xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * Cryptographic API.
3  *
4  * Support for Samsung S5PV210 and Exynos HW acceleration.
5  *
6  * Copyright (C) 2011 NetUP Inc. All rights reserved.
7  * Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Hash part based on omap-sham.c driver.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/scatterlist.h>
29 
30 #include <crypto/ctr.h>
31 #include <crypto/aes.h>
32 #include <crypto/algapi.h>
33 #include <crypto/scatterwalk.h>
34 
35 #include <crypto/hash.h>
36 #include <crypto/md5.h>
37 #include <crypto/sha.h>
38 #include <crypto/internal/hash.h>
39 
40 #define _SBF(s, v)			((v) << (s))
41 
42 /* Feed control registers */
43 #define SSS_REG_FCINTSTAT		0x0000
44 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
45 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
46 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
47 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
48 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
49 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
50 
51 #define SSS_REG_FCINTENSET		0x0004
52 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
53 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
54 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
55 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
56 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
57 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
58 
59 #define SSS_REG_FCINTENCLR		0x0008
60 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
61 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
62 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
63 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
64 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
65 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
66 
67 #define SSS_REG_FCINTPEND		0x000C
68 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
69 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
70 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
71 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
72 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
73 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
74 
75 #define SSS_REG_FCFIFOSTAT		0x0010
76 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
77 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
78 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
79 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
80 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
81 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
82 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
83 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
84 
85 #define SSS_REG_FCFIFOCTRL		0x0014
86 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
87 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
88 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
89 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
90 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
91 
92 #define SSS_REG_FCBRDMAS		0x0020
93 #define SSS_REG_FCBRDMAL		0x0024
94 #define SSS_REG_FCBRDMAC		0x0028
95 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
96 #define SSS_FCBRDMAC_FLUSH		BIT(0)
97 
98 #define SSS_REG_FCBTDMAS		0x0030
99 #define SSS_REG_FCBTDMAL		0x0034
100 #define SSS_REG_FCBTDMAC		0x0038
101 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
102 #define SSS_FCBTDMAC_FLUSH		BIT(0)
103 
104 #define SSS_REG_FCHRDMAS		0x0040
105 #define SSS_REG_FCHRDMAL		0x0044
106 #define SSS_REG_FCHRDMAC		0x0048
107 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
108 #define SSS_FCHRDMAC_FLUSH		BIT(0)
109 
110 #define SSS_REG_FCPKDMAS		0x0050
111 #define SSS_REG_FCPKDMAL		0x0054
112 #define SSS_REG_FCPKDMAC		0x0058
113 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
114 #define SSS_FCPKDMAC_DESCEND		BIT(2)
115 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
116 #define SSS_FCPKDMAC_FLUSH		BIT(0)
117 
118 #define SSS_REG_FCPKDMAO		0x005C
119 
120 /* AES registers */
121 #define SSS_REG_AES_CONTROL		0x00
122 #define SSS_AES_BYTESWAP_DI		BIT(11)
123 #define SSS_AES_BYTESWAP_DO		BIT(10)
124 #define SSS_AES_BYTESWAP_IV		BIT(9)
125 #define SSS_AES_BYTESWAP_CNT		BIT(8)
126 #define SSS_AES_BYTESWAP_KEY		BIT(7)
127 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
128 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
129 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
130 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
131 #define SSS_AES_FIFO_MODE		BIT(3)
132 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
133 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
134 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
135 #define SSS_AES_MODE_DECRYPT		BIT(0)
136 
137 #define SSS_REG_AES_STATUS		0x04
138 #define SSS_AES_BUSY			BIT(2)
139 #define SSS_AES_INPUT_READY		BIT(1)
140 #define SSS_AES_OUTPUT_READY		BIT(0)
