total - xmit_len;
1260 		/* copy hash_later bytes from end of req->src */
1261 		/* previous bytes are in xmit_buf, so no overwrite */
1262 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1263 					 req->nbytes - hash_later,
1264 					 hash_later, 0);
1265 	}
1266 
1267 	if (xmit_len > BUFLEN) {
1268 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1269 					   final);
1270 		if (ret)
1271 			return ret;
1272 	} else {
1273 		/* have buffered data only */
1274 		if (unlikely(!ctx->bufcnt)) {
1275 			/* first update didn't fill up buffer */
1276 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1277 						 0, xmit_len, 0);
1278 		}
1279 
1280 		sg_init_table(ctx->sgl, 1);
1281 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1282 
1283 		ctx->sg = ctx->sgl;
1284 		ctx->sg_len = 1;
1285 	}
1286 
1287 	ctx->bufcnt = hash_later;
1288 	if (!final)
1289 		ctx->total = xmit_len;
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * s5p_hash_update_dma_stop() - unmap DMA
1296  * @dd:		secss device
1297  *
1298  * Unmap scatterlist ctx->sg.
1299  */
1300 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1301 {
1302 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1303 
1304 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1305 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1306 }
1307 
1308 /**
1309  * s5p_hash_finish() - copy calculated digest to crypto layer
1310  * @req:	AHASH request
1311  */
1312 static void s5p_hash_finish(struct ahash_request *req)
1313 {
1314 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1315 	struct s5p_aes_dev *dd = ctx->dd;
1316 
1317 	if (ctx->digcnt)
1318 		s5p_hash_copy_result(req);
1319 
1320 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1321 }
1322 
1323 /**
1324  * s5p_hash_finish_req() - finish request
1325  * @req:	AHASH request
1326  * @err:	error
1327  */
1328 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1329 {
1330 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1331 	struct s5p_aes_dev *dd = ctx->dd;
1332 	unsigned long flags;
1333 
1334 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1335 		free_pages((unsigned long)sg_virt(ctx->sg),
1336 			   get_order(ctx->sg->length));
1337 
1338 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1339 		kfree(ctx->sg);
1340 
1341 	ctx->sg = NULL;
1342 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1343 			    BIT(HASH_FLAGS_SGS_COPIED));
1344 
1345 	if (!err && !ctx->error) {
1346 		s5p_hash_read_msg(req);
1347 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1348 			s5p_hash_finish(req);
1349 	} else {
1350 		ctx->error = true;
1351 	}
1352 
1353 	spin_lock_irqsave(&dd->hash_lock, flags);
1354 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1355 			    BIT(HASH_FLAGS_DMA_READY) |
1356 			    BIT(HASH_FLAGS_OUTPUT_READY));
1357 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1358 
1359 	if (req->base.complete)
1360 		req->base.complete(&req->base, err);
1361 }
1362 
1363 /**
1364  * s5p_hash_handle_queue() - handle hash queue
1365  * @dd:		device s5p_aes_dev
1366  * @req:	AHASH request
1367  *
1368  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1369  * device then processes the first request from the dd->queue
1370  *
1371  * Returns: see s5p_hash_final below.
1372  */
1373 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1374 				 struct ahash_request *req)
1375 {
1376 	struct crypto_async_request *async_req, *backlog;
1377 	struct s5p_hash_reqctx *ctx;
1378 	unsigned long flags;
1379 	int err = 0, ret = 0;
1380 
1381 retry:
1382 	spin_lock_irqsave(&dd->hash_lock, flags);
1383 	if (req)
1384 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1385 
1386 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1387 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1388 		return ret;
1389 	}
1390 
1391 	backlog = crypto_get_backlog(&dd->hash_queue);
1392 	async_req = crypto_dequeue_request(&dd->hash_queue);
1393 	if (async_req)
1394 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1395 
1396 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1397 
1398 	if (!async_req)
1399 		return ret;
1400 
1401 	if (backlog)
1402 		backlog->complete(backlog, -EINPROGRESS);
1403 
1404 	req = ahash_request_cast(async_req);
1405 	dd->hash_req = req;
1406 	ctx = ahash_request_ctx(req);
1407 
1408 	err = s5p_hash_prepare_request(req, ctx->op_update);
1409 	if (err || !ctx->total)
1410 		goto out;
1411 
1412 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1413 		ctx->op_update, req->nbytes);
1414 
1415 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1416 	if (ctx->digcnt)
1417 		s5p_hash_write_iv(req); /* restore hash IV */
1418 
1419 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1420 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1421 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1422 			/* no final() after finup() */
1423 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1424 	} else { /* HASH_OP_FINAL */
1425 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1426 	}
1427 out:
1428 	if (err != -EINPROGRESS) {
1429 		/* hash_tasklet_cb will not finish it, so do it here */
1430 		s5p_hash_finish_req(req, err);
1431 		req = NULL;
1432 
1433 		/*
1434 		 * Execute next request immediately if there is anything
1435 		 * in queue.
