1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Cryptographic API. 4 // 5 // Support for Samsung S5PV210 and Exynos HW acceleration. 6 // 7 // Copyright (C) 2011 NetUP Inc. All rights reserved. 8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. 9 // 10 // Hash part based on omap-sham.c driver. 11 12 #include <linux/clk.h> 13 #include <linux/crypto.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/errno.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/platform_device.h> 24 #include <linux/scatterlist.h> 25 26 #include <crypto/ctr.h> 27 #include <crypto/aes.h> 28 #include <crypto/algapi.h> 29 #include <crypto/scatterwalk.h> 30 31 #include <crypto/hash.h> 32 #include <crypto/md5.h> 33 #include <crypto/sha.h> 34 #include <crypto/internal/hash.h> 35 36 #define _SBF(s, v) ((v) << (s)) 37 38 /* Feed control registers */ 39 #define SSS_REG_FCINTSTAT 0x0000 40 #define SSS_FCINTSTAT_HPARTINT BIT(7) 41 #define SSS_FCINTSTAT_HDONEINT BIT(5) 42 #define SSS_FCINTSTAT_BRDMAINT BIT(3) 43 #define SSS_FCINTSTAT_BTDMAINT BIT(2) 44 #define SSS_FCINTSTAT_HRDMAINT BIT(1) 45 #define SSS_FCINTSTAT_PKDMAINT BIT(0) 46 47 #define SSS_REG_FCINTENSET 0x0004 48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7) 49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5) 50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) 51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) 52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) 53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) 54 55 #define SSS_REG_FCINTENCLR 0x0008 56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) 57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) 58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) 59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) 60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) 61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) 62 63 #define SSS_REG_FCINTPEND 0x000C 64 #define SSS_FCINTPEND_HPARTINTP BIT(7) 65 #define SSS_FCINTPEND_HDONEINTP BIT(5) 66 #define SSS_FCINTPEND_BRDMAINTP BIT(3) 67 #define SSS_FCINTPEND_BTDMAINTP BIT(2) 68 #define SSS_FCINTPEND_HRDMAINTP BIT(1) 69 #define SSS_FCINTPEND_PKDMAINTP BIT(0) 70 71 #define SSS_REG_FCFIFOSTAT 0x0010 72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) 73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) 74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) 75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) 76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) 77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) 78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) 79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) 80 81 #define SSS_REG_FCFIFOCTRL 0x0014 82 #define SSS_FCFIFOCTRL_DESSEL BIT(2) 83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) 84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) 85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) 86 #define SSS_HASHIN_MASK _SBF(0, 0x03) 87 88 #define SSS_REG_FCBRDMAS 0x0020 89 #define SSS_REG_FCBRDMAL 0x0024 90 #define SSS_REG_FCBRDMAC 0x0028 91 #define SSS_FCBRDMAC_BYTESWAP BIT(1) 92 #define SSS_FCBRDMAC_FLUSH BIT(0) 93 94 #define SSS_REG_FCBTDMAS 0x0030 95 #define SSS_REG_FCBTDMAL 0x0034 96 #define SSS_REG_FCBTDMAC 0x0038 97 #define SSS_FCBTDMAC_BYTESWAP BIT(1) 98 #define SSS_FCBTDMAC_FLUSH BIT(0) 99 100 #define SSS_REG_FCHRDMAS 0x0040 101 #define SSS_REG_FCHRDMAL 0x0044 102 #define SSS_REG_FCHRDMAC 0x0048 103 #define SSS_FCHRDMAC_BYTESWAP BIT(1) 104 #define SSS_FCHRDMAC_FLUSH BIT(0) 105 106 #define SSS_REG_FCPKDMAS 0x0050 107 #define SSS_REG_FCPKDMAL 0x0054 108 #define SSS_REG_FCPKDMAC 0x0058 109 #define SSS_FCPKDMAC_BYTESWAP BIT(3) 110 #define SSS_FCPKDMAC_DESCEND BIT(2) 111 #define SSS_FCPKDMAC_TRANSMIT BIT(1) 112 #define SSS_FCPKDMAC_FLUSH BIT(0) 113 114 #define SSS_REG_FCPKDMAO 0x005C 115 116 /* AES registers */ 117 #define SSS_REG_AES_CONTROL 0x00 118 #define SSS_AES_BYTESWAP_DI BIT(11) 119 #define SSS_AES_BYTESWAP_DO BIT(10) 120 #define SSS_AES_BYTESWAP_IV BIT(9) 121 #define SSS_AES_BYTESWAP_CNT BIT(8) 122 #define SSS_AES_BYTESWAP_KEY BIT(7) 123 #define SSS_AES_KEY_CHANGE_MODE BIT(6) 124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) 125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) 126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) 127 #define SSS_AES_FIFO_MODE BIT(3) 128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) 129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) 130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) 131 #define SSS_AES_MODE_DECRYPT BIT(0) 132 133 #define SSS_REG_AES_STATUS 0x04 134 #define SSS_AES_BUSY BIT(2) 135 #define SSS_AES_INPUT_READY BIT(1) 136 #define SSS_AES_OUTPUT_READY BIT(0) 137 138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) 139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) 140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) 141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) 142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) 143 144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) 145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) 146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) 147 148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) 149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ 150 SSS_AES_REG(dev, reg)) 151 152 /* HW engine modes */ 153 #define FLAGS_AES_DECRYPT BIT(0) 154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) 155 #define FLAGS_AES_CBC _SBF(1, 0x01) 156 #define FLAGS_AES_CTR _SBF(1, 0x02) 157 158 #define AES_KEY_LEN 16 159 #define CRYPTO_QUEUE_LEN 1 160 161 /* HASH registers */ 162 #define SSS_REG_HASH_CTRL 0x00 163 164 #define SSS_HASH_USER_IV_EN BIT(5) 165 #define SSS_HASH_INIT_BIT BIT(4) 166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) 167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) 168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) 169 170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) 171 172 #define SSS_REG_HASH_CTRL_PAUSE 0x04 173 174 #define SSS_HASH_PAUSE BIT(0) 175 176 #define SSS_REG_HASH_CTRL_FIFO 0x08 177 178 #define SSS_HASH_FIFO_MODE_DMA BIT(0) 179 #define SSS_HASH_FIFO_MODE_CPU 0 180 181 #define SSS_REG_HASH_CTRL_SWAP 0x0C 182 183 #define SSS_HASH_BYTESWAP_DI BIT(3) 184 #define SSS_HASH_BYTESWAP_DO BIT(2) 185 #define SSS_HASH_BYTESWAP_IV BIT(1) 186 #define SSS_HASH_BYTESWAP_KEY BIT(0) 187 188 #define SSS_REG_HASH_STATUS 0x10 189 190 #define SSS_HASH_STATUS_MSG_DONE BIT(6) 191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) 192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0) 193 194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 196 197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C 199 200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) 201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) 202 203 #define HASH_BLOCK_SIZE 64 204 #define HASH_REG_SIZEOF 4 205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) 206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) 207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) 208 209 /* 210 * HASH bit numbers, used by device, setting in dev->hash_flags with 211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), 212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler 213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist 214 */ 215 #define HASH_FLAGS_BUSY 0 216 #define HASH_FLAGS_FINAL 1 217 #define HASH_FLAGS_DMA_ACTIVE 2 218 #define HASH_FLAGS_OUTPUT_READY 3 219 #define HASH_FLAGS_DMA_READY 4 220 #define HASH_FLAGS_SGS_COPIED 5 221 #define HASH_FLAGS_SGS_ALLOCED 6 222 223 /* HASH HW constants */ 224 #define BUFLEN HASH_BLOCK_SIZE 225 226 #define SSS_HASH_DMA_LEN_ALIGN 8 227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1) 228 229 #define SSS_HASH_QUEUE_LENGTH 10 230 231 /** 232 * struct samsung_aes_variant - platform specific SSS driver data 233 * @aes_offset: AES register offset from SSS module's base. 234 * @hash_offset: HASH register offset from SSS module's base. 235 * @clk_names: names of clocks needed to run SSS IP 236 * 237 * Specifies platform specific configuration of SSS module. 238 * Note: A structure for driver specific platform data is used for future 239 * expansion of its usage. 