141 
142 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
143 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
144 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
145 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
146 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
147 
148 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
149 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
150 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
151 
152 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
153 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
154 						SSS_AES_REG(dev, reg))
155 
156 /* HW engine modes */
157 #define FLAGS_AES_DECRYPT		BIT(0)
158 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
159 #define FLAGS_AES_CBC			_SBF(1, 0x01)
160 #define FLAGS_AES_CTR			_SBF(1, 0x02)
161 
162 #define AES_KEY_LEN			16
163 #define CRYPTO_QUEUE_LEN		1
164 
165 /* HASH registers */
166 #define SSS_REG_HASH_CTRL		0x00
167 
168 #define SSS_HASH_USER_IV_EN		BIT(5)
169 #define SSS_HASH_INIT_BIT		BIT(4)
170 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
171 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
172 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
173 
174 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
175 
176 #define SSS_REG_HASH_CTRL_PAUSE		0x04
177 
178 #define SSS_HASH_PAUSE			BIT(0)
179 
180 #define SSS_REG_HASH_CTRL_FIFO		0x08
181 
182 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
183 #define SSS_HASH_FIFO_MODE_CPU          0
184 
185 #define SSS_REG_HASH_CTRL_SWAP		0x0C
186 
187 #define SSS_HASH_BYTESWAP_DI		BIT(3)
188 #define SSS_HASH_BYTESWAP_DO		BIT(2)
189 #define SSS_HASH_BYTESWAP_IV		BIT(1)
190 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
191 
192 #define SSS_REG_HASH_STATUS		0x10
193 
194 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
195 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
196 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
197 
198 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
199 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
200 
201 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
202 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
203 
204 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
205 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
206 
207 #define HASH_BLOCK_SIZE			64
208 #define HASH_REG_SIZEOF			4
209 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
210 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
211 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
212 
213 /*
214  * HASH bit numbers, used by device, setting in dev->hash_flags with
215  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
216  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
217  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
218  */
219 #define HASH_FLAGS_BUSY		0
220 #define HASH_FLAGS_FINAL	1
221 #define HASH_FLAGS_DMA_ACTIVE	2
222 #define HASH_FLAGS_OUTPUT_READY	3
223 #define HASH_FLAGS_DMA_READY	4
224 #define HASH_FLAGS_SGS_COPIED	5
225 #define HASH_FLAGS_SGS_ALLOCED	6
226 
227 /* HASH HW constants */
228 #define BUFLEN			HASH_BLOCK_SIZE
229 
230 #define SSS_HASH_DMA_LEN_ALIGN	8
231 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
232 
233 #define SSS_HASH_QUEUE_LENGTH	10
234 
235 /**
236  * struct samsung_aes_variant - platform specific SSS driver data
237  * @aes_offset: AES register offset from SSS module's base.
238  * @hash_offset: HASH register offset from SSS module's base.
239  *
240  * Specifies platform specific configuration of SSS module.
241  * Note: A structure for driver specific platform data is used for future
242  * expansion of its usage.
243  */
244 struct samsung_aes_variant {
245 	unsigned int			aes_offset;
246 	unsigned int			hash_offset;
247 };
248 
249 struct s5p_aes_reqctx {
250 	unsigned long			mode;
251 };
252 
253 struct s5p_aes_ctx {
254 	struct s5p_aes_dev		*dev;
255 
256 	uint8_t				aes_key[AES_MAX_KEY_SIZE];
257 	uint8_t				nonce[CTR_RFC3686_NONCE_SIZE];
258 	int				keylen;
259 };
260 
261 /**
262  * struct s5p_aes_dev - Crypto device state container
263  * @dev:	Associated device
264  * @clk:	Clock for accessing hardware
265  * @ioaddr:	Mapped IO memory region
266  * @aes_ioaddr:	Per-varian offset for AES block IO memory
267  * @irq_fc:	Feed control interrupt line
268  * @req:	Crypto request currently handled by the device
269  * @ctx:	Configuration for currently handled crypto request
270  * @sg_src:	Scatter list with source data for currently handled block
271  *		in device.  This is DMA-mapped into device.
272  * @sg_dst:	Scatter list with destination data for currently handled block
273  *		in device. This is DMA-mapped into device.
274  * @sg_src_cpy:	In case of unaligned access, copied scatter list
275  *		with source data.
276  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
277  *		with destination data.