1436 		 */
1437 		goto retry;
1438 	}
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  * s5p_hash_tasklet_cb() - hash tasklet
1445  * @data:	ptr to s5p_aes_dev
1446  */
1447 static void s5p_hash_tasklet_cb(unsigned long data)
1448 {
1449 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1450 
1451 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1452 		s5p_hash_handle_queue(dd, NULL);
1453 		return;
1454 	}
1455 
1456 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1457 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1458 				       &dd->hash_flags)) {
1459 			s5p_hash_update_dma_stop(dd);
1460 		}
1461 
1462 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1463 				       &dd->hash_flags)) {
1464 			/* hash or semi-hash ready */
1465 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1466 			goto finish;
1467 		}
1468 	}
1469 
1470 	return;
1471 
1472 finish:
1473 	/* finish curent request */
1474 	s5p_hash_finish_req(dd->hash_req, 0);
1475 
1476 	/* If we are not busy, process next req */
1477 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1478 		s5p_hash_handle_queue(dd, NULL);
1479 }
1480 
1481 /**
1482  * s5p_hash_enqueue() - enqueue request
1483  * @req:	AHASH request
1484  * @op:		operation UPDATE (true) or FINAL (false)
1485  *
1486  * Returns: see s5p_hash_final below.
1487  */
1488 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1489 {
1490 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1491 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1492 
1493 	ctx->op_update = op;
1494 
1495 	return s5p_hash_handle_queue(tctx->dd, req);
1496 }
1497 
1498 /**
1499  * s5p_hash_update() - process the hash input data
1500  * @req:	AHASH request
1501  *
1502  * If request will fit in buffer, copy it and return immediately
1503  * else enqueue it with OP_UPDATE.
1504  *
1505  * Returns: see s5p_hash_final below.
1506  */
1507 static int s5p_hash_update(struct ahash_request *req)
1508 {
1509 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1510 
1511 	if (!req->nbytes)
1512 		return 0;
1513 
1514 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1515 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1516 					 0, req->nbytes, 0);
1517 		ctx->bufcnt += req->nbytes;
1518 		return 0;
1519 	}
1520 
1521 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1522 }
1523 
1524 /**
1525  * s5p_hash_final() - close up hash and calculate digest
1526  * @req:	AHASH request
1527  *
1528  * Note: in final req->src do not have any data, and req->nbytes can be
1529  * non-zero.
1530  *
1531  * If there were no input data processed yet and the buffered hash data is
1532  * less than BUFLEN (64) then calculate the final hash immediately by using
1533  * SW algorithm fallback.
1534  *
1535  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1536  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1537  * previous update op, so there are always some buffered bytes in ctx->buffer,
1538  * which means that ctx->bufcnt!=0
1539  *
1540  * Returns:
1541  * 0 if the request has been processed immediately,
1542  * -EINPROGRESS if the operation has been queued for later execution or is set
1543  *		to processing by HW,
1544  * -EBUSY if queue is full and request should be resubmitted later,
1545  * other negative values denotes an error.
