xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36 
37 #define _SBF(s, v)			((v) << (s))
38 
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT		0x0000
41 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
47 
48 #define SSS_REG_FCINTENSET		0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
55 
56 #define SSS_REG_FCINTENCLR		0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
63 
64 #define SSS_REG_FCINTPEND		0x000C
65 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
71 
72 #define SSS_REG_FCFIFOSTAT		0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
81 
82 #define SSS_REG_FCFIFOCTRL		0x0014
83 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
84 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
87 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
88 
89 #define SSS_REG_FCBRDMAS		0x0020
90 #define SSS_REG_FCBRDMAL		0x0024
91 #define SSS_REG_FCBRDMAC		0x0028
92 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
93 #define SSS_FCBRDMAC_FLUSH		BIT(0)
94 
95 #define SSS_REG_FCBTDMAS		0x0030
96 #define SSS_REG_FCBTDMAL		0x0034
97 #define SSS_REG_FCBTDMAC		0x0038
98 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
99 #define SSS_FCBTDMAC_FLUSH		BIT(0)
100 
101 #define SSS_REG_FCHRDMAS		0x0040
102 #define SSS_REG_FCHRDMAL		0x0044
103 #define SSS_REG_FCHRDMAC		0x0048
104 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
105 #define SSS_FCHRDMAC_FLUSH		BIT(0)
106 
107 #define SSS_REG_FCPKDMAS		0x0050
108 #define SSS_REG_FCPKDMAL		0x0054
109 #define SSS_REG_FCPKDMAC		0x0058
110 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
111 #define SSS_FCPKDMAC_DESCEND		BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
113 #define SSS_FCPKDMAC_FLUSH		BIT(0)
114 
115 #define SSS_REG_FCPKDMAO		0x005C
116 
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL		0x00
119 #define SSS_AES_BYTESWAP_DI		BIT(11)
120 #define SSS_AES_BYTESWAP_DO		BIT(10)
121 #define SSS_AES_BYTESWAP_IV		BIT(9)
122 #define SSS_AES_BYTESWAP_CNT		BIT(8)
123 #define SSS_AES_BYTESWAP_KEY		BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
125 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE		BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT		BIT(0)
133 
134 #define SSS_REG_AES_STATUS		0x04
135 #define SSS_AES_BUSY			BIT(2)
136 #define SSS_AES_INPUT_READY		BIT(1)
137 #define SSS_AES_OUTPUT_READY		BIT(0)
138 
139 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
144 
145 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
148 
149 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
151 						SSS_AES_REG(dev, reg))
152 
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT		BIT(0)
155 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
156 #define FLAGS_AES_CBC			_SBF(1, 0x01)
157 #define FLAGS_AES_CTR			_SBF(1, 0x02)
158 
159 #define AES_KEY_LEN			16
160 #define CRYPTO_QUEUE_LEN		1
161 
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL		0x00
164 
165 #define SSS_HASH_USER_IV_EN		BIT(5)
166 #define SSS_HASH_INIT_BIT		BIT(4)
167 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
170 
171 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
172 
173 #define SSS_REG_HASH_CTRL_PAUSE		0x04
174 
175 #define SSS_HASH_PAUSE			BIT(0)
176 
177 #define SSS_REG_HASH_CTRL_FIFO		0x08
178 
179 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU          0
181 
182 #define SSS_REG_HASH_CTRL_SWAP		0x0C
183 
184 #define SSS_HASH_BYTESWAP_DI		BIT(3)
185 #define SSS_HASH_BYTESWAP_DO		BIT(2)
186 #define SSS_HASH_BYTESWAP_IV		BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
188 
189 #define SSS_REG_HASH_STATUS		0x10
190 
191 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
194 
195 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
197 
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
200 
201 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
203 
204 #define HASH_BLOCK_SIZE			64
205 #define HASH_REG_SIZEOF			4
206 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209 
210 /*
211  * HASH bit numbers, used by device, setting in dev->hash_flags with
212  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215  */
216 #define HASH_FLAGS_BUSY		0
217 #define HASH_FLAGS_FINAL	1
218 #define HASH_FLAGS_DMA_ACTIVE	2
219 #define HASH_FLAGS_OUTPUT_READY	3
220 #define HASH_FLAGS_DMA_READY	4
221 #define HASH_FLAGS_SGS_COPIED	5
222 #define HASH_FLAGS_SGS_ALLOCED	6
223 
224 /* HASH HW constants */
225 #define BUFLEN			HASH_BLOCK_SIZE
226 
227 #define SSS_HASH_DMA_LEN_ALIGN	8
228 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
229 
230 #define SSS_HASH_QUEUE_LENGTH	10
231 
232 /**
233  * struct samsung_aes_variant - platform specific SSS driver data
234  * @aes_offset: AES register offset from SSS module's base.
235  * @hash_offset: HASH register offset from SSS module's base.
236  * @clk_names: names of clocks needed to run SSS IP
237  *
238  * Specifies platform specific configuration of SSS module.
239  * Note: A structure for driver specific platform data is used for future
240  * expansion of its usage.
241  */
242 struct samsung_aes_variant {
243 	unsigned int			aes_offset;
244 	unsigned int			hash_offset;
245 	const char			*clk_names[2];
246 };
247 
248 struct s5p_aes_reqctx {
249 	unsigned long			mode;
250 };
251 
252 struct s5p_aes_ctx {
253 	struct s5p_aes_dev		*dev;
254 
255 	u8				aes_key[AES_MAX_KEY_SIZE];
256 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
257 	int				keylen;
258 };
259 
260 /**
261  * struct s5p_aes_dev - Crypto device state container
262  * @dev:	Associated device
263  * @clk:	Clock for accessing hardware
264  * @pclk:	APB bus clock necessary to access the hardware
265  * @ioaddr:	Mapped IO memory region
266  * @aes_ioaddr:	Per-varian offset for AES block IO memory
267  * @irq_fc:	Feed control interrupt line
268  * @req:	Crypto request currently handled by the device
269  * @ctx:	Configuration for currently handled crypto request
270  * @sg_src:	Scatter list with source data for currently handled block
271  *		in device.  This is DMA-mapped into device.
272  * @sg_dst:	Scatter list with destination data for currently handled block
273  *		in device. This is DMA-mapped into device.
274  * @sg_src_cpy:	In case of unaligned access, copied scatter list
275  *		with source data.
276  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
277  *		with destination data.
278  * @tasklet:	New request scheduling jib
279  * @queue:	Crypto queue
280  * @busy:	Indicates whether the device is currently handling some request
281  *		thus it uses some of the fields from this state, like:
282  *		req, ctx, sg_src/dst (and copies).  This essentially
283  *		protects against concurrent access to these fields.
284  * @lock:	Lock for protecting both access to device hardware registers
285  *		and fields related to current request (including the busy field).
286  * @res:	Resources for hash.
287  * @io_hash_base: Per-variant offset for HASH block IO memory.
288  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
289  *		variable.
290  * @hash_flags:	Flags for current HASH op.
291  * @hash_queue:	Async hash queue.
292  * @hash_tasklet: New HASH request scheduling job.
293  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
294  * @hash_req:	Current request sending to SSS HASH block.
295  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296  * @hash_sg_cnt: Counter for hash_sg_iter.
297  *
298  * @use_hash:	true if HASH algs enabled
299  */
300 struct s5p_aes_dev {
301 	struct device			*dev;
302 	struct clk			*clk;
303 	struct clk			*pclk;
304 	void __iomem			*ioaddr;
305 	void __iomem			*aes_ioaddr;
306 	int				irq_fc;
307 
308 	struct skcipher_request		*req;
309 	struct s5p_aes_ctx		*ctx;
310 	struct scatterlist		*sg_src;
311 	struct scatterlist		*sg_dst;
312 
313 	struct scatterlist		*sg_src_cpy;
314 	struct scatterlist		*sg_dst_cpy;
315 
316 	struct tasklet_struct		tasklet;
317 	struct crypto_queue		queue;
318 	bool				busy;
319 	spinlock_t			lock;
320 
321 	struct resource			*res;
322 	void __iomem			*io_hash_base;
323 
324 	spinlock_t			hash_lock; /* protect hash_ vars */
325 	unsigned long			hash_flags;
326 	struct crypto_queue		hash_queue;
327 	struct tasklet_struct		hash_tasklet;
328 
329 	u8				xmit_buf[BUFLEN];
330 	struct ahash_request		*hash_req;
331 	struct scatterlist		*hash_sg_iter;
332 	unsigned int			hash_sg_cnt;
333 
334 	bool				use_hash;
335 };
336 
337 /**
338  * struct s5p_hash_reqctx - HASH request context
339  * @dd:		Associated device
340  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
341  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
342  * @digest:	Digest message or IV for partial result
343  * @nregs:	Number of HW registers for digest or IV read/write
344  * @engine:	Bits for selecting type of HASH in SSS block
345  * @sg:		sg for DMA transfer
346  * @sg_len:	Length of sg for DMA transfer
347  * @sgl:	sg for joining buffer and req->src scatterlist
348  * @skip:	Skip offset in req->src for current op
349  * @total:	Total number of bytes for current request
350  * @finup:	Keep state for finup or final.