240 */ 241 struct samsung_aes_variant { 242 unsigned int aes_offset; 243 unsigned int hash_offset; 244 const char *clk_names[2]; 245 }; 246 247 struct s5p_aes_reqctx { 248 unsigned long mode; 249 }; 250 251 struct s5p_aes_ctx { 252 struct s5p_aes_dev *dev; 253 254 u8 aes_key[AES_MAX_KEY_SIZE]; 255 u8 nonce[CTR_RFC3686_NONCE_SIZE]; 256 int keylen; 257 }; 258 259 /** 260 * struct s5p_aes_dev - Crypto device state container 261 * @dev: Associated device 262 * @clk: Clock for accessing hardware 263 * @ioaddr: Mapped IO memory region 264 * @aes_ioaddr: Per-varian offset for AES block IO memory 265 * @irq_fc: Feed control interrupt line 266 * @req: Crypto request currently handled by the device 267 * @ctx: Configuration for currently handled crypto request 268 * @sg_src: Scatter list with source data for currently handled block 269 * in device. This is DMA-mapped into device. 270 * @sg_dst: Scatter list with destination data for currently handled block 271 * in device. This is DMA-mapped into device. 272 * @sg_src_cpy: In case of unaligned access, copied scatter list 273 * with source data. 274 * @sg_dst_cpy: In case of unaligned access, copied scatter list 275 * with destination data. 276 * @tasklet: New request scheduling jib 277 * @queue: Crypto queue 278 * @busy: Indicates whether the device is currently handling some request 279 * thus it uses some of the fields from this state, like: 280 * req, ctx, sg_src/dst (and copies). This essentially 281 * protects against concurrent access to these fields. 282 * @lock: Lock for protecting both access to device hardware registers 283 * and fields related to current request (including the busy field). 284 * @res: Resources for hash. 285 * @io_hash_base: Per-variant offset for HASH block IO memory. 286 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags 287 * variable. 288 * @hash_flags: Flags for current HASH op. 289 * @hash_queue: Async hash queue. 290 * @hash_tasklet: New HASH request scheduling job. 291 * @xmit_buf: Buffer for current HASH request transfer into SSS block. 292 * @hash_req: Current request sending to SSS HASH block. 293 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. 294 * @hash_sg_cnt: Counter for hash_sg_iter. 295 * 296 * @use_hash: true if HASH algs enabled 297 */ 298 struct s5p_aes_dev { 299 struct device *dev; 300 struct clk *clk; 301 struct clk *pclk; 302 void __iomem *ioaddr; 303 void __iomem *aes_ioaddr; 304 int irq_fc; 305 306 struct ablkcipher_request *req; 307 struct s5p_aes_ctx *ctx; 308 struct scatterlist *sg_src; 309 struct scatterlist *sg_dst; 310 311 struct scatterlist *sg_src_cpy; 312 struct scatterlist *sg_dst_cpy; 313 314 struct tasklet_struct tasklet; 315 struct crypto_queue queue; 316 bool busy; 317 spinlock_t lock; 318 319 struct resource *res; 320 void __iomem *io_hash_base; 321 322 spinlock_t hash_lock; /* protect hash_ vars */ 323 unsigned long hash_flags; 324 struct crypto_queue hash_queue; 325 struct tasklet_struct hash_tasklet; 326 327 u8 xmit_buf[BUFLEN]; 328 struct ahash_request *hash_req; 329 struct scatterlist *hash_sg_iter; 330 unsigned int hash_sg_cnt; 331 332 bool use_hash; 333 }; 334 335 /** 336 * struct s5p_hash_reqctx - HASH request context 337 * @dd: Associated device 338 * @op_update: Current request operation (OP_UPDATE or OP_FINAL) 339 * @digcnt: Number of bytes processed by HW (without buffer[] ones) 340 * @digest: Digest message or IV for partial result 341 * @nregs: Number of HW registers for digest or IV read/write 342 * @engine: Bits for selecting type of HASH in SSS block 343 * @sg: sg for DMA transfer 344 * @sg_len: Length of sg for DMA transfer 345 * @sgl[]: sg for joining buffer and req->src scatterlist 346 * @skip: Skip offset in req->src for current op 347 * @total: Total number of bytes for current request 348 * @finup: Keep state for finup or final. 349 * @error: Keep track of error. 350 * @bufcnt: Number of bytes holded in buffer[] 351 * @buffer[]: For byte(s) from end of req->src in UPDATE op 352 */ 353 struct s5p_hash_reqctx { 354 struct s5p_aes_dev *dd; 355 bool op_update; 356 357 u64 digcnt; 358 u8 digest[SHA256_DIGEST_SIZE]; 359 360 unsigned int nregs; /* digest_size / sizeof(reg) */ 361 u32 engine; 362 363 struct scatterlist *sg; 364 unsigned int sg_len; 365 struct scatterlist sgl[2]; 366 unsigned int skip; 367 unsigned int total; 368 bool finup; 369 bool error; 370 371 u32 bufcnt; 372 u8 buffer[0]; 373 }; 374 375 /** 376 * struct s5p_hash_ctx - HASH transformation context 377 * @dd: Associated device 378 * @flags: Bits for algorithm HASH. 379 * @fallback: Software transformation for zero message or size < BUFLEN. 380 */ 381 struct s5p_hash_ctx { 382 struct s5p_aes_dev *dd; 383 unsigned long flags; 384 struct crypto_shash *fallback; 385 }; 386 387 static const struct samsung_aes_variant s5p_aes_data = { 388 .aes_offset = 0x4000, 389 .hash_offset = 0x6000, 390 .clk_names = { "secss", }, 391 }; 392 393 static const struct samsung_aes_variant exynos_aes_data = { 394 .aes_offset = 0x200, 395 .hash_offset = 0x400, 396 .clk_names = { "secss", }, 397 }; 398 399 static const struct samsung_aes_variant exynos5433_slim_aes_data = { 400 .aes_offset = 0x400, 401 .hash_offset = 0x800, 402 .clk_names = { "pclk", "aclk", }, 403 }; 404 405 static const struct of_device_id s5p_sss_dt_match[] = { 406 { 407 .compatible = "samsung,s5pv210-secss", 408 .data = &s5p_aes_data, 409 }, 410 { 411 .compatible = "samsung,exynos4210-secss", 412 .data = &exynos_aes_data, 413 }, 414 { 415 .compatible = "samsung,exynos5433-slim-sss", 416 .data = &exynos5433_slim_aes_data, 417 }, 418 { }, 419 }; 420 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); 421 422 static inline const struct samsung_aes_variant *find_s5p_sss_version 423 (const struct platform_device *pdev) 424 { 425 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) { 426 const struct of_device_id *match; 427 428 match = of_match_node(s5p_sss_dt_match, 429 pdev->dev.of_node); 430 return (const struct samsung_aes_variant *)match->data; 431 } 432 return (const struct samsung_aes_variant *) 433 platform_get_device_id(pdev)->driver_data; 434 } 435 436 static struct s5p_aes_dev *s5p_dev; 437 438 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, 439 const struct scatterlist *sg) 440 { 441 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); 442 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); 443 } 444 445 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, 446 const struct scatterlist *sg) 447 { 448 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); 449 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); 450 } 451 452 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) 453 { 454 int len; 455 456 if (!*sg) 457 return; 458 459 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE); 460 free_pages((unsigned long)sg_virt(*sg), get_order(len)); 461 462 kfree(*sg); 463 *sg = NULL; 464 } 465 466 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, 467 unsigned int nbytes, int out) 468 { 469 struct scatter_walk walk; 470 471 if (!nbytes) 472 return; 473 474 scatterwalk_start(&walk, sg); 475 scatterwalk_copychunks(buf, &walk, nbytes, out); 476 scatterwalk_done(&walk, out, 0); 477 } 478 479 static void s5p_sg_done(struct s5p_aes_dev *dev) 480 { 481 struct ablkcipher_request *req = dev->req; 482 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req); 483 484 if (dev->sg_dst_cpy) { 485 dev_dbg(dev->dev, 486 "Copying %d bytes of output data back to original place\n", 487 dev->req->nbytes); 488 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, 489 dev->req->nbytes, 1); 490 } 491 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 492 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 493 if (reqctx->mode & FLAGS_AES_CBC) 494 memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE); 495 496 else if (reqctx->mode & FLAGS_AES_CTR) 497 memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE); 498 } 499 500 /* Calls the completion. Cannot be called with dev->lock hold. */ 501 static void s5p_aes_complete(struct ablkcipher_request *req, int err) 502 { 503 req->base.complete(&req->base, err); 504 } 505 506 static void s5p_unset_outdata(struct s5p_aes_dev *dev) 507 { 508 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); 509 } 510 511 static void s5p_unset_indata(struct s5p_aes_dev *dev) 512 { 513 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); 514 } 515 516 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, 517 struct scatterlist **dst) 518 { 519 void *pages; 520 int len; 521 522 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); 523 if (!