1546  */
1547 static int s5p_hash_final(struct ahash_request *req)
1548 {
1549 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1550 
1551 	ctx->finup = true;
1552 	if (ctx->error)
1553 		return -EINVAL; /* uncompleted hash is not needed */
1554 
1555 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1556 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1557 
1558 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1559 					       ctx->bufcnt, req->result);
1560 	}
1561 
1562 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1563 }
1564 
1565 /**
1566  * s5p_hash_finup() - process last req->src and calculate digest
1567  * @req:	AHASH request containing the last update data
1568  *
1569  * Return values: see s5p_hash_final above.
1570  */
1571 static int s5p_hash_finup(struct ahash_request *req)
1572 {
1573 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1574 	int err1, err2;
1575 
1576 	ctx->finup = true;
1577 
1578 	err1 = s5p_hash_update(req);
1579 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1580 		return err1;
1581 
1582 	/*
1583 	 * final() has to be always called to cleanup resources even if
1584 	 * update() failed, except EINPROGRESS or calculate digest for small
1585 	 * size
1586 	 */
1587 	err2 = s5p_hash_final(req);
1588 
1589 	return err1 ?: err2;
1590 }
1591 
1592 /**
1593  * s5p_hash_init() - initialize AHASH request contex
1594  * @req:	AHASH request
1595  *
1596  * Init async hash request context.
1597  */
1598 static int s5p_hash_init(struct ahash_request *req)
1599 {
1600 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1601 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1602 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1603 
1604 	ctx->dd = tctx->dd;
1605 	ctx->error = false;
1606 	ctx->finup = false;
1607 	ctx->bufcnt = 0;
1608 	ctx->digcnt = 0;
1609 	ctx->total = 0;
1610 	ctx->skip = 0;
1611 
1612 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1613 		crypto_ahash_digestsize(tfm));
1614 
1615 	switch (crypto_ahash_digestsize(tfm)) {
1616 	case MD5_DIGEST_SIZE:
1617 		ctx->engine = SSS_HASH_ENGINE_MD5;
1618 		ctx->nregs = HASH_MD5_MAX_REG;
1619 		break;
1620 	case SHA1_DIGEST_SIZE:
1621 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1622 		ctx->nregs = HASH_SHA1_MAX_REG;
1623 		break;
1624 	case SHA256_DIGEST_SIZE:
1625 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1626 		ctx->nregs = HASH_SHA256_MAX_REG;
1627 		break;
1628 	default:
1629 		ctx->error = true;
1630 		return -EINVAL;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 /**
1637  * s5p_hash_digest - calculate digest from req->src
1638  * @req:	AHASH request
1639  *
1640  * Return values: see s5p_hash_final above.
1641  */
1642 static int s5p_hash_digest(struct ahash_request *req)
1643 {
1644 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1645 }
1646 
1647 /**
1648  * s5p_hash_cra_init_alg - init crypto alg transformation
1649  * @tfm:	crypto transformation
1650  */
1651 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1652 {
1653 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1654 	const char *alg_name = crypto_tfm_alg_name(tfm);
1655 
1656 	tctx->dd = s5p_dev;
1657 	/* Allocate a fallback and abort if it failed. */
1658 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1659 					    CRYPTO_ALG_NEED_FALLBACK);
1660 	if (IS_ERR(tctx->fallback)) {
1661 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1662 		return PTR_ERR(tctx->fallback);
1663 	}
1664 
1665 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1666 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * s5p_hash_cra_init - init crypto tfm
1673  * @tfm:	crypto transformation
1674  */
1675 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1676 {
1677 	return s5p_hash_cra_init_alg(tfm);
1678 }
1679 
1680 /**
1681  * s5p_hash_cra_exit - exit crypto tfm
1682  * @tfm:	crypto transformation
1683  *
1684  * free allocated fallback
1685  */
1686 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1687 {