351  * @error:	Keep track of error.
352  * @bufcnt:	Number of bytes holded in buffer[]
353  * @buffer:	For byte(s) from end of req->src in UPDATE op
354  */
355 struct s5p_hash_reqctx {
356 	struct s5p_aes_dev	*dd;
357 	bool			op_update;
358 
359 	u64			digcnt;
360 	u8			digest[SHA256_DIGEST_SIZE];
361 
362 	unsigned int		nregs; /* digest_size / sizeof(reg) */
363 	u32			engine;
364 
365 	struct scatterlist	*sg;
366 	unsigned int		sg_len;
367 	struct scatterlist	sgl[2];
368 	unsigned int		skip;
369 	unsigned int		total;
370 	bool			finup;
371 	bool			error;
372 
373 	u32			bufcnt;
374 	u8			buffer[];
375 };
376 
377 /**
378  * struct s5p_hash_ctx - HASH transformation context
379  * @dd:		Associated device
380  * @flags:	Bits for algorithm HASH.
381  * @fallback:	Software transformation for zero message or size < BUFLEN.
382  */
383 struct s5p_hash_ctx {
384 	struct s5p_aes_dev	*dd;
385 	unsigned long		flags;
386 	struct crypto_shash	*fallback;
387 };
388 
389 static const struct samsung_aes_variant s5p_aes_data = {
390 	.aes_offset	= 0x4000,
391 	.hash_offset	= 0x6000,
392 	.clk_names	= { "secss", },
393 };
394 
395 static const struct samsung_aes_variant exynos_aes_data = {
396 	.aes_offset	= 0x200,
397 	.hash_offset	= 0x400,
398 	.clk_names	= { "secss", },
399 };
400 
401 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
402 	.aes_offset	= 0x400,
403 	.hash_offset	= 0x800,
404 	.clk_names	= { "pclk", "aclk", },
405 };
406 
407 static const struct of_device_id s5p_sss_dt_match[] = {
408 	{
409 		.compatible = "samsung,s5pv210-secss",
410 		.data = &s5p_aes_data,
411 	},
412 	{
413 		.compatible = "samsung,exynos4210-secss",
414 		.data = &exynos_aes_data,
415 	},
416 	{
417 		.compatible = "samsung,exynos5433-slim-sss",
418 		.data = &exynos5433_slim_aes_data,
419 	},
420 	{ },
421 };
422 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
423 
424 static inline const struct samsung_aes_variant *find_s5p_sss_version
425 				   (const struct platform_device *pdev)
426 {
427 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
428 		const struct of_device_id *match;
429 
430 		match = of_match_node(s5p_sss_dt_match,
431 					pdev->dev.of_node);
432 		return (const struct samsung_aes_variant *)match->data;
433 	}
434 	return (const struct samsung_aes_variant *)
435 			platform_get_device_id(pdev)->driver_data;
436 }
437 
438 static struct s5p_aes_dev *s5p_dev;
439 
440 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
441 			       const struct scatterlist *sg)
442 {
443 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
444 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
445 }
446 
447 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
448 				const struct scatterlist *sg)
449 {
450 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
451 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
452 }
453 
454 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
455 {
456 	int len;
457 
458 	if (!*sg)
459 		return;
460 
461 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
462 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
463 
464 	kfree(*sg);
465 	*sg = NULL;
466 }
467 
468 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
469 			    unsigned int nbytes, int out)
470 {
471 	struct scatter_walk walk;
472 
473 	if (!nbytes)
474 		return;
475 
476 	scatterwalk_start(&walk, sg);
477 	scatterwalk_copychunks(buf, &walk, nbytes, out);
478 	scatterwalk_done(&walk, out, 0);
479 }
480 
481 static void s5p_sg_done(struct s5p_aes_dev *dev)
482 {
483 	struct skcipher_request *req = dev->req;
484 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
485 
486 	if (dev->sg_dst_cpy) {
487 		dev_dbg(dev->dev,
488 			"Copying %d bytes of output data back to original place\n",
489 			dev->req->cryptlen);
490 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
491 				dev->req->cryptlen, 1);
492 	}
493 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
494 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
495 	if (reqctx->mode & FLAGS_AES_CBC)
496 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
497 
498 	else if (reqctx->mode & FLAGS_AES_CTR)
499 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
500 }
501 
502 /* Calls the completion. Cannot be called with dev->lock hold. */
503 static void s5p_aes_complete(struct skcipher_request *req, int err)
504 {
505 	req->base.complete(&req->base, err);
506 }
507 
508 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
509 {
510 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
511 }
512 
513 static void s5p_unset_indata(struct s5p_aes_dev *dev)
514 {
515 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
516 }
517 
518 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
519 			   struct scatterlist **dst)
520 {
521 	void *pages;
522 	int len;
523 
524 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
525 	if (!*dst)
526 		return -ENOMEM;
527 
528 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
529 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
530 	if (!pages) {
531 		kfree(*dst);
532 		*dst = NULL;
533 		return -ENOMEM;
534 	}
535 
536 	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
537 
538 	sg_init_table(*dst, 1);
539 	sg_set_buf(*dst, pages, len);
540 
541 	return 0;
542 }
543 
544 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
545 {
546 	if (!sg->length)
547 		return -EINVAL;
548 
549 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
550 		return -ENOMEM;
551 
552 	dev->sg_dst = sg;
553 
554 	return 0;
555 }
556 
557 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
558 {
559 	if (!sg->length)
560 		return -EINVAL;
561 
562 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
563 		return -ENOMEM;
564 
565 	dev->sg_src = sg;
566 
567 	return 0;
568 }
569 
570 /*
571  * Returns -ERRNO on error (mapping of new data failed).
572  * On success returns:
573  *  - 0 if there is no more data,
574  *  - 1 if new transmitting (output) data is ready and its address+length
575  *     have to be written to device (by calling s5p_set_dma_outdata()).
576  */
577 static int s5p_aes_tx(struct s5p_aes_dev *dev)
578 {
579 	int ret = 0;
580 
581 	s5p_unset_outdata(dev);
582 
583 	if (!sg_is_last(dev->sg_dst)) {
584 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
585 		if (!ret)
586 			ret = 1;
587 	}
588 
589 	return ret;
590 }
591 
592 /*
593  * Returns -ERRNO on error (mapping of new data failed).
594  * On success returns:
595  *  - 0 if there is no more data,
596  *  - 1 if new receiving (input) data is ready and its address+length
597  *     have to be written to device (by calling s5p_set_dma_indata()).