*dst) 524 return -ENOMEM; 525 526 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE); 527 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); 528 if (!pages) { 529 kfree(*dst); 530 *dst = NULL; 531 return -ENOMEM; 532 } 533 534 s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0); 535 536 sg_init_table(*dst, 1); 537 sg_set_buf(*dst, pages, len); 538 539 return 0; 540 } 541 542 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) 543 { 544 if (!sg->length) 545 return -EINVAL; 546 547 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE)) 548 return -ENOMEM; 549 550 dev->sg_dst = sg; 551 552 return 0; 553 } 554 555 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) 556 { 557 if (!sg->length) 558 return -EINVAL; 559 560 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE)) 561 return -ENOMEM; 562 563 dev->sg_src = sg; 564 565 return 0; 566 } 567 568 /* 569 * Returns -ERRNO on error (mapping of new data failed). 570 * On success returns: 571 * - 0 if there is no more data, 572 * - 1 if new transmitting (output) data is ready and its address+length 573 * have to be written to device (by calling s5p_set_dma_outdata()). 574 */ 575 static int s5p_aes_tx(struct s5p_aes_dev *dev) 576 { 577 int ret = 0; 578 579 s5p_unset_outdata(dev); 580 581 if (!sg_is_last(dev->sg_dst)) { 582 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); 583 if (!ret) 584 ret = 1; 585 } 586 587 return ret; 588 } 589 590 /* 591 * Returns -ERRNO on error (mapping of new data failed). 592 * On success returns: 593 * - 0 if there is no more data, 594 * - 1 if new receiving (input) data is ready and its address+length 595 * have to be written to device (by calling s5p_set_dma_indata()). 596 */ 597 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) 598 { 599 int ret = 0; 600 601 s5p_unset_indata(dev); 602 603 if (!sg_is_last(dev->sg_src)) { 604 ret = s5p_set_indata(dev, sg_next(dev->sg_src)); 605 if (!ret) 606 ret = 1; 607 } 608 609 return ret; 610 } 611 612 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) 613 { 614 return __raw_readl(dd->io_hash_base + offset); 615 } 616 617 static inline void s5p_hash_write(struct s5p_aes_dev *dd, 618 u32 offset, u32 value) 619 { 620 __raw_writel(value, dd->io_hash_base + offset); 621 } 622 623 /** 624 * s5p_set_dma_hashdata() - start DMA with sg 625 * @dev: device 626 * @sg: scatterlist ready to DMA transmit 627 */ 628 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, 629 const struct scatterlist *sg) 630 { 631 dev->hash_sg_cnt--; 632 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); 633 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ 634 } 635 636 /** 637 * s5p_hash_rx() - get next hash_sg_iter 638 * @dev: device 639 * 640 * Return: 641 * 2 if there is no more data and it is UPDATE op 642 * 1 if new receiving (input) data is ready and can be written to device 643 * 0 if there is no more data and it is FINAL op 644 */ 645 static int s5p_hash_rx(struct s5p_aes_dev *dev) 646 { 647 if (dev->hash_sg_cnt > 0) { 648 dev->hash_sg_iter = sg_next(dev->hash_sg_iter); 649 return 1; 650 } 651 652 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); 653 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) 654 return 0; 655 656 return 2; 657 } 658 659 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) 660 { 661 struct platform_device *pdev = dev_id; 662 struct s5p_aes_dev *dev = platform_get_drvdata(pdev); 663 struct ablkcipher_request *req; 664 int err_dma_tx = 0; 665 int err_dma_rx = 0; 666 int err_dma_hx = 0; 667 bool tx_end = false; 668 bool hx_end = false; 669 unsigned long flags; 670 u32 status, st_bits; 671 int err; 672 673 spin_lock_irqsave(&dev->lock, flags); 674 675 /* 676 * Handle rx or tx interrupt. If there is still data (scatterlist did not 677 * reach end), then map next scatterlist entry. 678 * In case of such mapping error, s5p_aes_complete() should be called. 679 * 680 * If there is no more data in tx scatter list, call s5p_aes_complete() 681 * and schedule new tasklet. 682 * 683 * Handle hx interrupt. If there is still data map next entry. 684 */ 685 status = SSS_READ(dev, FCINTSTAT); 686 if (status & SSS_FCINTSTAT_BRDMAINT) 687 err_dma_rx = s5p_aes_rx(dev); 688 689 if (status & SSS_FCINTSTAT_BTDMAINT) { 690 if (sg_is_last(dev->sg_dst)) 691 tx_end = true; 692 err_dma_tx = s5p_aes_tx(dev); 693 } 694 695 if (status & SSS_FCINTSTAT_HRDMAINT) 696 err_dma_hx = s5p_hash_rx(dev); 697 698 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | 699 SSS_FCINTSTAT_HRDMAINT); 700 /* clear DMA bits */ 701 SSS_WRITE(dev, FCINTPEND, st_bits); 702 703 /* clear HASH irq bits */ 704 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { 705 /* cannot have both HPART and HDONE */ 706 if (status & SSS_FCINTSTAT_HPARTINT) 707 st_bits = SSS_HASH_STATUS_PARTIAL_DONE; 708 709 if (status & SSS_FCINTSTAT_HDONEINT) 710 st_bits = SSS_HASH_STATUS_MSG_DONE; 711 712 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); 713 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); 714 hx_end = true; 715 /* when DONE or PART, do not handle HASH DMA */ 716 err_dma_hx = 0; 717 } 718 719 if (err_dma_rx < 0) { 720 err = err_dma_rx; 721 goto error; 722 } 723 if (err_dma_tx < 0) { 724 err = err_dma_tx; 725 goto error; 726 } 727 728 if (tx_end) { 729 s5p_sg_done(dev); 730 if (err_dma_hx == 1) 731 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 732 733 spin_unlock_irqrestore(&dev->lock, flags); 734 735 s5p_aes_complete(dev->req, 0); 736 /* Device is still busy */ 737 tasklet_schedule(&dev->tasklet); 738 } else { 739 /* 740 * Writing length of DMA block (either receiving or 741 * transmitting) will start the operation immediately, so this 742 * should be done at the end (even after clearing pending 743 * interrupts to not miss the interrupt). 744 */ 745 if (err_dma_tx == 1) 746 s5p_set_dma_outdata(dev, dev->sg_dst); 747 if (err_dma_rx == 1) 748 s5p_set_dma_indata(dev, dev->sg_src); 749 if (err_dma_hx == 1) 750 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 751 752 spin_unlock_irqrestore(&dev->lock, flags); 753 } 754 755 goto hash_irq_end; 756 757 error: 758 s5p_sg_done(dev); 759 dev->busy = false; 760 req = dev->req; 761 if (err_dma_hx == 1) 762 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 763 764 spin_unlock_irqrestore(&dev->lock, flags); 765 s5p_aes_complete(req, err); 766 767 hash_irq_end: 768 /* 769 * Note about else if: 770 * when hash_sg_iter reaches end and its UPDATE op, 771 * issue SSS_HASH_PAUSE and wait for HPART irq 772 */ 773 if (hx_end) 774 tasklet_schedule(&dev->hash_tasklet); 775 else if (err_dma_hx == 2) 776 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, 777 SSS_HASH_PAUSE); 778 779 return IRQ_HANDLED; 780 } 781 782 /** 783 * s5p_hash_read_msg() - read message or IV from HW 784 * @req: AHASH request 785 */ 786 static void s5p_hash_read_msg(struct ahash_request *req) 787 { 788 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 789 struct s5p_aes_dev *dd = ctx->dd; 790 u32 *hash = (u32 *)ctx->digest; 791 unsigned int i; 792 793 for (i = 0; i < ctx->nregs; i++) 794 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); 795 } 796 797 /** 798 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. 799 * @dd: device 800 * @ctx: request context 801 */ 802 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, 803 const struct s5p_hash_reqctx *ctx) 804 { 805 const u32 *hash = (const u32 *)ctx->digest; 806 unsigned int i; 807 808 for (i = 0; i < ctx->nregs; i++) 809 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); 810 } 811 812 /** 813 * s5p_hash_write_iv() - write IV for next partial/finup op. 814 * @req: AHASH request 815 */ 816 static void s5p_hash_write_iv(struct ahash_request *req) 817 { 818 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 819 820 s5p_hash_write_ctx_iv(ctx->dd, ctx); 821 } 822 823 /** 824 * s5p_hash_copy_result() - copy digest into req->result 825 * @req: AHASH request 826 */ 827 static void s5p_hash_copy_result(struct ahash_request *req) 828 { 829 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 830 831 if (!req->result) 832 return; 833 834 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); 835 } 836 837 /** 838 * s5p_hash_dma_flush() - flush HASH DMA 839 * @dev: secss device 840 */ 841 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) 842 { 843 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); 844 } 845 846 /** 847 * s5p_hash_dma_enable() - enable DMA mode for HASH 848 * @dev: secss device 849 * 850 * enable DMA mode for HASH 851 */ 852 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) 853 { 854 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); 855 } 856 857 /** 858 * s5p_hash_irq_disable() - disable irq HASH signals 859 * @dev: secss device 860 * @flags: bitfield with irq's to be disabled 861 */ 862 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) 863 { 864 SSS_WRITE(dev, FCINTENCLR, flags); 865 } 866 867 /** 868 * s5p_hash_irq_enable() - enable