1688 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1689 
1690 	crypto_free_shash(tctx->fallback);
1691 	tctx->fallback = NULL;
1692 }
1693 
1694 /**
1695  * s5p_hash_export - export hash state
1696  * @req:	AHASH request
1697  * @out:	buffer for exported state
1698  */
1699 static int s5p_hash_export(struct ahash_request *req, void *out)
1700 {
1701 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1702 
1703 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1704 
1705 	return 0;
1706 }
1707 
1708 /**
1709  * s5p_hash_import - import hash state
1710  * @req:	AHASH request
1711  * @in:		buffer with state to be imported from
1712  */
1713 static int s5p_hash_import(struct ahash_request *req, const void *in)
1714 {
1715 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1716 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1717 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1718 	const struct s5p_hash_reqctx *ctx_in = in;
1719 
1720 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1721 	if (ctx_in->bufcnt > BUFLEN) {
1722 		ctx->error = true;
1723 		return -EINVAL;
1724 	}
1725 
1726 	ctx->dd = tctx->dd;
1727 	ctx->error = false;
1728 
1729 	return 0;
1730 }
1731 
1732 static struct ahash_alg algs_sha1_md5_sha256[] = {
1733 {
1734 	.init		= s5p_hash_init,
1735 	.update		= s5p_hash_update,
1736 	.final		= s5p_hash_final,
1737 	.finup		= s5p_hash_finup,
1738 	.digest		= s5p_hash_digest,
1739 	.export		= s5p_hash_export,
1740 	.import		= s5p_hash_import,
1741 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1742 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1743 	.halg.base	= {
1744 		.cra_name		= "sha1",
1745 		.cra_driver_name	= "exynos-sha1",
1746 		.cra_priority		= 100,
1747 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1748 					  CRYPTO_ALG_ASYNC |
1749 					  CRYPTO_ALG_NEED_FALLBACK,
1750 		.cra_blocksize		= HASH_BLOCK_SIZE,
1751 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1752 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1753 		.cra_module		= THIS_MODULE,
1754 		.cra_init		= s5p_hash_cra_init,
1755 		.cra_exit		= s5p_hash_cra_exit,
1756 	}
1757 },
1758 {
1759 	.init		= s5p_hash_init,
1760 	.update		= s5p_hash_update,
1761 	.final		= s5p_hash_final,
1762 	.finup		= s5p_hash_finup,
1763 	.digest		= s5p_hash_digest,
1764 	.export		= s5p_hash_export,
1765 	.import		= s5p_hash_import,
1766 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1767 	.halg.digestsize	= MD5_DIGEST_SIZE,
1768 	.halg.base	= {
1769 		.cra_name		= "md5",
1770 		.cra_driver_name	= "exynos-md5",
1771 		.cra_priority		= 100,
1772 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1773 					  CRYPTO_ALG_ASYNC |
1774 					  CRYPTO_ALG_NEED_FALLBACK,
1775 		.cra_blocksize		= HASH_BLOCK_SIZE,
1776 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1777 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1778 		.cra_module		= THIS_MODULE,
1779 		.cra_init		= s5p_hash_cra_init,
1780 		.cra_exit		= s5p_hash_cra_exit,
1781 	}
1782 },
1783 {
1784 	.init		= s5p_hash_init,
1785 	.update		= s5p_hash_update,
1786 	.final		= s5p_hash_final,
1787 	.finup		= s5p_hash_finup,
1788 	.digest		= s5p_hash_digest,
1789 	.export		= s5p_hash_export,
1790 	.import		= s5p_hash_import,
1791 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1792 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1793 	.halg.base	= {
1794 		.cra_name		= "sha256",
1795 		.cra_driver_name	= "exynos-sha256",
1796 		.cra_priority		= 100,
1797 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1798 					  CRYPTO_ALG_ASYNC |
1799 					  CRYPTO_ALG_NEED_FALLBACK,
1800 		.cra_blocksize		= HASH_BLOCK_SIZE,
1801 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1802 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1803 		.cra_module		= THIS_MODULE,
1804 		.cra_init		= s5p_hash_cra_init,
1805 		.cra_exit		= s5p_hash_cra_exit,
1806 	}
1807 }
1808 
1809 };
1810 
1811 static void s5p_set_aes(struct s5p_aes_dev *dev,