598  */
599 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
600 {
601 	int ret = 0;
602 
603 	s5p_unset_indata(dev);
604 
605 	if (!sg_is_last(dev->sg_src)) {
606 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
607 		if (!ret)
608 			ret = 1;
609 	}
610 
611 	return ret;
612 }
613 
614 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
615 {
616 	return __raw_readl(dd->io_hash_base + offset);
617 }
618 
619 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
620 				  u32 offset, u32 value)
621 {
622 	__raw_writel(value, dd->io_hash_base + offset);
623 }
624 
625 /**
626  * s5p_set_dma_hashdata() - start DMA with sg
627  * @dev:	device
628  * @sg:		scatterlist ready to DMA transmit
629  */
630 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
631 				 const struct scatterlist *sg)
632 {
633 	dev->hash_sg_cnt--;
634 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
635 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
636 }
637 
638 /**
639  * s5p_hash_rx() - get next hash_sg_iter
640  * @dev:	device
641  *
642  * Return:
643  * 2	if there is no more data and it is UPDATE op
644  * 1	if new receiving (input) data is ready and can be written to device
645  * 0	if there is no more data and it is FINAL op
646  */
647 static int s5p_hash_rx(struct s5p_aes_dev *dev)
648 {
649 	if (dev->hash_sg_cnt > 0) {
650 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
651 		return 1;
652 	}
653 
654 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
655 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
656 		return 0;
657 
658 	return 2;
659 }
660 
661 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
662 {
663 	struct platform_device *pdev = dev_id;
664 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
665 	struct skcipher_request *req;
666 	int err_dma_tx = 0;
667 	int err_dma_rx = 0;
668 	int err_dma_hx = 0;
669 	bool tx_end = false;
670 	bool hx_end = false;
671 	unsigned long flags;
672 	u32 status, st_bits;
673 	int err;
674 
675 	spin_lock_irqsave(&dev->lock, flags);
676 
677 	/*
678 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
679 	 * reach end), then map next scatterlist entry.
680 	 * In case of such mapping error, s5p_aes_complete() should be called.
681 	 *
682 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
683 	 * and schedule new tasklet.
684 	 *
685 	 * Handle hx interrupt. If there is still data map next entry.
686 	 */
687 	status = SSS_READ(dev, FCINTSTAT);
688 	if (status & SSS_FCINTSTAT_BRDMAINT)
689 		err_dma_rx = s5p_aes_rx(dev);
690 
691 	if (status & SSS_FCINTSTAT_BTDMAINT) {
692 		if (sg_is_last(dev->sg_dst))
693 			tx_end = true;
694 		err_dma_tx = s5p_aes_tx(dev);
695 	}
696 
697 	if (status & SSS_FCINTSTAT_HRDMAINT)
698 		err_dma_hx = s5p_hash_rx(dev);
699 
700 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
701 				SSS_FCINTSTAT_HRDMAINT);
702 	/* clear DMA bits */
703 	SSS_WRITE(dev, FCINTPEND, st_bits);
704 
705 	/* clear HASH irq bits */
706 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
707 		/* cannot have both HPART and HDONE */
708 		if (status & SSS_FCINTSTAT_HPARTINT)
709 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
710 
711 		if (status & SSS_FCINTSTAT_HDONEINT)
712 			st_bits = SSS_HASH_STATUS_MSG_DONE;
713 
714 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
715 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
716 		hx_end = true;
717 		/* when DONE or PART, do not handle HASH DMA */
718 		err_dma_hx = 0;
719 	}
720 
721 	if (err_dma_rx < 0) {
722 		err = err_dma_rx;
723 		goto error;
724 	}
725 	if (err_dma_tx < 0) {
726 		err = err_dma_tx;
727 		goto error;
728 	}
729 
730 	if (tx_end) {
731 		s5p_sg_done(dev);
732 		if (err_dma_hx == 1)
733 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
734 
735 		spin_unlock_irqrestore(&dev->lock, flags);
736 
737 		s5p_aes_complete(dev->req, 0);
738 		/* Device is still busy */
739 		tasklet_schedule(&dev->tasklet);
740 	} else {
741 		/*
742 		 * Writing length of DMA block (either receiving or
743 		 * transmitting) will start the operation immediately, so this
744 		 * should be done at the end (even after clearing pending
745 		 * interrupts to not miss the interrupt).
746 		 */
747 		if (err_dma_tx == 1)
748 			s5p_set_dma_outdata(dev, dev->sg_dst);
749 		if (err_dma_rx == 1)
750 			s5p_set_dma_indata(dev, dev->sg_src);
751 		if (err_dma_hx == 1)
752 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
753 
754 		spin_unlock_irqrestore(&dev->lock, flags);
755 	}
756 
757 	goto hash_irq_end;
758 
759 error:
760 	s5p_sg_done(dev);
761 	dev->busy = false;
762 	req = dev->req;
763 	if (err_dma_hx == 1)
764 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
765 
766 	spin_unlock_irqrestore(&dev->lock, flags);
767 	s5p_aes_complete(req, err);
768 
769 hash_irq_end:
770 	/*
771 	 * Note about else if:
772 	 *   when hash_sg_iter reaches end and its UPDATE op,
773 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
774 	 */
775 	if (hx_end)
776 		tasklet_schedule(&dev->hash_tasklet);
777 	else if (err_dma_hx == 2)
778 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
779 			       SSS_HASH_PAUSE);
780 
781 	return IRQ_HANDLED;
782 }
783 
784 /**
785  * s5p_hash_read_msg() - read message or IV from HW
786  * @req:	AHASH request
787  */
788 static void s5p_hash_read_msg(struct ahash_request *req)
789 {
790 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
791 	struct s5p_aes_dev *dd = ctx->dd;
792 	u32 *hash = (u32 *)ctx->digest;
793 	unsigned int i;
794 
795 	for (i = 0; i < ctx->nregs; i++)
796 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
797 }
798 
799 /**
800  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
801  * @dd:		device
802  * @ctx:	request context
803  */
804 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
805 				  const struct s5p_hash_reqctx *ctx)
806 {
807 	const u32 *hash = (const u32 *)ctx->digest;
808 	unsigned int i;
809 
810 	for (i = 0; i < ctx->nregs; i++)
811 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
812 }
813 
814 /**
815  * s5p_hash_write_iv() - write IV for next partial/finup op.
816  * @req:	AHASH request
817  */
818 static void s5p_hash_write_iv(struct ahash_request *req)
819 {
820 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
821 
822 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
823 }
824 
825 /**
826  * s5p_hash_copy_result() - copy digest into req->result
827  * @req:	AHASH request
828  */
829 static void s5p_hash_copy_result(struct ahash_request *req)
830 {
831 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
832 
833 	if (!req->result)
834 		return;
835 
836 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
837 }
838 
839 /**
840  * s5p_hash_dma_flush() - flush HASH DMA
841  * @dev:	secss device
842  */
843 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
844 {
845 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
846 }
847 
848 /**
849  * s5p_hash_dma_enable() - enable DMA mode for HASH
850  * @dev:	secss device
851  *
852  * enable DMA mode for HASH
853  */
854 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
855 {
856 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
857 }
858 
859 /**
860  * s5p_hash_irq_disable() - disable irq HASH signals
861  * @dev:	secss device
862  * @flags:	bitfield with irq's to be disabled
863  */
864 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
865 {
866 	SSS_WRITE(dev, FCINTENCLR, flags);
867 }
868 
869 /**
870  * s5p_hash_irq_enable() - enable irq signals
871  * @dev:	secss device
872  * @flags:	bitfield with irq's to be enabled
873  */
874 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
875 {
876 	SSS_WRITE(dev, FCINTENSET, flags);
877 }
878 
879 /**
880  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
881  * @dev:	secss device
882  * @hashflow:	HASH stream flow with/without crypto AES/DES
883  */
884 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
885 {
886 	unsigned long flags;
887 	u32 flow;
888 
889 	spin_lock_irqsave(&dev->lock, flags);
890 
891 	flow = SSS_READ(dev, FCFIFOCTRL);
892 	flow &= ~SSS_HASHIN_MASK;
893 	flow |= hashflow;
894 	SSS_WRITE(dev, FCFIFOCTRL, flow);
895 
896 	spin_unlock_irqrestore(&dev->lock, flags);
897 }
898 
899 /**
900  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
901  * @dev:	secss device
902  * @hashflow:	HASH stream flow with/without AES/DES
903  *
904  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
905  * enable HASH irq's HRDMA, HDONE, HPART
906  */
907 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
908 {
909 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
910 			     SSS_FCINTENCLR_HDONEINTENCLR |
911 			     SSS_FCINTENCLR_HPARTINTENCLR);
912 	s5p_hash_dma_flush(dev);
913 
914 	s5p_hash_dma_enable(dev);
915 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
916 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
917 			    SSS_FCINTENSET_HDONEINTENSET |
918 			    SSS_FCINTENSET_HPARTINTENSET);
919 }
920 
921 /**
922  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
923  * @dd:		secss device
924  * @length:	length for request
925  * @final:	true if final op
926  *
927  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
928  * after previous updates, fill up IV words. For final, calculate and set
929  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
930  * length as 2^63 so it will be never reached and set to zero prelow and
931  * prehigh.