irq signals 869 * @dev: secss device 870 * @flags: bitfield with irq's to be enabled 871 */ 872 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) 873 { 874 SSS_WRITE(dev, FCINTENSET, flags); 875 } 876 877 /** 878 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH 879 * @dev: secss device 880 * @hashflow: HASH stream flow with/without crypto AES/DES 881 */ 882 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) 883 { 884 unsigned long flags; 885 u32 flow; 886 887 spin_lock_irqsave(&dev->lock, flags); 888 889 flow = SSS_READ(dev, FCFIFOCTRL); 890 flow &= ~SSS_HASHIN_MASK; 891 flow |= hashflow; 892 SSS_WRITE(dev, FCFIFOCTRL, flow); 893 894 spin_unlock_irqrestore(&dev->lock, flags); 895 } 896 897 /** 898 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS 899 * @dev: secss device 900 * @hashflow: HASH stream flow with/without AES/DES 901 * 902 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, 903 * enable HASH irq's HRDMA, HDONE, HPART 904 */ 905 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) 906 { 907 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | 908 SSS_FCINTENCLR_HDONEINTENCLR | 909 SSS_FCINTENCLR_HPARTINTENCLR); 910 s5p_hash_dma_flush(dev); 911 912 s5p_hash_dma_enable(dev); 913 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); 914 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | 915 SSS_FCINTENSET_HDONEINTENSET | 916 SSS_FCINTENSET_HPARTINTENSET); 917 } 918 919 /** 920 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing 921 * @dd: secss device 922 * @length: length for request 923 * @final: true if final op 924 * 925 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called 926 * after previous updates, fill up IV words. For final, calculate and set 927 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH 928 * length as 2^63 so it will be never reached and set to zero prelow and 929 * prehigh. 930 * 931 * This function does not start DMA transfer. 932 */ 933 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, 934 bool final) 935 { 936 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 937 u32 prelow, prehigh, low, high; 938 u32 configflags, swapflags; 939 u64 tmplen; 940 941 configflags = ctx->engine | SSS_HASH_INIT_BIT; 942 943 if (likely(ctx->digcnt)) { 944 s5p_hash_write_ctx_iv(dd, ctx); 945 configflags |= SSS_HASH_USER_IV_EN; 946 } 947 948 if (final) { 949 /* number of bytes for last part */ 950 low = length; 951 high = 0; 952 /* total number of bits prev hashed */ 953 tmplen = ctx->digcnt * 8; 954 prelow = (u32)tmplen; 955 prehigh = (u32)(tmplen >> 32); 956 } else { 957 prelow = 0; 958 prehigh = 0; 959 low = 0; 960 high = BIT(31); 961 } 962 963 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | 964 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; 965 966 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); 967 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); 968 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); 969 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); 970 971 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); 972 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); 973 } 974 975 /** 976 * s5p_hash_xmit_dma() - start DMA hash processing 977 * @dd: secss device 978 * @length: length for request 979 * @final: true if final op 980 * 981 * Update digcnt here, as it is needed for finup/final op. 982 */ 983 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, 984 bool final) 985 { 986 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 987 unsigned int cnt; 988 989 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 990 if (!cnt) { 991 dev_err(dd->dev, "dma_map_sg error\n"); 992 ctx->error = true; 993 return -EINVAL; 994 } 995 996 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 997 dd->hash_sg_iter = ctx->sg; 998 dd->hash_sg_cnt = cnt; 999 s5p_hash_write_ctrl(dd, length, final); 1000 ctx->digcnt += length; 1001 ctx->total -= length; 1002 1003 /* catch last interrupt */ 1004 if (final) 1005 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); 1006 1007 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ 1008 1009 return -EINPROGRESS; 1010 } 1011 1012 /** 1013 * s5p_hash_copy_sgs() - copy request's bytes into new buffer 1014 * @ctx: request context 1015 * @sg: source scatterlist request 1016 * @new_len: number of bytes to process from sg 1017 * 1018 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf 1019 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] 1020 * with allocated buffer. 1021 * 1022 * Set bit in dd->hash_flag so we can free it after irq ends processing. 1023 */ 1024 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, 1025 struct scatterlist *sg, unsigned int new_len) 1026 { 1027 unsigned int pages, len; 1028 void *buf; 1029 1030 len = new_len + ctx->bufcnt; 1031 pages = get_order(len); 1032 1033 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 1034 if (!buf) { 1035 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); 1036 ctx->error = true; 1037 return -ENOMEM; 1038 } 1039 1040 if (ctx->bufcnt) 1041 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 1042 1043 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, 1044 new_len, 0); 1045 sg_init_table(ctx->sgl, 1); 1046 sg_set_buf(ctx->sgl, buf, len); 1047 ctx->sg = ctx->sgl; 1048 ctx->sg_len = 1; 1049 ctx->bufcnt = 0; 1050 ctx->skip = 0; 1051 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy 1058 * @ctx: request context 1059 * @sg: source scatterlist request 1060 * @new_len: number of bytes to process from sg 1061 * 1062 * Allocate new scatterlist table, copy data for HASH into it. If there was 1063 * xmit_buf filled, prepare it first, then copy page, length and offset from 1064 * source sg into it, adjusting begin and/or end for skip offset and 1065 * hash_later value. 1066 * 1067 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free 1068 * it after irq ends processing. 1069 */ 1070 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, 1071 struct scatterlist *sg, unsigned int new_len) 1072 { 1073 unsigned int skip = ctx->skip, n = sg_nents(sg); 1074 struct scatterlist *tmp; 1075 unsigned int len; 1076 1077 if (ctx->bufcnt) 1078 n++; 1079 1080 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 1081 if (!ctx->sg) { 1082 ctx->error = true; 1083 return -ENOMEM; 1084 } 1085 1086 sg_init_table(ctx->sg, n); 1087 1088 tmp = ctx->sg; 1089 1090 ctx->sg_len = 0; 1091 1092 if (ctx->bufcnt) { 1093 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 1094 tmp = sg_next(tmp); 1095 ctx->sg_len++; 1096 } 1097 1098 while (sg && skip >= sg->length) { 1099 skip -= sg->length; 1100 sg = sg_next(sg); 1101 } 1102 1103 while (sg && new_len) { 1104 len = sg->length - skip; 1105 if (new_len < len) 1106 len = new_len; 1107 1108 new_len -= len; 1109 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); 1110 skip = 0; 1111 if (new_len <= 0) 1112 sg_mark_end(tmp); 1113 1114 tmp = sg_next(tmp); 1115 ctx->sg_len++; 1116 sg = sg_next(sg); 1117 } 1118 1119 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); 1120 1121 return 0; 1122 } 1123 1124 /** 1125 * s5p_hash_prepare_sgs() - prepare sg for processing 1126 * @ctx: request context 1127 * @sg: source scatterlist request 1128 * @nbytes: number of bytes to process from sg 1129 * @final: final flag 1130 * 1131 * Check two conditions: (1) if buffers in sg have len aligned data, and (2) 1132 * sg table have good aligned elements (list_ok). If one of this checks fails, 1133 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy 1134 * data into this buffer and prepare request in sgl, or (2) allocates new sg 1135 * table and prepare sg elements. 1136 * 1137 * For digest or finup all conditions can be good, and we may not need any 1138 * fixes. 