1812 			const u8 *key, const u8 *iv, const u8 *ctr,
1813 			unsigned int keylen)
1814 {
1815 	void __iomem *keystart;
1816 
1817 	if (iv)
1818 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1819 			    AES_BLOCK_SIZE);
1820 
1821 	if (ctr)
1822 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1823 			    AES_BLOCK_SIZE);
1824 
1825 	if (keylen == AES_KEYSIZE_256)
1826 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1827 	else if (keylen == AES_KEYSIZE_192)
1828 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1829 	else
1830 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1831 
1832 	memcpy_toio(keystart, key, keylen);
1833 }
1834 
1835 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1836 {
1837 	while (sg) {
1838 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1839 			return false;
1840 		sg = sg_next(sg);
1841 	}
1842 
1843 	return true;
1844 }
1845 
1846 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1847 				struct skcipher_request *req)
1848 {
1849 	struct scatterlist *sg;
1850 	int err;
1851 
1852 	dev->sg_src_cpy = NULL;
1853 	sg = req->src;
1854 	if (!s5p_is_sg_aligned(sg)) {
1855 		dev_dbg(dev->dev,
1856 			"At least one unaligned source scatter list, making a copy\n");
1857 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1858 		if (err)
1859 			return err;
1860 
1861 		sg = dev->sg_src_cpy;
1862 	}
1863 
1864 	err = s5p_set_indata(dev, sg);
1865 	if (err) {
1866 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1867 		return err;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1874 				 struct skcipher_request *req)
1875 {
1876 	struct scatterlist *sg;
1877 	int err;
1878 
1879 	dev->sg_dst_cpy = NULL;
1880 	sg = req->dst;
1881 	if (!s5p_is_sg_aligned(sg)) {
1882 		dev_dbg(dev->dev,
1883 			"At least one unaligned dest scatter list, making a copy\n");
1884 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1885 		if (err)
1886 			return err;
1887 
1888 		sg = dev->sg_dst_cpy;
1889 	}
1890 
1891 	err = s5p_set_outdata(dev, sg);
1892 	if (err) {
1893 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1894 		return err;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1901 {
1902 	struct skcipher_request *req = dev->req;
1903 	u32 aes_control;
1904 	unsigned long flags;
1905 	int err;
1906 	u8 *iv, *ctr;
1907 
1908 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1909 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1910 	if (mode & FLAGS_AES_DECRYPT)
1911 		aes_control |= SSS_AES_MODE_DECRYPT;
1912 
1913 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1914 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1915 		iv = req->iv;
1916 		ctr = NULL;
1917 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1918 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1919 		iv = NULL;
1920 		ctr = req->iv;
1921 	} else {
1922 		iv = NULL; /* AES_ECB */
1923 		ctr = NULL;
1924 	}
1925 
1926 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1927 		aes_control |= SSS_AES_KEY_SIZE_192;
1928 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1929 		aes_control |= SSS_AES_KEY_SIZE_256;
1930 
1931 	aes_control |= SSS_AES_FIFO_MODE;
1932 
1933 	/* as a variant it is possible to use byte swapping on DMA side */
1934 	aes_control |= SSS_AES_BYTESWAP_DI
1935 		    |  SSS_AES_BYTESWAP_DO
1936 		    |  SSS_AES_BYTESWAP_IV
1937 		    |  SSS_AES_BYTESWAP_KEY
1938 		    |  SSS_AES_BYTESWAP_CNT;
1939 
1940 	spin_lock_irqsave(&dev->lock, flags);
1941 
1942 	SSS_WRITE(dev, FCINTENCLR,
1943 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1944 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1945 
1946 	err = s5p_set_indata_start(dev, req);
1947 	if (err)
1948 		goto indata_error;
1949 
1950 	err = s5p_set_outdata_start(dev, req);
1951 	if (err)
1952 		goto outdata_error;
1953 
1954 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1955 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1956 
1957 	s5p_set_dma_indata(dev,  dev->sg_src);