932  *
933  * This function does not start DMA transfer.
934  */
935 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
936 				bool final)
937 {
938 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
939 	u32 prelow, prehigh, low, high;
940 	u32 configflags, swapflags;
941 	u64 tmplen;
942 
943 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
944 
945 	if (likely(ctx->digcnt)) {
946 		s5p_hash_write_ctx_iv(dd, ctx);
947 		configflags |= SSS_HASH_USER_IV_EN;
948 	}
949 
950 	if (final) {
951 		/* number of bytes for last part */
952 		low = length;
953 		high = 0;
954 		/* total number of bits prev hashed */
955 		tmplen = ctx->digcnt * 8;
956 		prelow = (u32)tmplen;
957 		prehigh = (u32)(tmplen >> 32);
958 	} else {
959 		prelow = 0;
960 		prehigh = 0;
961 		low = 0;
962 		high = BIT(31);
963 	}
964 
965 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
966 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
967 
968 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
969 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
970 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
971 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
972 
973 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
974 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
975 }
976 
977 /**
978  * s5p_hash_xmit_dma() - start DMA hash processing
979  * @dd:		secss device
980  * @length:	length for request
981  * @final:	true if final op
982  *
983  * Update digcnt here, as it is needed for finup/final op.
984  */
985 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
986 			     bool final)
987 {
988 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
989 	unsigned int cnt;
990 
991 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
992 	if (!cnt) {
993 		dev_err(dd->dev, "dma_map_sg error\n");
994 		ctx->error = true;
995 		return -EINVAL;
996 	}
997 
998 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
999 	dd->hash_sg_iter = ctx->sg;
1000 	dd->hash_sg_cnt = cnt;
1001 	s5p_hash_write_ctrl(dd, length, final);
1002 	ctx->digcnt += length;
1003 	ctx->total -= length;
1004 
1005 	/* catch last interrupt */
1006 	if (final)
1007 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1008 
1009 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1010 
1011 	return -EINPROGRESS;
1012 }
1013 
1014 /**
1015  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1016  * @ctx:	request context
1017  * @sg:		source scatterlist request
1018  * @new_len:	number of bytes to process from sg
1019  *
1020  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1021  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1022  * with allocated buffer.
1023  *
1024  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1025  */
1026 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1027 			     struct scatterlist *sg, unsigned int new_len)
1028 {
1029 	unsigned int pages, len;
1030 	void *buf;
1031 
1032 	len = new_len + ctx->bufcnt;
1033 	pages = get_order(len);
1034 
1035 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1036 	if (!buf) {
1037 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1038 		ctx->error = true;
1039 		return -ENOMEM;
1040 	}
1041 
1042 	if (ctx->bufcnt)
1043 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1044 
1045 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1046 				 new_len, 0);
1047 	sg_init_table(ctx->sgl, 1);
1048 	sg_set_buf(ctx->sgl, buf, len);
1049 	ctx->sg = ctx->sgl;
1050 	ctx->sg_len = 1;
1051 	ctx->bufcnt = 0;
1052 	ctx->skip = 0;
1053 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1060  * @ctx:	request context
1061  * @sg:		source scatterlist request
1062  * @new_len:	number of bytes to process from sg
1063  *
1064  * Allocate new scatterlist table, copy data for HASH into it. If there was
1065  * xmit_buf filled, prepare it first, then copy page, length and offset from
1066  * source sg into it, adjusting begin and/or end for skip offset and
1067  * hash_later value.
1068  *
1069  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1070  * it after irq ends processing.
1071  */
1072 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1073 				  struct scatterlist *sg, unsigned int new_len)
1074 {
1075 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1076 	struct scatterlist *tmp;
1077 	unsigned int len;
1078 
1079 	if (ctx->bufcnt)
1080 		n++;
1081 
1082 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1083 	if (!ctx->sg) {
1084 		ctx->error = true;
1085 		return -ENOMEM;
1086 	}
1087 
1088 	sg_init_table(ctx->sg, n);
1089 
1090 	tmp = ctx->sg;
1091 
1092 	ctx->sg_len = 0;
1093 
1094 	if (ctx->bufcnt) {
1095 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1096 		tmp = sg_next(tmp);
1097 		ctx->sg_len++;
1098 	}
1099 
1100 	while (sg && skip >= sg->length) {
1101 		skip -= sg->length;
1102 		sg = sg_next(sg);
1103 	}
1104 
1105 	while (sg && new_len) {
1106 		len = sg->length - skip;
1107 		if (new_len < len)
1108 			len = new_len;
1109 
1110 		new_len -= len;
1111 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1112 		skip = 0;
1113 		if (new_len <= 0)
1114 			sg_mark_end(tmp);
1115 
1116 		tmp = sg_next(tmp);
1117 		ctx->sg_len++;
1118 		sg = sg_next(sg);
1119 	}
1120 
1121 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1122 
1123 	return 0;
1124 }
1125 
1126 /**
1127  * s5p_hash_prepare_sgs() - prepare sg for processing
1128  * @ctx:	request context
1129  * @sg:		source scatterlist request
1130  * @new_len:	number of bytes to process from sg
1131  * @final:	final flag
1132  *
1133  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1134  * sg table have good aligned elements (list_ok). If one of this checks fails,
1135  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1136  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1137  * table and prepare sg elements.
1138  *
1139  * For digest or finup all conditions can be good, and we may not need any
1140  * fixes.
1141  */
1142 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1143 				struct scatterlist *sg,
1144 				unsigned int new_len, bool final)
1145 {
1146 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1147 	bool aligned = true, list_ok = true;
1148 	struct scatterlist *sg_tmp = sg;
1149 
1150 	if (!sg || !sg->length || !new_len)
1151 		return 0;
1152 
1153 	if (skip || !final)
1154 		list_ok = false;
1155 
1156 	while (nbytes > 0 && sg_tmp) {
1157 		n++;
1158 		if (skip >= sg_tmp->length) {
1159 			skip -= sg_tmp->length;
1160 			if (!sg_tmp->length) {
1161 				aligned = false;
1162 				break;
1163 			}
1164 		} else {
1165 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1166 				aligned = false;
1167 				break;
1168 			}
1169 
1170 			if (nbytes < sg_tmp->length - skip) {
1171 				list_ok = false;
1172 				break;
1173 			}
1174 
1175 			nbytes -= sg_tmp->length - skip;
1176 			skip = 0;
1177 		}
1178 
1179 		sg_tmp = sg_next(sg_tmp);
1180 	}
1181 
1182 	if (!aligned)
1183 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1184 	else if (!list_ok)
1185 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1186 
1187 	/*
1188 	 * Have aligned data from previous operation and/or current
1189 	 * Note: will enter here only if (digest or finup) and aligned
1190 	 */
1191 	if (ctx->bufcnt) {
1192 		ctx->sg_len = n;
1193 		sg_init_table(ctx->sgl, 2);
1194 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1195 		sg_chain(ctx->sgl, 2, sg);
1196 		ctx->sg = ctx->sgl;
1197 		ctx->sg_len++;
1198 	} else {
1199 		ctx->sg = sg;
1200 		ctx->sg_len = n;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 /**
1207  * s5p_hash_prepare_request() - prepare request for processing
1208  * @req:	AHASH request
1209  * @update:	true if UPDATE op
1210  *
1211  * Note 1: we can have update flag _and_ final flag at the same time.