1139 */ 1140 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, 1141 struct scatterlist *sg, 1142 unsigned int new_len, bool final) 1143 { 1144 unsigned int skip = ctx->skip, nbytes = new_len, n = 0; 1145 bool aligned = true, list_ok = true; 1146 struct scatterlist *sg_tmp = sg; 1147 1148 if (!sg || !sg->length || !new_len) 1149 return 0; 1150 1151 if (skip || !final) 1152 list_ok = false; 1153 1154 while (nbytes > 0 && sg_tmp) { 1155 n++; 1156 if (skip >= sg_tmp->length) { 1157 skip -= sg_tmp->length; 1158 if (!sg_tmp->length) { 1159 aligned = false; 1160 break; 1161 } 1162 } else { 1163 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { 1164 aligned = false; 1165 break; 1166 } 1167 1168 if (nbytes < sg_tmp->length - skip) { 1169 list_ok = false; 1170 break; 1171 } 1172 1173 nbytes -= sg_tmp->length - skip; 1174 skip = 0; 1175 } 1176 1177 sg_tmp = sg_next(sg_tmp); 1178 } 1179 1180 if (!aligned) 1181 return s5p_hash_copy_sgs(ctx, sg, new_len); 1182 else if (!list_ok) 1183 return s5p_hash_copy_sg_lists(ctx, sg, new_len); 1184 1185 /* 1186 * Have aligned data from previous operation and/or current 1187 * Note: will enter here only if (digest or finup) and aligned 1188 */ 1189 if (ctx->bufcnt) { 1190 ctx->sg_len = n; 1191 sg_init_table(ctx->sgl, 2); 1192 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); 1193 sg_chain(ctx->sgl, 2, sg); 1194 ctx->sg = ctx->sgl; 1195 ctx->sg_len++; 1196 } else { 1197 ctx->sg = sg; 1198 ctx->sg_len = n; 1199 } 1200 1201 return 0; 1202 } 1203 1204 /** 1205 * s5p_hash_prepare_request() - prepare request for processing 1206 * @req: AHASH request 1207 * @update: true if UPDATE op 1208 * 1209 * Note 1: we can have update flag _and_ final flag at the same time. 1210 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or 1211 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or 1212 * we have final op 1213 */ 1214 static int s5p_hash_prepare_request(struct ahash_request *req, bool update) 1215 { 1216 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1217 bool final = ctx->finup; 1218 int xmit_len, hash_later, nbytes; 1219 int ret; 1220 1221 if (update) 1222 nbytes = req->nbytes; 1223 else 1224 nbytes = 0; 1225 1226 ctx->total = nbytes + ctx->bufcnt; 1227 if (!ctx->total) 1228 return 0; 1229 1230 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { 1231 /* bytes left from previous request, so fill up to BUFLEN */ 1232 int len = BUFLEN - ctx->bufcnt % BUFLEN; 1233 1234 if (len > nbytes) 1235 len = nbytes; 1236 1237 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1238 0, len, 0); 1239 ctx->bufcnt += len; 1240 nbytes -= len; 1241 ctx->skip = len; 1242 } else { 1243 ctx->skip = 0; 1244 } 1245 1246 if (ctx->bufcnt) 1247 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); 1248 1249 xmit_len = ctx->total; 1250 if (final) { 1251 hash_later = 0; 1252 } else { 1253 if (IS_ALIGNED(xmit_len, BUFLEN)) 1254 xmit_len -= BUFLEN; 1255 else 1256 xmit_len -= xmit_len & (BUFLEN - 1); 1257 1258 hash_later = ctx->total - xmit_len; 1259 /* copy hash_later bytes from end of req->src */ 1260 /* previous bytes are in xmit_buf, so no overwrite */ 1261 scatterwalk_map_and_copy(ctx->buffer, req->src, 1262 req->nbytes - hash_later, 1263 hash_later, 0); 1264 } 1265 1266 if (xmit_len > BUFLEN) { 1267 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, 1268 final); 1269 if (ret) 1270 return ret; 1271 } else { 1272 /* have buffered data only */ 1273 if (unlikely(!ctx->bufcnt)) { 1274 /* first update didn't fill up buffer */ 1275 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, 1276 0, xmit_len, 0); 1277 } 1278 1279 sg_init_table(ctx->sgl, 1); 1280 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); 1281 1282 ctx->sg = ctx->sgl; 1283 ctx->sg_len = 1; 1284 } 1285 1286 ctx->bufcnt = hash_later; 1287 if (!final) 1288 ctx->total = xmit_len; 1289 1290 return 0; 1291 } 1292 1293 /** 1294 * s5p_hash_update_dma_stop() - unmap DMA 1295 * @dd: secss device 1296 * 1297 * Unmap scatterlist ctx->sg. 1298 */ 1299 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) 1300 { 1301 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 1302 1303 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 1304 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 1305 } 1306 1307 /** 1308 * s5p_hash_finish() - copy calculated digest to crypto layer 1309 * @req: AHASH request 1310 */ 1311 static void s5p_hash_finish(struct ahash_request *req) 1312 { 1313 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1314 struct s5p_aes_dev *dd = ctx->dd; 1315 1316 if (ctx->digcnt) 1317 s5p_hash_copy_result(req); 1318 1319 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); 1320 } 1321 1322 /** 1323 * s5p_hash_finish_req() - finish request 1324 * @req: AHASH request 1325 * @err: error 1326 */ 1327 static void s5p_hash_finish_req(struct ahash_request *req, int err) 1328 { 1329 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1330 struct s5p_aes_dev *dd = ctx->dd; 1331 unsigned long flags; 1332 1333 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) 1334 free_pages((unsigned long)sg_virt(ctx->sg), 1335 get_order(ctx->sg->length)); 1336 1337 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) 1338 kfree(ctx->sg); 1339 1340 ctx->sg = NULL; 1341 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | 1342 BIT(HASH_FLAGS_SGS_COPIED)); 1343 1344 if (!err && !ctx->error) { 1345 s5p_hash_read_msg(req); 1346 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) 1347 s5p_hash_finish(req); 1348 } else { 1349 ctx->error = true; 1350 } 1351 1352 spin_lock_irqsave(&dd->hash_lock, flags); 1353 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | 1354 BIT(HASH_FLAGS_DMA_READY) | 1355 BIT(HASH_FLAGS_OUTPUT_READY)); 1356 spin_unlock_irqrestore(&dd->hash_lock, flags); 1357 1358 if (req->base.complete) 1359 req->base.complete(&req->base, err); 1360 } 1361 1362 /** 1363 * s5p_hash_handle_queue() - handle hash queue 1364 * @dd: device s5p_aes_dev 1365 * @req: AHASH request 1366 * 1367 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the 1368 * device then processes the first request from the dd->queue 1369 * 1370 * Returns: see s5p_hash_final below. 1371 */ 1372 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, 1373 struct ahash_request *req) 1374 { 1375 struct crypto_async_request *async_req, *backlog; 1376 struct s5p_hash_reqctx *ctx; 1377 unsigned long flags; 1378 int err = 0, ret = 0; 1379 1380 retry: 1381 spin_lock_irqsave(&dd->hash_lock, flags); 1382 if (req) 1383 ret = ahash_enqueue_request(&dd->hash_queue, req); 1384 1385 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1386 spin_unlock_irqrestore(&dd->hash_lock, flags); 1387 return ret; 1388 } 1389 1390 backlog = crypto_get_backlog(&dd->hash_queue); 1391 async_req = crypto_dequeue_request(&dd->hash_queue); 1392 if (async_req) 1393 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); 1394 1395 spin_unlock_irqrestore(&dd->hash_lock, flags); 1396 1397 if (!async_req) 1398 return ret; 1399 1400 if (backlog) 1401 backlog->complete(backlog, -EINPROGRESS); 1402 1403 req = ahash_request_cast(async_req); 1404 dd->hash_req = req; 1405 ctx = ahash_request_ctx(req); 1406 1407 err = s5p_hash_prepare_request(req, ctx->op_update); 1408 if (err || !ctx->total) 1409 goto out; 1410 1411 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", 1412 ctx->op_update, req->nbytes); 1413 1414 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); 1415 if (ctx->digcnt) 1416 s5p_hash_write_iv(req); /* restore hash IV */ 1417 1418 if (ctx->op_update) { /* HASH_OP_UPDATE */ 1419 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); 1420 if (err != -EINPROGRESS && ctx->finup && !ctx->error) 1421 /* no final() after finup() */ 1422 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1423 } else { /* HASH_OP_FINAL */ 1424 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1425 } 1426 out: 1427 if (err != -EINPROGRESS) { 1428 /* hash_tasklet_cb will not finish it, so do it here */ 1429 s5p_hash_finish_req(req, err); 1430 req = NULL; 1431 1432 /* 1433 * Execute next request immediately if there is anything 1434 * in queue. 1435 */ 1436 goto retry; 1437 } 1438 1439 return ret; 1440 } 1441 1442 /** 1443 * s5p_hash_tasklet_cb() - hash tasklet 1444 * @data: ptr to s5p_aes_dev 1445 */ 1446 static void s5p_hash_tasklet_cb(unsigned long data) 1447 { 1448 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; 1449 1450 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1451 s5p_hash_handle_queue(dd, NULL); 1452 return; 1453 } 1454 1455 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { 1456 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, 1457 &dd->hash_flags)) { 1458 s5p_hash_update_dma_stop(dd); 1459 } 1460 1461 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, 1462 &dd->hash_flags)) { 1463 /* hash or semi-hash ready */ 1464 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); 1465 goto finish; 1466 } 1467 } 1468 1469 return; 1470 1471 finish: 1472 /* finish curent request */ 1473 s5p_hash_finish_req(dd->hash_req, 0); 1474 1475 /* If we are not busy, process next req */ 1476 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) 1477 s5p_hash_handle_queue(dd, NULL); 1478 } 1479 1480 /** 1481 * s5p_hash_enqueue() - enqueue request 1482 * @req: AHASH request 1483 * @op: operation UPDATE (true) or FINAL (false) 1484 * 1485 * Returns: see s5p_hash_final below. 