1958 	s5p_set_dma_outdata(dev, dev->sg_dst);
1959 
1960 	SSS_WRITE(dev, FCINTENSET,
1961 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1962 
1963 	spin_unlock_irqrestore(&dev->lock, flags);
1964 
1965 	return;
1966 
1967 outdata_error:
1968 	s5p_unset_indata(dev);
1969 
1970 indata_error:
1971 	s5p_sg_done(dev);
1972 	dev->busy = false;
1973 	spin_unlock_irqrestore(&dev->lock, flags);
1974 	s5p_aes_complete(req, err);
1975 }
1976 
1977 static void s5p_tasklet_cb(unsigned long data)
1978 {
1979 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1980 	struct crypto_async_request *async_req, *backlog;
1981 	struct s5p_aes_reqctx *reqctx;
1982 	unsigned long flags;
1983 
1984 	spin_lock_irqsave(&dev->lock, flags);
1985 	backlog   = crypto_get_backlog(&dev->queue);
1986 	async_req = crypto_dequeue_request(&dev->queue);
1987 
1988 	if (!async_req) {
1989 		dev->busy = false;
1990 		spin_unlock_irqrestore(&dev->lock, flags);
1991 		return;
1992 	}
1993 	spin_unlock_irqrestore(&dev->lock, flags);
1994 
1995 	if (backlog)
1996 		backlog->complete(backlog, -EINPROGRESS);
1997 
1998 	dev->req = skcipher_request_cast(async_req);
1999 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2000 	reqctx   = skcipher_request_ctx(dev->req);
2001 
2002 	s5p_aes_crypt_start(dev, reqctx->mode);
2003 }
2004 
2005 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2006 			      struct skcipher_request *req)
2007 {
2008 	unsigned long flags;
2009 	int err;
2010 
2011 	spin_lock_irqsave(&dev->lock, flags);
2012 	err = crypto_enqueue_request(&dev->queue, &req->base);
2013 	if (dev->busy) {
2014 		spin_unlock_irqrestore(&dev->lock, flags);
2015 		return err;
2016 	}
2017 	dev->busy = true;
2018 
2019 	spin_unlock_irqrestore(&dev->lock, flags);
2020 
2021 	tasklet_schedule(&dev->tasklet);
2022 
2023 	return err;
2024 }
2025 
2026 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2027 {
2028 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2029 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2030 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2031 	struct s5p_aes_dev *dev = ctx->dev;
2032 
2033 	if (!req->cryptlen)
2034 		return 0;
2035 
2036 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2037 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2038 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2039 		return -EINVAL;
2040 	}
2041 
2042 	reqctx->mode = mode;
2043 
2044 	return s5p_aes_handle_req(dev, req);
2045 }
2046 
2047 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2048 			  const u8 *key, unsigned int keylen)
2049 {
2050 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2051 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2052 
2053 	if (keylen != AES_KEYSIZE_128 &&
2054 	    keylen != AES_KEYSIZE_192 &&
2055 	    keylen != AES_KEYSIZE_256)
2056 		return -EINVAL;
2057 
2058 	memcpy(ctx->aes_key, key, keylen);
2059 	ctx->keylen = keylen;
2060 
2061 	return 0;
2062 }
2063 
2064 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2065 {
2066 	return s5p_aes_crypt(req, 0);
2067 }
2068 
2069 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2070 {
2071 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2072 }
2073 
2074 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2075 {
2076 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2077 }
2078 
2079 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2080 {
2081 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2082 }
2083 
2084 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2085 {
2086 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2087 }
2088 
2089 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2090 {
2091 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2092 
2093 	ctx->dev = s5p_dev;
2094 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2095 
2096 	return 0;
2097 }
2098 
2099 static struct skcipher_alg algs[] = {
2100 	{
2101 		.base.cra_name		= "ecb(aes)",
2102 		.base.cra_driver_name	= "ecb-aes-s5p",