1212  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1213  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1214  *	   we have final op
1215  */
1216 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1217 {
1218 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1219 	bool final = ctx->finup;
1220 	int xmit_len, hash_later, nbytes;
1221 	int ret;
1222 
1223 	if (update)
1224 		nbytes = req->nbytes;
1225 	else
1226 		nbytes = 0;
1227 
1228 	ctx->total = nbytes + ctx->bufcnt;
1229 	if (!ctx->total)
1230 		return 0;
1231 
1232 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1233 		/* bytes left from previous request, so fill up to BUFLEN */
1234 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1235 
1236 		if (len > nbytes)
1237 			len = nbytes;
1238 
1239 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1240 					 0, len, 0);
1241 		ctx->bufcnt += len;
1242 		nbytes -= len;
1243 		ctx->skip = len;
1244 	} else {
1245 		ctx->skip = 0;
1246 	}
1247 
1248 	if (ctx->bufcnt)
1249 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1250 
1251 	xmit_len = ctx->total;
1252 	if (final) {
1253 		hash_later = 0;
1254 	} else {
1255 		if (IS_ALIGNED(xmit_len, BUFLEN))
1256 			xmit_len -= BUFLEN;
1257 		else
1258 			xmit_len -= xmit_len & (BUFLEN - 1);
1259 
1260 		hash_later = ctx->total - xmit_len;
1261 		/* copy hash_later bytes from end of req->src */
1262 		/* previous bytes are in xmit_buf, so no overwrite */
1263 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1264 					 req->nbytes - hash_later,
1265 					 hash_later, 0);
1266 	}
1267 
1268 	if (xmit_len > BUFLEN) {
1269 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1270 					   final);
1271 		if (ret)
1272 			return ret;
1273 	} else {
1274 		/* have buffered data only */
1275 		if (unlikely(!ctx->bufcnt)) {
1276 			/* first update didn't fill up buffer */
1277 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1278 						 0, xmit_len, 0);
1279 		}
1280 
1281 		sg_init_table(ctx->sgl, 1);
1282 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1283 
1284 		ctx->sg = ctx->sgl;
1285 		ctx->sg_len = 1;
1286 	}
1287 
1288 	ctx->bufcnt = hash_later;
1289 	if (!final)
1290 		ctx->total = xmit_len;
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  * s5p_hash_update_dma_stop() - unmap DMA
1297  * @dd:		secss device
1298  *
1299  * Unmap scatterlist ctx->sg.
1300  */
1301 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1302 {
1303 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1304 
1305 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1306 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1307 }
1308 
1309 /**
1310  * s5p_hash_finish() - copy calculated digest to crypto layer
1311  * @req:	AHASH request
1312  */
1313 static void s5p_hash_finish(struct ahash_request *req)
1314 {
1315 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1316 	struct s5p_aes_dev *dd = ctx->dd;
1317 
1318 	if (ctx->digcnt)
1319 		s5p_hash_copy_result(req);
1320 
1321 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1322 }
1323 
1324 /**
1325  * s5p_hash_finish_req() - finish request
1326  * @req:	AHASH request
1327  * @err:	error
1328  */
1329 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1330 {
1331 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1332 	struct s5p_aes_dev *dd = ctx->dd;
1333 	unsigned long flags;
1334 
1335 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1336 		free_pages((unsigned long)sg_virt(ctx->sg),
1337 			   get_order(ctx->sg->length));
1338 
1339 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1340 		kfree(ctx->sg);
1341 
1342 	ctx->sg = NULL;
1343 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1344 			    BIT(HASH_FLAGS_SGS_COPIED));
1345 
1346 	if (!err && !ctx->error) {
1347 		s5p_hash_read_msg(req);
1348 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1349 			s5p_hash_finish(req);
1350 	} else {
1351 		ctx->error = true;
1352 	}
1353 
1354 	spin_lock_irqsave(&dd->hash_lock, flags);
1355 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1356 			    BIT(HASH_FLAGS_DMA_READY) |
1357 			    BIT(HASH_FLAGS_OUTPUT_READY));
1358 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1359 
1360 	if (req->base.complete)
1361 		req->base.complete(&req->base, err);
1362 }
1363 
1364 /**
1365  * s5p_hash_handle_queue() - handle hash queue
1366  * @dd:		device s5p_aes_dev
1367  * @req:	AHASH request
1368  *
1369  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1370  * device then processes the first request from the dd->queue
1371  *
1372  * Returns: see s5p_hash_final below.
1373  */
1374 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1375 				 struct ahash_request *req)
1376 {
1377 	struct crypto_async_request *async_req, *backlog;
1378 	struct s5p_hash_reqctx *ctx;
1379 	unsigned long flags;
1380 	int err = 0, ret = 0;
1381 
1382 retry:
1383 	spin_lock_irqsave(&dd->hash_lock, flags);
1384 	if (req)
1385 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1386 
1387 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1388 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1389 		return ret;
1390 	}
1391 
1392 	backlog = crypto_get_backlog(&dd->hash_queue);
1393 	async_req = crypto_dequeue_request(&dd->hash_queue);
1394 	if (async_req)
1395 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1396 
1397 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1398 
1399 	if (!async_req)
1400 		return ret;
1401 
1402 	if (backlog)
1403 		backlog->complete(backlog, -EINPROGRESS);
1404 
1405 	req = ahash_request_cast(async_req);
1406 	dd->hash_req = req;
1407 	ctx = ahash_request_ctx(req);
1408 
1409 	err = s5p_hash_prepare_request(req, ctx->op_update);
1410 	if (err || !ctx->total)
1411 		goto out;
1412 
1413 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1414 		ctx->op_update, req->nbytes);
1415 
1416 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1417 	if (ctx->digcnt)
1418 		s5p_hash_write_iv(req); /* restore hash IV */
1419 
1420 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1421 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1422 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1423 			/* no final() after finup() */
1424 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1425 	} else { /* HASH_OP_FINAL */
1426 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1427 	}
1428 out:
1429 	if (err != -EINPROGRESS) {
1430 		/* hash_tasklet_cb will not finish it, so do it here */
1431 		s5p_hash_finish_req(req, err);
1432 		req = NULL;
1433 
1434 		/*
1435 		 * Execute next request immediately if there is anything
1436 		 * in queue.
1437 		 */
1438 		goto retry;
1439 	}
1440 
1441 	return ret;
1442 }
1443 
1444 /**
1445  * s5p_hash_tasklet_cb() - hash tasklet
1446  * @data:	ptr to s5p_aes_dev
1447  */
1448 static void s5p_hash_tasklet_cb(unsigned long data)
1449 {
1450 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1451 
1452 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1453 		s5p_hash_handle_queue(dd, NULL);
1454 		return;
1455 	}
1456 
1457 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1458 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1459 				       &dd->hash_flags)) {
1460 			s5p_hash_update_dma_stop(dd);
1461 		}
1462 
1463 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1464 				       &dd->hash_flags)) {
1465 			/* hash or semi-hash ready */
1466 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1467 			goto finish;
1468 		}
1469 	}
1470 
1471 	return;
1472 
1473 finish:
1474 	/* finish curent request */
1475 	s5p_hash_finish_req(dd->hash_req, 0);
1476 
1477 	/* If we are not busy, process next req */
1478 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1479 		s5p_hash_handle_queue(dd, NULL);
1480 }
1481 
1482 /**
1483  * s5p_hash_enqueue() - enqueue request
1484  * @req:	AHASH request
1485  * @op:		operation UPDATE (true) or FINAL (false)
1486  *
1487  * Returns: see s5p_hash_final below.
1488  */
1489 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1490 {
1491 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1492 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1493 
1494 	ctx->op_update = op;
1495 
1496 	return s5p_hash_handle_queue(tctx->dd, req);
1497 }
1498 
1499 /**
1500  * s5p_hash_update() - process the hash input data
1501  * @req:	AHASH request
1502  *
1503  * If request will fit in buffer, copy it and return immediately
1504  * else enqueue it with OP_UPDATE.
1505  *
1506  * Returns: see s5p_hash_final below.
1507  */
1508 static int s5p_hash_update(struct ahash_request *req)
1509 {
1510 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1511 
1512 	if (!req->nbytes)
1513 		return 0;
1514 
1515 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1516 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1517 					 0, req->nbytes, 0);
1518 		ctx->bufcnt += req->nbytes;
1519 		return 0;
1520 	}
1521 
1522 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1523 }
1524 
1525 /**
1526  * s5p_hash_final() - close up hash and calculate digest
1527  * @req:	AHASH request
1528  *
1529  * Note: in final req->src do not have any data, and req->nbytes can be
1530  * non-zero.
1531  *
1532  * If there were no input data processed yet and the buffered hash data is
1533  * less than BUFLEN (64) then calculate the final hash immediately by using
1534  * SW algorithm fallback.