1486 */ 1487 static int s5p_hash_enqueue(struct ahash_request *req, bool op) 1488 { 1489 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1490 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1491 1492 ctx->op_update = op; 1493 1494 return s5p_hash_handle_queue(tctx->dd, req); 1495 } 1496 1497 /** 1498 * s5p_hash_update() - process the hash input data 1499 * @req: AHASH request 1500 * 1501 * If request will fit in buffer, copy it and return immediately 1502 * else enqueue it with OP_UPDATE. 1503 * 1504 * Returns: see s5p_hash_final below. 1505 */ 1506 static int s5p_hash_update(struct ahash_request *req) 1507 { 1508 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1509 1510 if (!req->nbytes) 1511 return 0; 1512 1513 if (ctx->bufcnt + req->nbytes <= BUFLEN) { 1514 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1515 0, req->nbytes, 0); 1516 ctx->bufcnt += req->nbytes; 1517 return 0; 1518 } 1519 1520 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ 1521 } 1522 1523 /** 1524 * s5p_hash_shash_digest() - calculate shash digest 1525 * @tfm: crypto transformation 1526 * @flags: tfm flags 1527 * @data: input data 1528 * @len: length of data 1529 * @out: output buffer 1530 */ 1531 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags, 1532 const u8 *data, unsigned int len, u8 *out) 1533 { 1534 SHASH_DESC_ON_STACK(shash, tfm); 1535 1536 shash->tfm = tfm; 1537 shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP; 1538 1539 return crypto_shash_digest(shash, data, len, out); 1540 } 1541 1542 /** 1543 * s5p_hash_final_shash() - calculate shash digest 1544 * @req: AHASH request 1545 */ 1546 static int s5p_hash_final_shash(struct ahash_request *req) 1547 { 1548 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1549 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1550 1551 return s5p_hash_shash_digest(tctx->fallback, req->base.flags, 1552 ctx->buffer, ctx->bufcnt, req->result); 1553 } 1554 1555 /** 1556 * s5p_hash_final() - close up hash and calculate digest 1557 * @req: AHASH request 1558 * 1559 * Note: in final req->src do not have any data, and req->nbytes can be 1560 * non-zero. 1561 * 1562 * If there were no input data processed yet and the buffered hash data is 1563 * less than BUFLEN (64) then calculate the final hash immediately by using 1564 * SW algorithm fallback. 1565 * 1566 * Otherwise enqueues the current AHASH request with OP_FINAL operation op 1567 * and finalize hash message in HW. Note that if digcnt!=0 then there were 1568 * previous update op, so there are always some buffered bytes in ctx->buffer, 1569 * which means that ctx->bufcnt!=0 1570 * 1571 * Returns: 1572 * 0 if the request has been processed immediately, 1573 * -EINPROGRESS if the operation has been queued for later execution or is set 1574 * to processing by HW, 1575 * -EBUSY if queue is full and request should be resubmitted later, 1576 * other negative values denotes an error. 1577 */ 1578 static int s5p_hash_final(struct ahash_request *req) 1579 { 1580 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1581 1582 ctx->finup = true; 1583 if (ctx->error) 1584 return -EINVAL; /* uncompleted hash is not needed */ 1585 1586 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) 1587 return s5p_hash_final_shash(req); 1588 1589 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ 1590 } 1591 1592 /** 1593 * s5p_hash_finup() - process last req->src and calculate digest 1594 * @req: AHASH request containing the last update data 1595 * 1596 * Return values: see s5p_hash_final above. 1597 */ 1598 static int s5p_hash_finup(struct ahash_request *req) 1599 { 1600 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1601 int err1, err2; 1602 1603 ctx->finup = true; 1604 1605 err1 = s5p_hash_update(req); 1606 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1607 return err1; 1608 1609 /* 1610 * final() has to be always called to cleanup resources even if 1611 * update() failed, except EINPROGRESS or calculate digest for small 1612 * size 1613 */ 1614 err2 = s5p_hash_final(req); 1615 1616 return err1 ?: err2; 1617 } 1618 1619 /** 1620 * s5p_hash_init() - initialize AHASH request contex 1621 * @req: AHASH request 1622 * 1623 * Init async hash request context. 1624 */ 1625 static int s5p_hash_init(struct ahash_request *req) 1626 { 1627 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1628 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1629 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1630 1631 ctx->dd = tctx->dd; 1632 ctx->error = false; 1633 ctx->finup = false; 1634 ctx->bufcnt = 0; 1635 ctx->digcnt = 0; 1636 ctx->total = 0; 1637 ctx->skip = 0; 1638 1639 dev_dbg(tctx->dd->dev, "init: digest size: %d\n", 1640 crypto_ahash_digestsize(tfm)); 1641 1642 switch (crypto_ahash_digestsize(tfm)) { 1643 case MD5_DIGEST_SIZE: 1644 ctx->engine = SSS_HASH_ENGINE_MD5; 1645 ctx->nregs = HASH_MD5_MAX_REG; 1646 break; 1647 case SHA1_DIGEST_SIZE: 1648 ctx->engine = SSS_HASH_ENGINE_SHA1; 1649 ctx->nregs = HASH_SHA1_MAX_REG; 1650 break; 1651 case SHA256_DIGEST_SIZE: 1652 ctx->engine = SSS_HASH_ENGINE_SHA256; 1653 ctx->nregs = HASH_SHA256_MAX_REG; 1654 break; 1655 default: 1656 ctx->error = true; 1657 return -EINVAL; 1658 } 1659 1660 return 0; 1661 } 1662 1663 /** 1664 * s5p_hash_digest - calculate digest from req->src 1665 * @req: AHASH request 1666 * 1667 * Return values: see s5p_hash_final above. 1668 */ 1669 static int s5p_hash_digest(struct ahash_request *req) 1670 { 1671 return s5p_hash_init(req) ?: s5p_hash_finup(req); 1672 } 1673 1674 /** 1675 * s5p_hash_cra_init_alg - init crypto alg transformation 1676 * @tfm: crypto transformation 1677 */ 1678 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) 1679 { 1680 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1681 const char *alg_name = crypto_tfm_alg_name(tfm); 1682 1683 tctx->dd = s5p_dev; 1684 /* Allocate a fallback and abort if it failed. */ 1685 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1686 CRYPTO_ALG_NEED_FALLBACK); 1687 if (IS_ERR(tctx->fallback)) { 1688 pr_err("fallback alloc fails for '%s'\n", alg_name); 1689 return PTR_ERR(tctx->fallback); 1690 } 1691 1692 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1693 sizeof(struct s5p_hash_reqctx) + BUFLEN); 1694 1695 return 0; 1696 } 1697 1698 /** 1699 * s5p_hash_cra_init - init crypto tfm 1700 * @tfm: crypto transformation 1701 */ 1702 static int s5p_hash_cra_init(struct crypto_tfm *tfm) 1703 { 1704 return s5p_hash_cra_init_alg(tfm); 1705 } 1706 1707 /** 1708 * s5p_hash_cra_exit - exit crypto tfm 1709 * @tfm: crypto transformation 1710 * 1711 * free allocated fallback 1712 */ 1713 static void s5p_hash_cra_exit(struct crypto_tfm *tfm) 1714 { 1715 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1716 1717 crypto_free_shash(tctx->fallback); 1718 tctx->fallback = NULL; 1719 } 1720 1721 /** 1722 * s5p_hash_export - export hash state 1723 * @req: AHASH request 1724 * @out: buffer for exported state 1725 */ 1726 static int s5p_hash_export(struct ahash_request *req, void *out) 1727 { 1728 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1729 1730 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); 1731 1732 return 0; 1733 } 1734 1735 /** 1736 * s5p_hash_import - import hash state 1737 * @req: AHASH request 1738 * @in: buffer with state to be imported from 1739 */ 1740 static int s5p_hash_import(struct ahash_request *req, const void *in) 1741 { 1742 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1743 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1744 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1745 const struct s5p_hash_reqctx *ctx_in = in; 1746 1747 memcpy(ctx, in, sizeof(*ctx) + BUFLEN); 1748 if (ctx_in->bufcnt > BUFLEN) { 1749 ctx->error = true; 1750 return -EINVAL; 1751 } 1752 1753 ctx->dd = tctx->dd; 1754 ctx->error = false; 1755 1756 return 0; 1757 } 1758 1759 static struct ahash_alg algs_sha1_md5_sha256[] = { 1760 { 1761 .init = s5p_hash_init, 1762 .update = s5p_hash_update, 1763 .final = s5p_hash_final, 1764 .finup = s5p_hash_finup, 1765 .digest = s5p_hash_digest, 1766 .export = s5p_hash_export, 1767 .import = s5p_hash_import, 1768 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1769 .halg.digestsize = SHA1_DIGEST_SIZE, 1770 .halg.base = { 1771 .cra_name = "sha1", 1772 .cra_driver_name = "exynos-sha1", 1773 .cra_priority = 100, 1774 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1775 CRYPTO_ALG_ASYNC | 1776 CRYPTO_ALG_NEED_FALLBACK, 1777 .cra_blocksize = HASH_BLOCK_SIZE, 1778 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1779 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1780 .cra_module = THIS_MODULE, 1781 .cra_init = s5p_hash_cra_init, 1782 .cra_exit = s5p_hash_cra_exit, 1783 } 1784 }, 1785 { 1786 .init = s5p_hash_init, 1787 .update = s5p_hash_update, 1788 .final = s5p_hash_final, 1789 .finup = s5p_hash_finup, 1790 .digest = s5p_hash_digest, 1791 .export = s5p_hash_export, 1792 .import = s5p_hash_import, 1793 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1794 .halg.digestsize = MD5_DIGEST_SIZE, 1795 .halg.base = { 1796 .cra_name = "md5", 1797 .cra_driver_name = "exynos-md5", 1798 .cra_priority = 100, 1799 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1800 CRYPTO_ALG_ASYNC | 1801 CRYPTO_ALG_NEED_FALLBACK, 1802 .cra_blocksize = HASH_BLOCK_SIZE, 1803 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1804 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1805 .cra_module = THIS_MODULE, 1806 .cra_init = s5p_hash_cra_init, 1807 .cra_exit = s5p_hash_cra_exit, 1808 } 1809 }, 1810 { 1811 .init = s5p_hash_init, 1812 .update = s5p_hash_update, 1813 .final = s5p_hash_final, 1814 .finup = s5p_hash_finup, 1815 .digest = s5p_hash_digest, 1816 .export = s5p_hash_export, 1817 .import = s5p_hash_import, 1818 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1819 .halg.digestsize = SHA256_DIGEST_SIZE, 1820 .halg.base = { 1821 .cra_name = "sha256", 1822 .cra_driver_name = "exynos-sha256", 1823 .cra_priority = 100, 1824 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1825 CRYPTO_ALG_ASYNC | 1826 CRYPTO_ALG_NEED_FALLBACK, 1827 .cra_blocksize = HASH_BLOCK_SIZE, 1828 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1829 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1830 .cra_module = THIS_MODULE, 1831 .cra_init = s5p_hash_cra_init, 1832 .cra_exit = s5p_hash_cra_exit, 1833 } 1834 } 1835 1836 }; 1837 1838 static void s5p_set_aes(struct s5p_aes_dev *dev, 1839 const u8 *key, const u8 *iv, const u8 *ctr, 1840 unsigned int keylen) 1841 { 1842 void __iomem *keystart; 1843 1844 if (iv) 1845 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 1846 AES_BLOCK_SIZE); 1847 1848 if (ctr) 1849 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, 1850 AES_BLOCK_SIZE); 1851 1852 if (keylen == AES_KEYSIZE_256) 1853 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); 1854 else if (keylen == AES_KEYSIZE_192) 1855 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); 1856 else 1857 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); 1858 1859 memcpy_toio(keystart, key, keylen); 1860 } 1861 1862 static bool s5p_is_sg_aligned(struct scatterlist *sg) 1863 { 1864 while (sg) { 1865 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) 1866 return false; 1867 sg = sg_next(sg); 1868 } 1869 1870 return true; 1871 } 1872 1873 static int s5p_set_indata_start(struct s5p_aes_dev *dev, 1874 struct ablkcipher_request *req) 1875 { 1876 struct scatterlist *sg; 1877 int err; 1878 1879 dev->sg_src_cpy = NULL; 1880 sg = req->src; 1881 if (!s5p_is_sg_aligned(sg)) { 1882 dev_dbg(dev->dev, 1883 "At least one unaligned source scatter list, making a copy\n"); 1884 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); 1885 if (err) 1886 return err; 1887 1888 sg = dev->sg_src_cpy; 1889 } 1890 1891 err = s5p_set_indata(dev, sg); 1892 if (err) { 1893 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 1894 return err; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static int s5p_set_outdata_start(struct s5p_aes_dev *dev, 1901 struct ablkcipher_request *req) 1902 { 1903 struct scatterlist *sg; 1904 int err; 1905 1906 dev->sg_dst_cpy = NULL; 1907 sg = req->dst; 1908 if (!s5p_is_sg_aligned(sg)) { 1909 dev_dbg(dev->dev, 1910 "At least one unaligned dest scatter list, making a copy\n"); 1911 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); 1912 if (err) 1913 return err; 1914 1915 sg = dev->sg_dst_cpy; 1916 } 1917 1918 err = s5p_set_outdata(dev, sg); 1919 if (err) { 1920 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 1921 return err; 1922 } 1923 1924 return 0; 1925 } 1926 1927 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) 1928 { 1929 struct ablkcipher_request *req = dev->req; 1930 u32 aes_control; 1931 unsigned long flags; 1932 int err; 1933 u8 *iv, *ctr; 1934 1935 /* This sets bit [13:12] to 00, which selects 128-bit counter */ 1936 aes_control = SSS_AES_KEY_CHANGE_MODE; 1937 if (mode & FLAGS_AES_DECRYPT) 1938 aes_control |= SSS_AES_MODE_DECRYPT; 1939 1940 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { 1941 aes_control |= SSS_AES_CHAIN_MODE_CBC; 1942 iv = req->info; 1943 ctr = NULL; 1944 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { 1945 aes_control |= SSS_AES_CHAIN_MODE_CTR; 1946 iv = NULL; 1947 ctr = req->info; 1948 } else { 1949 iv = NULL; /* AES_ECB */ 1950 ctr = NULL; 1951 } 1952 1953 if (dev->ctx->keylen == AES_KEYSIZE_192) 1954 aes_control |= SSS_AES_KEY_SIZE_192; 1955 else if (dev->ctx->keylen == AES_KEYSIZE_256) 1956 aes_control |= SSS_AES_KEY_SIZE_256; 1957 1958 aes_control |= SSS_AES_FIFO_MODE; 1959 1960 /* as a variant it is possible to use byte swapping on DMA side */ 1961 aes_control |= SSS_AES_BYTESWAP_DI 1962 | SSS_AES_BYTESWAP_DO 1963 | SSS_AES_BYTESWAP_IV 1964 | SSS_AES_BYTESWAP_KEY 1965 | SSS_AES_BYTESWAP_CNT; 1966 1967 spin_lock_irqsave(&dev->lock, flags); 1968 1969 SSS_WRITE(dev, FCINTENCLR, 1970 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); 1971 SSS_WRITE(dev, FCFIFOCTRL, 0x00); 1972 1973 err = s5p_set_indata_start(dev, req); 1974 if (err) 1975 goto indata_error; 1976 1977 err = s5p_set_outdata_start(dev, req); 1978 if (err) 1979 goto outdata_error; 1980 1981 SSS_AES_WRITE(dev, AES_CONTROL, aes_control); 1982 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen); 1983 1984 s5p_set_dma_indata(dev, dev->sg_src); 1985 s5p_set_dma_outdata(dev, dev->sg_dst); 1986 1987 SSS_WRITE(dev, FCINTENSET, 1988 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); 1989 1990 spin_unlock_irqrestore(&dev->lock, flags); 1991 1992 return; 1993 1994 outdata_error: 1995 s5p_unset_indata(dev); 1996 1997 indata_error: 1998 s5p_sg_done(dev); 1999 dev->busy = false; 2000 spin_unlock_irqrestore(&dev->lock, flags); 2001 s5p_aes_complete(req, err); 2002 } 2003 2004 static void s5p_tasklet_cb(unsigned long data) 2005 { 2006 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; 2007 struct crypto_async_request *async_req, *backlog; 2008 struct s5p_aes_reqctx *reqctx; 2009 unsigned long flags; 2010 2011 spin_lock_irqsave(&dev->lock, flags); 2012 backlog = crypto_get_backlog(&dev->queue); 2013 async_req = crypto_dequeue_request(&dev->queue); 2014 2015 if (!async_req) { 2016 dev->busy = false; 2017 spin_unlock_irqrestore(&dev->lock, flags); 2018 return; 2019 } 2020 spin_unlock_irqrestore(&dev->lock, flags); 2021 2022 if (backlog) 2023 backlog->complete(backlog, -EINPROGRESS); 2024 2025 dev->req = ablkcipher_request_cast(async_req); 2026 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); 2027 reqctx = ablkcipher_request_ctx(dev->req); 2028 2029 s5p_aes_crypt_start(dev, reqctx->mode); 2030 } 2031 2032 static int s5p_aes_handle_req(struct s5p_aes_dev *dev, 2033 struct ablkcipher_request *req) 2034 { 2035 unsigned long flags; 2036 int err; 2037 2038 spin_lock_irqsave(&dev->lock, flags); 2039 err = ablkcipher_enqueue_request(&dev->queue, req); 2040 if (dev->busy) { 2041 spin_unlock_irqrestore(&dev->lock, flags); 2042 return err; 2043 } 2044 dev->busy = true; 2045 2046 spin_unlock_irqrestore(&dev->lock, flags); 2047 2048 tasklet_schedule(&dev->tasklet); 2049 2050 return err; 2051 } 2052 2053 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode) 2054 { 2055 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); 2056 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req); 2057 struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); 2058 struct s5p_aes_dev *dev = ctx->dev; 2059 2060 if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) && 2061 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) { 2062 dev_err(dev->dev, "request size is not exact amount of AES blocks\n"); 2063 return -EINVAL; 2064 } 2065 2066 reqctx->mode = mode; 2067 2068 return s5p_aes_handle_req(dev, req); 2069 } 2070 2071 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher, 2072 const u8 *key, unsigned int keylen) 2073 { 2074 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 2075 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2076 2077 if (keylen != AES_KEYSIZE_128 && 2078 keylen != AES_KEYSIZE_192 && 2079 keylen != AES_KEYSIZE_256) 2080 return -EINVAL; 2081 2082 memcpy(ctx->aes_key, key, keylen); 2083 ctx->keylen = keylen; 2084 2085 return 0; 2086 } 2087 2088 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req) 2089 { 2090 return s5p_aes_crypt(req, 