2103 		.base.cra_priority	= 100,
2104 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2105 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2106 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2107 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2108 		.base.cra_alignmask	= 0x0f,
2109 		.base.cra_module	= THIS_MODULE,
2110 
2111 		.min_keysize		= AES_MIN_KEY_SIZE,
2112 		.max_keysize		= AES_MAX_KEY_SIZE,
2113 		.setkey			= s5p_aes_setkey,
2114 		.encrypt		= s5p_aes_ecb_encrypt,
2115 		.decrypt		= s5p_aes_ecb_decrypt,
2116 		.init			= s5p_aes_init_tfm,
2117 	},
2118 	{
2119 		.base.cra_name		= "cbc(aes)",
2120 		.base.cra_driver_name	= "cbc-aes-s5p",
2121 		.base.cra_priority	= 100,
2122 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2123 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2124 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2125 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2126 		.base.cra_alignmask	= 0x0f,
2127 		.base.cra_module	= THIS_MODULE,
2128 
2129 		.min_keysize		= AES_MIN_KEY_SIZE,
2130 		.max_keysize		= AES_MAX_KEY_SIZE,
2131 		.ivsize			= AES_BLOCK_SIZE,
2132 		.setkey			= s5p_aes_setkey,
2133 		.encrypt		= s5p_aes_cbc_encrypt,
2134 		.decrypt		= s5p_aes_cbc_decrypt,
2135 		.init			= s5p_aes_init_tfm,
2136 	},
2137 	{
2138 		.base.cra_name		= "ctr(aes)",
2139 		.base.cra_driver_name	= "ctr-aes-s5p",
2140 		.base.cra_priority	= 100,
2141 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2142 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2143 		.base.cra_blocksize	= 1,
2144 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2145 		.base.cra_alignmask	= 0x0f,
2146 		.base.cra_module	= THIS_MODULE,
2147 
2148 		.min_keysize		= AES_MIN_KEY_SIZE,
2149 		.max_keysize		= AES_MAX_KEY_SIZE,
2150 		.ivsize			= AES_BLOCK_SIZE,
2151 		.setkey			= s5p_aes_setkey,
2152 		.encrypt		= s5p_aes_ctr_crypt,
2153 		.decrypt		= s5p_aes_ctr_crypt,
2154 		.init			= s5p_aes_init_tfm,
2155 	},
2156 };
2157 
2158 static int s5p_aes_probe(struct platform_device *pdev)
2159 {
2160 	struct device *dev = &pdev->dev;
2161 	int i, j, err = -ENODEV;
2162 	const struct samsung_aes_variant *variant;
2163 	struct s5p_aes_dev *pdata;
2164 	struct resource *res;
2165 	unsigned int hash_i;
2166 
2167 	if (s5p_dev)
2168 		return -EEXIST;
2169 
2170 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2171 	if (!pdata)
2172 		return -ENOMEM;
2173 
2174 	variant = find_s5p_sss_version(pdev);
2175 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2176 
2177 	/*
2178 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2179 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2180 	 * is enabled in config. We need larger size for HASH registers in
2181 	 * secss, current describe only AES/DES
2182 	 */
2183 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2184 		if (variant == &exynos_aes_data) {
2185 			res->end += 0x300;
2186 			pdata->use_hash = true;
2187 		}
2188 	}
2189 
2190 	pdata->res = res;
2191 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2192 	if (IS_ERR(pdata->ioaddr)) {
2193 		if (!pdata->use_hash)
2194 			return PTR_ERR(pdata->ioaddr);
2195 		/* try AES without HASH */
2196 		res->end -= 0x300;
2197 		pdata->use_hash = false;
2198 		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2199 		if (IS_ERR(pdata->ioaddr))
2200 			return PTR_ERR(pdata->ioaddr);
2201 	}
2202 
2203 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2204 	if (IS_ERR(pdata->clk))
2205 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2206 				     "failed to find secss clock %s\n",
2207 				     variant->clk_names[0]);
2208 
2209 	err = clk_prepare_enable(pdata->clk);
2210 	if (err < 0) {
2211 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2212 			variant->clk_names[0], err);
2213 		return err;
2214 	}
2215 
2216 	if (variant->clk_names[1]) {
2217 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2218 		if (IS_ERR(pdata->pclk)) {