1535  *
1536  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1537  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1538  * previous update op, so there are always some buffered bytes in ctx->buffer,
1539  * which means that ctx->bufcnt!=0
1540  *
1541  * Returns:
1542  * 0 if the request has been processed immediately,
1543  * -EINPROGRESS if the operation has been queued for later execution or is set
1544  *		to processing by HW,
1545  * -EBUSY if queue is full and request should be resubmitted later,
1546  * other negative values denotes an error.
1547  */
1548 static int s5p_hash_final(struct ahash_request *req)
1549 {
1550 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1551 
1552 	ctx->finup = true;
1553 	if (ctx->error)
1554 		return -EINVAL; /* uncompleted hash is not needed */
1555 
1556 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1557 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1558 
1559 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1560 					       ctx->bufcnt, req->result);
1561 	}
1562 
1563 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1564 }
1565 
1566 /**
1567  * s5p_hash_finup() - process last req->src and calculate digest
1568  * @req:	AHASH request containing the last update data
1569  *
1570  * Return values: see s5p_hash_final above.
1571  */
1572 static int s5p_hash_finup(struct ahash_request *req)
1573 {
1574 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1575 	int err1, err2;
1576 
1577 	ctx->finup = true;
1578 
1579 	err1 = s5p_hash_update(req);
1580 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1581 		return err1;
1582 
1583 	/*
1584 	 * final() has to be always called to cleanup resources even if
1585 	 * update() failed, except EINPROGRESS or calculate digest for small
1586 	 * size
1587 	 */
1588 	err2 = s5p_hash_final(req);
1589 
1590 	return err1 ?: err2;
1591 }
1592 
1593 /**
1594  * s5p_hash_init() - initialize AHASH request contex
1595  * @req:	AHASH request
1596  *
1597  * Init async hash request context.
1598  */
1599 static int s5p_hash_init(struct ahash_request *req)
1600 {
1601 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1602 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1603 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1604 
1605 	ctx->dd = tctx->dd;
1606 	ctx->error = false;
1607 	ctx->finup = false;
1608 	ctx->bufcnt = 0;
1609 	ctx->digcnt = 0;
1610 	ctx->total = 0;
1611 	ctx->skip = 0;
1612 
1613 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1614 		crypto_ahash_digestsize(tfm));
1615 
1616 	switch (crypto_ahash_digestsize(tfm)) {
1617 	case MD5_DIGEST_SIZE:
1618 		ctx->engine = SSS_HASH_ENGINE_MD5;
1619 		ctx->nregs = HASH_MD5_MAX_REG;
1620 		break;
1621 	case SHA1_DIGEST_SIZE:
1622 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1623 		ctx->nregs = HASH_SHA1_MAX_REG;
1624 		break;
1625 	case SHA256_DIGEST_SIZE:
1626 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1627 		ctx->nregs = HASH_SHA256_MAX_REG;
1628 		break;
1629 	default:
1630 		ctx->error = true;
1631 		return -EINVAL;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 /**
1638  * s5p_hash_digest - calculate digest from req->src
1639  * @req:	AHASH request
1640  *
1641  * Return values: see s5p_hash_final above.
1642  */
1643 static int s5p_hash_digest(struct ahash_request *req)
1644 {
1645 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1646 }
1647 
1648 /**
1649  * s5p_hash_cra_init_alg - init crypto alg transformation
1650  * @tfm:	crypto transformation
1651  */
1652 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1653 {
1654 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1655 	const char *alg_name = crypto_tfm_alg_name(tfm);
1656 
1657 	tctx->dd = s5p_dev;
1658 	/* Allocate a fallback and abort if it failed. */
1659 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1660 					    CRYPTO_ALG_NEED_FALLBACK);
1661 	if (IS_ERR(tctx->fallback)) {
1662 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1663 		return PTR_ERR(tctx->fallback);
1664 	}
1665 
1666 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1667 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * s5p_hash_cra_init - init crypto tfm
1674  * @tfm:	crypto transformation
1675  */
1676 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1677 {
1678 	return s5p_hash_cra_init_alg(tfm);
1679 }
1680 
1681 /**
1682  * s5p_hash_cra_exit - exit crypto tfm
1683  * @tfm:	crypto transformation
1684  *
1685  * free allocated fallback
1686  */
1687 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1688 {
1689 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1690 
1691 	crypto_free_shash(tctx->fallback);
1692 	tctx->fallback = NULL;
1693 }
1694 
1695 /**
1696  * s5p_hash_export - export hash state
1697  * @req:	AHASH request
1698  * @out:	buffer for exported state
1699  */
1700 static int s5p_hash_export(struct ahash_request *req, void *out)
1701 {
1702 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1703 
1704 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1705 
1706 	return 0;
1707 }
1708 
1709 /**
1710  * s5p_hash_import - import hash state
1711  * @req:	AHASH request
1712  * @in:		buffer with state to be imported from
1713  */
1714 static int s5p_hash_import(struct ahash_request *req, const void *in)
1715 {
1716 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1717 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1718 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1719 	const struct s5p_hash_reqctx *ctx_in = in;
1720 
1721 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1722 	if (ctx_in->bufcnt > BUFLEN) {
1723 		ctx->error = true;
1724 		return -EINVAL;
1725 	}
1726 
1727 	ctx->dd = tctx->dd;
1728 	ctx->error = false;
1729 
1730 	return 0;
1731 }
1732 
1733 static struct ahash_alg algs_sha1_md5_sha256[] = {
1734 {
1735 	.init		= s5p_hash_init,
1736 	.update		= s5p_hash_update,
1737 	.final		= s5p_hash_final,
1738 	.finup		= s5p_hash_finup,
1739 	.digest		= s5p_hash_digest,
1740 	.export		= s5p_hash_export,
1741 	.import		= s5p_hash_import,
1742 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1743 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1744 	.halg.base	= {
1745 		.cra_name		= "sha1",
1746 		.cra_driver_name	= "exynos-sha1",
1747 		.cra_priority		= 100,
1748 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1749 					  CRYPTO_ALG_ASYNC |
1750 					  CRYPTO_ALG_NEED_FALLBACK,
1751 		.cra_blocksize		= HASH_BLOCK_SIZE,
1752 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1753 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1754 		.cra_module		= THIS_MODULE,
1755 		.cra_init		= s5p_hash_cra_init,
1756 		.cra_exit		= s5p_hash_cra_exit,
1757 	}
1758 },
1759 {
1760 	.init		= s5p_hash_init,
1761 	.update		= s5p_hash_update,
1762 	.final		= s5p_hash_final,
1763 	.finup		= s5p_hash_finup,
1764 	.digest		= s5p_hash_digest,
1765 	.export		= s5p_hash_export,
1766 	.import		= s5p_hash_import,
1767 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768 	.halg.digestsize	= MD5_DIGEST_SIZE,
1769 	.halg.base	= {
1770 		.cra_name		= "md5",
1771 		.cra_driver_name	= "exynos-md5",
1772 		.cra_priority		= 100,
1773 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1774 					  CRYPTO_ALG_ASYNC |
1775 					  CRYPTO_ALG_NEED_FALLBACK,
1776 		.cra_blocksize		= HASH_BLOCK_SIZE,
1777 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1778 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1779 		.cra_module		= THIS_MODULE,
1780 		.cra_init		= s5p_hash_cra_init,
1781 		.cra_exit		= s5p_hash_cra_exit,
1782 	}
1783 },
1784 {
1785 	.init		= s5p_hash_init,
1786 	.update		= s5p_hash_update,
1787 	.final		= s5p_hash_final,
1788 	.finup		= s5p_hash_finup,
1789 	.digest		= s5p_hash_digest,
1790 	.export		= s5p_hash_export,
1791 	.import		= s5p_hash_import,
1792 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1793 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1794 	.halg.base	= {
1795 		.cra_name		= "sha256",
1796 		.cra_driver_name	= "exynos-sha256",
1797 		.cra_priority		= 100,
1798 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1799 					  CRYPTO_ALG_ASYNC |