0); 2091 } 2092 2093 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req) 2094 { 2095 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); 2096 } 2097 2098 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req) 2099 { 2100 return s5p_aes_crypt(req, FLAGS_AES_CBC); 2101 } 2102 2103 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req) 2104 { 2105 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); 2106 } 2107 2108 static int s5p_aes_ctr_crypt(struct ablkcipher_request *req) 2109 { 2110 return s5p_aes_crypt(req, FLAGS_AES_CTR); 2111 } 2112 2113 static int s5p_aes_cra_init(struct crypto_tfm *tfm) 2114 { 2115 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2116 2117 ctx->dev = s5p_dev; 2118 tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx); 2119 2120 return 0; 2121 } 2122 2123 static struct crypto_alg algs[] = { 2124 { 2125 .cra_name = "ecb(aes)", 2126 .cra_driver_name = "ecb-aes-s5p", 2127 .cra_priority = 100, 2128 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2129 CRYPTO_ALG_ASYNC | 2130 CRYPTO_ALG_KERN_DRIVER_ONLY, 2131 .cra_blocksize = AES_BLOCK_SIZE, 2132 .cra_ctxsize = sizeof(struct s5p_aes_ctx), 2133 .cra_alignmask = 0x0f, 2134 .cra_type = &crypto_ablkcipher_type, 2135 .cra_module = THIS_MODULE, 2136 .cra_init = s5p_aes_cra_init, 2137 .cra_u.ablkcipher = { 2138 .min_keysize = AES_MIN_KEY_SIZE, 2139 .max_keysize = AES_MAX_KEY_SIZE, 2140 .setkey = s5p_aes_setkey, 2141 .encrypt = s5p_aes_ecb_encrypt, 2142 .decrypt = s5p_aes_ecb_decrypt, 2143 } 2144 }, 2145 { 2146 .cra_name = "cbc(aes)", 2147 .cra_driver_name = "cbc-aes-s5p", 2148 .cra_priority = 100, 2149 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2150 CRYPTO_ALG_ASYNC | 2151 CRYPTO_ALG_KERN_DRIVER_ONLY, 2152 .cra_blocksize = AES_BLOCK_SIZE, 2153 .cra_ctxsize = sizeof(struct s5p_aes_ctx), 2154 .cra_alignmask = 0x0f, 2155 .cra_type = &crypto_ablkcipher_type, 2156 .cra_module = THIS_MODULE, 2157 .cra_init = s5p_aes_cra_init, 2158 .cra_u.ablkcipher = { 2159 .min_keysize = AES_MIN_KEY_SIZE, 2160 .max_keysize = AES_MAX_KEY_SIZE, 2161 .ivsize = AES_BLOCK_SIZE, 2162 .setkey = s5p_aes_setkey, 2163 .encrypt = s5p_aes_cbc_encrypt, 2164 .decrypt = s5p_aes_cbc_decrypt, 2165 } 2166 }, 2167 { 2168 .cra_name = "ctr(aes)", 2169 .cra_driver_name = "ctr-aes-s5p", 2170 .cra_priority = 100, 2171 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2172 CRYPTO_ALG_ASYNC | 2173 CRYPTO_ALG_KERN_DRIVER_ONLY, 2174 .cra_blocksize = AES_BLOCK_SIZE, 2175 .cra_ctxsize = sizeof(struct s5p_aes_ctx), 2176 .cra_alignmask = 0x0f, 2177 .cra_type = &crypto_ablkcipher_type, 2178 .cra_module = THIS_MODULE, 2179 .cra_init = s5p_aes_cra_init, 2180 .cra_u.ablkcipher = { 2181 .min_keysize = AES_MIN_KEY_SIZE, 2182 .max_keysize = AES_MAX_KEY_SIZE, 2183 .ivsize = AES_BLOCK_SIZE, 2184 .setkey = s5p_aes_setkey, 2185 .encrypt = s5p_aes_ctr_crypt, 2186 .decrypt = s5p_aes_ctr_crypt, 2187 } 2188 }, 2189 }; 2190 2191 static int s5p_aes_probe(struct platform_device *pdev) 2192 { 2193 struct device *dev = &pdev->dev; 2194 int i, j, err = -ENODEV; 2195 const struct samsung_aes_variant *variant; 2196 struct s5p_aes_dev *pdata; 2197 struct resource *res; 2198 unsigned int hash_i; 2199 2200 if (s5p_dev) 2201 return -EEXIST; 2202 2203 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2204 if (!pdata) 2205 return -ENOMEM; 2206 2207 variant = find_s5p_sss_version(pdev); 2208 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2209 2210 /* 2211 * Note: HASH and PRNG uses the same registers in secss, avoid 2212 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG 2213 * is enabled in config. We need larger size for HASH registers in 2214 * secss, current describe only AES/DES 2215 */ 2216 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { 2217 if (variant == &exynos_aes_data) { 2218 res->end += 0x300; 2219 pdata->use_hash = true; 2220 } 2221 } 2222 2223 pdata->res = res; 2224 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 2225 if (IS_ERR(pdata->ioaddr)) { 2226 if (!pdata->use_hash) 2227 return PTR_ERR(pdata->ioaddr); 2228 /* try AES without HASH */ 2229 res->end -= 0x300; 2230 pdata->use_hash = false; 2231 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 2232 if (IS_ERR(pdata->ioaddr)) 2233 return PTR_ERR(pdata->ioaddr); 2234 } 2235 2236 pdata->clk = devm_clk_get(dev, variant->clk_names[0]); 2237 if (IS_ERR(pdata->clk)) { 2238 dev_err(dev, "failed to find secss clock %s\n", 2239 variant->clk_names[0]); 2240 return -ENOENT; 2241 } 2242 2243 err = clk_prepare_enable(pdata->clk); 2244 if (err < 0) { 2245 dev_err(dev, "Enabling clock %s failed, err %d\n", 2246 variant->clk_names[0], err); 2247 return err; 2248 } 2249 2250 if (variant->clk_names[1]) { 2251 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]); 2252 if (IS_ERR(pdata->pclk)) { 2253 dev_err(dev, "failed to find clock %s\n", 2254 variant->clk_names[1]); 2255 err = -ENOENT; 2256 goto err_clk; 2257 } 2258 2259 err = clk_prepare_enable(pdata->pclk); 2260 if (err < 0) { 2261 dev_err(dev, "Enabling clock %s failed, err %d\n", 2262 variant->clk_names[0], err); 2263 goto err_clk; 2264 } 2265 } else { 2266 pdata->pclk = NULL; 2267 } 2268 2269 spin_lock_init(&pdata->lock); 2270 spin_lock_init(&pdata->hash_lock); 2271 2272 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; 2273 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; 2274 2275 pdata->irq_fc = platform_get_irq(pdev, 0); 2276 if (pdata->irq_fc < 0) { 2277 err = pdata->irq_fc; 2278 dev_warn(dev, "feed control interrupt is not available.\n"); 2279 goto err_irq; 2280 } 2281 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, 2282 s5p_aes_interrupt, IRQF_ONESHOT, 2283 pdev->name, pdev); 2284 if (err < 0) { 2285 dev_warn(dev, "feed control interrupt is not available.\n"); 2286 goto err_irq; 2287 } 2288 2289 pdata->busy = false; 2290 pdata->dev = dev; 2291 platform_set_drvdata(pdev, pdata); 2292 s5p_dev = pdata; 2293 2294 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); 2295 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); 2296 2297 for (i = 0; i < ARRAY_SIZE(algs); i++) { 2298 err = crypto_register_alg(&algs[i]); 2299 if (err) 2300 goto err_algs; 2301 } 2302 2303 if (pdata->use_hash) { 2304 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, 2305 (unsigned long)pdata); 2306 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); 2307 2308 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); 2309 hash_i++) { 2310 struct ahash_alg *alg; 2311 2312 alg = &algs_sha1_md5_sha256[hash_i]; 2313 err = crypto_register_ahash(alg); 2314 if (err) { 2315 dev_err(dev, "can't register '%s': %d\n", 2316 alg->halg.base.cra_driver_name, err); 2317 goto err_hash; 2318 } 2319 } 2320 } 2321 2322 dev_info(dev, "s5p-sss driver registered\n"); 2323 2324 return 0; 2325 2326 err_hash: 2327 for (j = hash_i - 1; j >= 0; j--) 2328 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); 2329 2330 tasklet_kill(&pdata->hash_tasklet); 2331 res->end -= 0x300; 2332 2333 err_algs: 2334 if (i < ARRAY_SIZE(algs)) 2335 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, 2336 err); 2337 2338 for (j = 0; j < i; j++) 2339 crypto_unregister_alg(&algs[j]); 2340 2341 tasklet_kill(&pdata->tasklet); 2342 2343 err_irq: 2344 if (pdata->pclk) 2345 clk_disable_unprepare(pdata->pclk); 2346 2347 err_clk: 2348 clk_disable_unprepare(pdata->clk); 2349 s5p_dev = NULL; 2350 2351 return err; 2352 } 2353 2354 static int s5p_aes_remove(struct platform_device *pdev) 2355 { 2356 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); 2357 int i; 2358 2359 if (!pdata) 2360 return -ENODEV; 2361 2362 for (i = 0; i < ARRAY_SIZE(algs); i++) 2363 crypto_unregister_alg(&algs[i]); 2364 2365 tasklet_kill(&pdata->tasklet); 2366 if (pdata->use_hash) { 2367 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) 2368 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); 2369 2370 pdata->res->end -= 0x300; 2371 tasklet_kill(&pdata->hash_tasklet); 2372 pdata->use_hash = false; 2373 } 2374 2375 if (pdata->pclk) 2376 clk_disable_unprepare(pdata->pclk); 2377 2378 clk_disable_unprepare(pdata->clk); 2379 s5p_dev = NULL; 2380 2381 return 0; 2382 } 2383 2384 static struct platform_driver s5p_aes_crypto = { 2385 .probe = s5p_aes_probe, 2386 .remove = s5p_aes_remove, 2387 .driver = { 2388 .name = "s5p-secss", 2389 .of_match_table = s5p_sss_dt_match, 2390 }, 2391 }; 2392 2393 module_platform_driver(s5p_aes_crypto); 2394 2395 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); 2396 MODULE_LICENSE("GPL v2"); 2397 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); 2398 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); 2399