2219 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2220 					    "failed to find clock %s\n",
2221 					    variant->clk_names[1]);
2222 			goto err_clk;
2223 		}
2224 
2225 		err = clk_prepare_enable(pdata->pclk);
2226 		if (err < 0) {
2227 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2228 				variant->clk_names[0], err);
2229 			goto err_clk;
2230 		}
2231 	} else {
2232 		pdata->pclk = NULL;
2233 	}
2234 
2235 	spin_lock_init(&pdata->lock);
2236 	spin_lock_init(&pdata->hash_lock);
2237 
2238 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2239 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2240 
2241 	pdata->irq_fc = platform_get_irq(pdev, 0);
2242 	if (pdata->irq_fc < 0) {
2243 		err = pdata->irq_fc;
2244 		dev_warn(dev, "feed control interrupt is not available.\n");
2245 		goto err_irq;
2246 	}
2247 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2248 					s5p_aes_interrupt, IRQF_ONESHOT,
2249 					pdev->name, pdev);
2250 	if (err < 0) {
2251 		dev_warn(dev, "feed control interrupt is not available.\n");
2252 		goto err_irq;
2253 	}
2254 
2255 	pdata->busy = false;
2256 	pdata->dev = dev;
2257 	platform_set_drvdata(pdev, pdata);
2258 	s5p_dev = pdata;
2259 
2260 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2261 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2262 
2263 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2264 		err = crypto_register_skcipher(&algs[i]);
2265 		if (err)
2266 			goto err_algs;
2267 	}
2268 
2269 	if (pdata->use_hash) {
2270 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2271 			     (unsigned long)pdata);
2272 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2273 
2274 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2275 		     hash_i++) {
2276 			struct ahash_alg *alg;
2277 
2278 			alg = &algs_sha1_md5_sha256[hash_i];
2279 			err = crypto_register_ahash(alg);
2280 			if (err) {
2281 				dev_err(dev, "can't register '%s': %d\n",
2282 					alg->halg.base.cra_driver_name, err);
2283 				goto err_hash;
2284 			}
2285 		}
2286 	}
2287 
2288 	dev_info(dev, "s5p-sss driver registered\n");
2289 
2290 	return 0;
2291 
2292 err_hash:
2293 	for (j = hash_i - 1; j >= 0; j--)
2294 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2295 
2296 	tasklet_kill(&pdata->hash_tasklet);
2297 	res->end -= 0x300;
2298 
2299 err_algs:
2300 	if (i < ARRAY_SIZE(algs))
2301 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2302 			err);
2303 
2304 	for (j = 0; j < i; j++)
2305 		crypto_unregister_skcipher(&algs[j]);
2306 
2307 	tasklet_kill(&pdata->tasklet);
2308 
2309 err_irq:
2310 	clk_disable_unprepare(pdata->pclk);
2311 
2312 err_clk:
2313 	clk_disable_unprepare(pdata->clk);
2314 	s5p_dev = NULL;
2315 
2316 	return err;
2317 }
2318 
2319 static int s5p_aes_remove(struct platform_device *pdev)
2320 {
2321 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2322 	int i;
2323 
2324 	if (!pdata)
2325 		return -ENODEV;
2326 
2327 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2328 		crypto_unregister_skcipher(&algs[i]);
2329 
2330 	tasklet_kill(&pdata->tasklet);
2331 	if (pdata->use_hash) {
2332 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2333 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2334 
2335 		pdata->res->end -= 0x300;
2336 		tasklet_kill(&pdata->hash_tasklet);
2337 		pdata->use_hash = false;
2338 	}
2339 
2340 	clk_disable_unprepare(pdata->pclk);
2341 
2342 	clk_disable_unprepare(pdata->clk);
2343 	s5p_dev = NULL;
2344 
2345 	return 0;
2346 }
2347 
2348 static struct platform_driver s5p_aes_crypto = {
2349 	.probe	= s5p_aes_probe,
2350 	.remove	= s5p_aes_remove,
2351 	.driver	= {
2352 		.name	= "s5p-secss",
2353 		.of_match_table = s5p_sss_dt_match,
2354 	},
2355 };
2356 
2357 module_platform_driver(s5p_aes_crypto);
2358 
2359 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2360 MODULE_LICENSE("GPL v2");
2361 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2362 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2363