1800 					  CRYPTO_ALG_NEED_FALLBACK,
1801 		.cra_blocksize		= HASH_BLOCK_SIZE,
1802 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1803 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1804 		.cra_module		= THIS_MODULE,
1805 		.cra_init		= s5p_hash_cra_init,
1806 		.cra_exit		= s5p_hash_cra_exit,
1807 	}
1808 }
1809 
1810 };
1811 
1812 static void s5p_set_aes(struct s5p_aes_dev *dev,
1813 			const u8 *key, const u8 *iv, const u8 *ctr,
1814 			unsigned int keylen)
1815 {
1816 	void __iomem *keystart;
1817 
1818 	if (iv)
1819 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1820 			    AES_BLOCK_SIZE);
1821 
1822 	if (ctr)
1823 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1824 			    AES_BLOCK_SIZE);
1825 
1826 	if (keylen == AES_KEYSIZE_256)
1827 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1828 	else if (keylen == AES_KEYSIZE_192)
1829 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1830 	else
1831 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1832 
1833 	memcpy_toio(keystart, key, keylen);
1834 }
1835 
1836 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1837 {
1838 	while (sg) {
1839 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1840 			return false;
1841 		sg = sg_next(sg);
1842 	}
1843 
1844 	return true;
1845 }
1846 
1847 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1848 				struct skcipher_request *req)
1849 {
1850 	struct scatterlist *sg;
1851 	int err;
1852 
1853 	dev->sg_src_cpy = NULL;
1854 	sg = req->src;
1855 	if (!s5p_is_sg_aligned(sg)) {
1856 		dev_dbg(dev->dev,
1857 			"At least one unaligned source scatter list, making a copy\n");
1858 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1859 		if (err)
1860 			return err;
1861 
1862 		sg = dev->sg_src_cpy;
1863 	}
1864 
1865 	err = s5p_set_indata(dev, sg);
1866 	if (err) {
1867 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1868 		return err;
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1875 				 struct skcipher_request *req)
1876 {
1877 	struct scatterlist *sg;
1878 	int err;
1879 
1880 	dev->sg_dst_cpy = NULL;
1881 	sg = req->dst;
1882 	if (!s5p_is_sg_aligned(sg)) {
1883 		dev_dbg(dev->dev,
1884 			"At least one unaligned dest scatter list, making a copy\n");
1885 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1886 		if (err)
1887 			return err;
1888 
1889 		sg = dev->sg_dst_cpy;
1890 	}
1891 
1892 	err = s5p_set_outdata(dev, sg);
1893 	if (err) {
1894 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1895 		return err;
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1902 {
1903 	struct skcipher_request *req = dev->req;
1904 	u32 aes_control;
1905 	unsigned long flags;
1906 	int err;
1907 	u8 *iv, *ctr;
1908 
1909 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1910 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1911 	if (mode & FLAGS_AES_DECRYPT)
1912 		aes_control |= SSS_AES_MODE_DECRYPT;
1913 
1914 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1915 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1916 		iv = req->iv;
1917 		ctr = NULL;
1918 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1919 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1920 		iv = NULL;
1921 		ctr = req->iv;
1922 	} else {
1923 		iv = NULL; /* AES_ECB */
1924 		ctr = NULL;
1925 	}
1926 
1927 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1928 		aes_control |= SSS_AES_KEY_SIZE_192;
1929 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1930 		aes_control |= SSS_AES_KEY_SIZE_256;
1931 
1932 	aes_control |= SSS_AES_FIFO_MODE;
1933 
1934 	/* as a variant it is possible to use byte swapping on DMA side */
1935 	aes_control |= SSS_AES_BYTESWAP_DI
1936 		    |  SSS_AES_BYTESWAP_DO
1937 		    |  SSS_AES_BYTESWAP_IV
1938 		    |  SSS_AES_BYTESWAP_KEY
1939 		    |  SSS_AES_BYTESWAP_CNT;
1940 
1941 	spin_lock_irqsave(&dev->lock, flags);
1942 
1943 	SSS_WRITE(dev, FCINTENCLR,
1944 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1945 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1946 
1947 	err = s5p_set_indata_start(dev, req);
1948 	if (err)
1949 		goto indata_error;
1950 
1951 	err = s5p_set_outdata_start(dev, req);
1952 	if (err)
1953 		goto outdata_error;
1954 
1955 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1956 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1957 
1958 	s5p_set_dma_indata(dev,  dev->sg_src);
1959 	s5p_set_dma_outdata(dev, dev->sg_dst);
1960 
1961 	SSS_WRITE(dev, FCINTENSET,
1962 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1963 
1964 	spin_unlock_irqrestore(&dev->lock, flags);
1965 
1966 	return;
1967 
1968 outdata_error:
1969 	s5p_unset_indata(dev);
1970 
1971 indata_error:
1972 	s5p_sg_done(dev);
1973 	dev->busy = false;
1974 	spin_unlock_irqrestore(&dev->lock, flags);
1975 	s5p_aes_complete(req, err);
1976 }
1977 
1978 static void s5p_tasklet_cb(unsigned long data)
1979 {
1980 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1981 	struct crypto_async_request *async_req, *backlog;
1982 	struct s5p_aes_reqctx *reqctx;
1983 	unsigned long flags;
1984 
1985 	spin_lock_irqsave(&dev->lock, flags);
1986 	backlog   = crypto_get_backlog(&dev->queue);
1987 	async_req = crypto_dequeue_request(&dev->queue);
1988 
1989 	if (!async_req) {
1990 		dev->busy = false;
1991 		spin_unlock_irqrestore(&dev->lock, flags);
1992 		return;
1993 	}
1994 	spin_unlock_irqrestore(&dev->lock, flags);
1995 
1996 	if (backlog)
1997 		backlog->complete(backlog, -EINPROGRESS);
1998 
1999 	dev->req = skcipher_request_cast(async_req);
2000 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2001 	reqctx   = skcipher_request_ctx(dev->req);
2002 
2003 	s5p_aes_crypt_start(dev, reqctx->mode);
2004 }
2005 
2006 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2007 			      struct skcipher_request *req)
2008 {
2009 	unsigned long flags;
2010 	int err;
2011 
2012 	spin_lock_irqsave(&dev->lock, flags);
2013 	err = crypto_enqueue_request(&dev->queue, &req->base);
2014 	if (dev->busy) {
2015 		spin_unlock_irqrestore(&dev->lock, flags);
2016 		return err;
2017 	}
2018 	dev->busy = true;
2019 
2020 	spin_unlock_irqrestore(&dev->lock, flags);
2021 
2022 	tasklet_schedule(&dev->tasklet);
2023 
2024 	return err;
2025 }
2026 
2027 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2028 {
2029 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2030 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2031 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2032 	struct s5p_aes_dev *dev = ctx->dev;
2033 
2034 	if (!req->cryptlen)
2035 		return 0;
2036 
2037 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2038 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2039 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2040 		return -EINVAL;
2041 	}
2042 
2043 	reqctx->mode = mode;
2044 
2045 	return s5p_aes_handle_req(dev, req);
2046 }
2047 
2048 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2049 			  const u8 *key, unsigned int keylen)
2050 {
2051 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2052 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2053 
2054 	if (keylen != AES_KEYSIZE_128 &&
2055 	    keylen != AES_KEYSIZE_192 &&
2056 	    keylen != AES_KEYSIZE_256)
2057 		return -EINVAL;
2058 
2059 	memcpy(ctx->aes_key, key, keylen);
2060 	ctx->keylen = keylen;
2061 
2062 	return 0;
2063 }
2064 
2065 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2066 {
2067 	return s5p_aes_crypt(req, 0);
2068 }
2069 
2070 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2071 {
2072 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2073 }
2074 
2075 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2076 {
2077 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2078 }
2079 
2080 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2081 {
2082 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2083 }
2084 
2085 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2086 {
2087 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2088 }
2089 
2090 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2091 {
2092 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2093 
2094 	ctx->dev = s5p_dev;
2095 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2096 
2097 	return 0;
2098 }
2099 
2100 static struct skcipher_alg algs[] = {
2101 	{
2102 		.base.cra_name		= "ecb(aes)",
2103 		.base.cra_driver_name	= "ecb-aes-s5p",
2104 		.base.cra_priority	= 100,
2105 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2106 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2107 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2108 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2109 		.base.cra_alignmask	= 0x0f,
2110 		.base.cra_module	= THIS_MODULE,
2111 
2112 		.min_keysize		= AES_MIN_KEY_SIZE,
2113 		.max_keysize		= AES_MAX_KEY_SIZE,
2114 		.setkey			= s5p_aes_setkey,
2115 		.encrypt		= s5p_aes_ecb_encrypt,
2116 		.decrypt		= s5p_aes_ecb_decrypt,
2117 		.init			= s5p_aes_init_tfm,
2118 	},
2119 	{
2120 		.base.cra_name		= "cbc(aes)",
2121 		.base.cra_driver_name	= "cbc-aes-s5p",
2122 		.base.cra_priority	= 100,
2123 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2124 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2125 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2126 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2127 		.base.cra_alignmask	= 0x0f,
2128 		.base.cra_module	= THIS_MODULE,
2129 
2130 		.min_keysize		= AES_MIN_KEY_SIZE,
2131 		.max_keysize		= AES_MAX_KEY_SIZE,
2132 		.ivsize			= AES_BLOCK_SIZE,
2133 		.setkey			= s5p_aes_setkey,
2134 		.encrypt		= s5p_aes_cbc_encrypt,
2135 		.decrypt		= s5p_aes_cbc_decrypt,
2136 		.init			= s5p_aes_init_tfm,
2137 	},
2138 	{
2139 		.base.cra_name		= "ctr(aes)",
2140 		.base.cra_driver_name	= "ctr-aes-s5p",
2141 		.base.cra_priority	= 100,
2142 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2143 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2144 		.base.cra_blocksize	= 1,
2145 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2146 		.base.cra_alignmask	= 0x0f,
2147 		.base.cra_module	= THIS_MODULE,
2148 
2149 		.min_keysize		= AES_MIN_KEY_SIZE,
2150 		.max_keysize		= AES_MAX_KEY_SIZE,
2151 		.ivsize			= AES_BLOCK_SIZE,
2152 		.setkey			= s5p_aes_setkey,
2153 		.encrypt		= s5p_aes_ctr_crypt,
2154 		.decrypt		= s5p_aes_ctr_crypt,
2155 		.init			= s5p_aes_init_tfm,
2156 	},
2157 };
2158 
2159 static int s5p_aes_probe(struct platform_device *pdev)
2160 {
2161 	struct device *dev = &pdev->dev;
2162 	int i, j, err = -ENODEV;
2163 	const struct samsung_aes_variant *variant;
2164 	struct s5p_aes_dev *pdata;
2165 	struct resource *res;
2166 	unsigned int hash_i;
2167 
2168 	if (s5p_dev)
2169 		return -EEXIST;
2170 
2171 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2172 	if (!pdata)
2173 		return -ENOMEM;
2174 
2175 	variant = find_s5p_sss_version(pdev);
2176 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2177 
2178 	/*
2179 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2180 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2181 	 * is enabled in config. We need larger size for HASH registers in
2182 	 * secss, current describe only AES/DES
2183 	 */
2184 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2185 		if (variant == &exynos_aes_data) {
2186 			res->end += 0x300;
2187 			pdata->use_hash = true;
2188 		}
2189 	}
2190 
2191 	pdata->res = res;
2192 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2193 	if (IS_ERR(pdata->ioaddr)) {
2194 		if (!pdata->use_hash)
2195 			return PTR_ERR(pdata->ioaddr);
2196 		/* try AES without HASH */
2197 		res->end -= 0x300;
2198 		pdata->use_hash = false;
2199 		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2200 		if (IS_ERR(pdata->ioaddr))
2201 			return PTR_ERR(pdata->ioaddr);
2202 	}
2203 
2204 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2205 	if (IS_ERR(pdata->clk))
2206 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2207 				     "failed to find secss clock %s\n",
2208 				     variant->clk_names[0]);
2209 
2210 	err = clk_prepare_enable(pdata->clk);
2211 	if (err < 0) {
2212 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2213 			variant->clk_names[0], err);
2214 		return err;
2215 	}
2216 
2217 	if (variant->clk_names[1]) {
2218 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2219 		if (IS_ERR(pdata->pclk)) {
2220 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2221 					    "failed to find clock %s\n",
2222 					    variant->clk_names[1]);
2223 			goto err_clk;
2224 		}
2225 
2226 		err = clk_prepare_enable(pdata->pclk);
2227 		if (err < 0) {
2228 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2229 				variant->clk_names[0], err);
2230 			goto err_clk;
2231 		}
2232 	} else {
2233 		pdata->pclk = NULL;
2234 	}
2235 
2236 	spin_lock_init(&pdata->lock);
2237 	spin_lock_init(&pdata->hash_lock);
2238 
2239 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2240 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2241 
2242 	pdata->irq_fc = platform_get_irq(pdev, 0);
2243 	if (pdata->irq_fc < 0) {
2244 		err = pdata->irq_fc;
2245 		dev_warn(dev, "feed control interrupt is not available.\n");
2246 		goto err_irq;
2247 	}
2248 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2249 					s5p_aes_interrupt, IRQF_ONESHOT,
2250 					pdev->name, pdev);
2251 	if (err < 0) {
2252 		dev_warn(dev, "feed control interrupt is not available.\n");
2253 		goto err_irq;
2254 	}
2255 
2256 	pdata->busy = false;
2257 	pdata->dev = dev;
2258 	platform_set_drvdata(pdev, pdata);
2259 	s5p_dev = pdata;
2260 
2261 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2262 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2263 
2264 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2265 		err = crypto_register_skcipher(&algs[i]);
2266 		if (err)
2267 			goto err_algs;
2268 	}
2269 
2270 	if (pdata->use_hash) {
2271 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2272 			     (unsigned long)pdata);
2273 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2274 
2275 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2276 		     hash_i++) {
2277 			struct ahash_alg *alg;
2278 
2279 			alg = &algs_sha1_md5_sha256[hash_i];
2280 			err = crypto_register_ahash(alg);
2281 			if (err) {
2282 				dev_err(dev, "can't register '%s': %d\n",
2283 					alg->halg.base.cra_driver_name, err);
2284 				goto err_hash;
2285 			}
2286 		}
2287 	}
2288 
2289 	dev_info(dev, "s5p-sss driver registered\n");
2290 
2291 	return 0;
2292 
2293 err_hash:
2294 	for (j = hash_i - 1; j >= 0; j--)
2295 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2296 
2297 	tasklet_kill(&pdata->hash_tasklet);
2298 	res->end -= 0x300;
2299 
2300 err_algs:
2301 	if (i < ARRAY_SIZE(algs))
2302 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2303 			err);
2304 
2305 	for (j = 0; j < i; j++)
2306 		crypto_unregister_skcipher(&algs[j]);
2307 
2308 	tasklet_kill(&pdata->tasklet);
2309 
2310 err_irq:
2311 	clk_disable_unprepare(pdata->pclk);
2312 
2313 err_clk:
2314 	clk_disable_unprepare(pdata->clk);
2315 	s5p_dev = NULL;
2316 
2317 	return err;
2318 }
2319 
2320 static int s5p_aes_remove(struct platform_device *pdev)
2321 {
2322 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2323 	int i;
2324 
2325 	if (!pdata)
2326 		return -ENODEV;
2327 
2328 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2329 		crypto_unregister_skcipher(&algs[i]);
2330 
2331 	tasklet_kill(&pdata->tasklet);
2332 	if (pdata->use_hash) {
2333 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2334 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2335 
2336 		pdata->res->end -= 0x300;
2337 		tasklet_kill(&pdata->hash_tasklet);
2338 		pdata->use_hash = false;
2339 	}
2340 
2341 	clk_disable_unprepare(pdata->pclk);
2342 
2343 	clk_disable_unprepare(pdata->clk);
2344 	s5p_dev = NULL;
2345 
2346 	return 0;
2347 }
2348 
2349 static struct platform_driver s5p_aes_crypto = {
2350 	.probe	= s5p_aes_probe,
2351 	.remove	= s5p_aes_remove,
2352 	.driver	= {
2353 		.name	= "s5p-secss",
2354 		.of_match_table = s5p_sss_dt_match,
2355 	},
2356 };
2357 
2358 module_platform_driver(s5p_aes_crypto);
2359 
2360 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2361 MODULE_LICENSE("GPL v2");
2362 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2363 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2364