278  * @tasklet:	New request scheduling jib
279  * @queue:	Crypto queue
280  * @busy:	Indicates whether the device is currently handling some request
281  *		thus it uses some of the fields from this state, like:
282  *		req, ctx, sg_src/dst (and copies).  This essentially
283  *		protects against concurrent access to these fields.
284  * @lock:	Lock for protecting both access to device hardware registers
285  *		and fields related to current request (including the busy field).
286  * @res:	Resources for hash.
287  * @io_hash_base: Per-variant offset for HASH block IO memory.
288  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
289  *		variable.
290  * @hash_flags:	Flags for current HASH op.
291  * @hash_queue:	Async hash queue.
292  * @hash_tasklet: New HASH request scheduling job.
293  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
294  * @hash_req:	Current request sending to SSS HASH block.
295  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296  * @hash_sg_cnt: Counter for hash_sg_iter.
297  *
298  * @use_hash:	true if HASH algs enabled
299  */
300 struct s5p_aes_dev {
301 	struct device			*dev;
302 	struct clk			*clk;
303 	void __iomem			*ioaddr;
304 	void __iomem			*aes_ioaddr;
305 	int				irq_fc;
306 
307 	struct ablkcipher_request	*req;
308 	struct s5p_aes_ctx		*ctx;
309 	struct scatterlist		*sg_src;
310 	struct scatterlist		*sg_dst;
311 
312 	struct scatterlist		*sg_src_cpy;
313 	struct scatterlist		*sg_dst_cpy;
314 
315 	struct tasklet_struct		tasklet;
316 	struct crypto_queue		queue;
317 	bool				busy;
318 	spinlock_t			lock;
319 
320 	struct resource			*res;
321 	void __iomem			*io_hash_base;
322 
323 	spinlock_t			hash_lock; /* protect hash_ vars */
324 	unsigned long			hash_flags;
325 	struct crypto_queue		hash_queue;
326 	struct tasklet_struct		hash_tasklet;
327 
328 	u8				xmit_buf[BUFLEN];
329 	struct ahash_request		*hash_req;
330 	struct scatterlist		*hash_sg_iter;
331 	unsigned int			hash_sg_cnt;
332 
333 	bool				use_hash;
334 };
335 
336 /**
337  * struct s5p_hash_reqctx - HASH request context
338  * @dd:		Associated device
339  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
340  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
341  * @digest:	Digest message or IV for partial result
342  * @nregs:	Number of HW registers for digest or IV read/write
343  * @engine:	Bits for selecting type of HASH in SSS block
344  * @sg:		sg for DMA transfer
345  * @sg_len:	Length of sg for DMA transfer
346  * @sgl[]:	sg for joining buffer and req->src scatterlist
347  * @skip:	Skip offset in req->src for current op
348  * @total:	Total number of bytes for current request
349  * @finup:	Keep state for finup or final.
350  * @error:	Keep track of error.
351  * @bufcnt:	Number of bytes holded in buffer[]
352  * @buffer[]:	For byte(s) from end of req->src in UPDATE op
353  */
354 struct s5p_hash_reqctx {
355 	struct s5p_aes_dev	*dd;
356 	bool			op_update;
357 
358 	u64			digcnt;
359 	u8			digest[SHA256_DIGEST_SIZE];
360 
361 	unsigned int		nregs; /* digest_size / sizeof(reg) */
362 	u32			engine;
363 
364 	struct scatterlist	*sg;
365 	unsigned int		sg_len;
366 	struct scatterlist	sgl[2];
367 	unsigned int		skip;
368 	unsigned int		total;
369 	bool			finup;
370 	bool			error;
371 
372 	u32			bufcnt;
373 	u8			buffer[0];
374 };
375 
376 /**
377  * struct s5p_hash_ctx - HASH transformation context
378  * @dd:		Associated device
379  * @flags:	Bits for algorithm HASH.
380  * @fallback:	Software transformation for zero message or size < BUFLEN.
381  */
382 struct s5p_hash_ctx {
383 	struct s5p_aes_dev	*dd;
384 	unsigned long		flags;
385 	struct crypto_shash	*fallback;
386 };
387 
388 static const struct samsung_aes_variant s5p_aes_data = {
389 	.aes_offset	= 0x4000,
390 	.hash_offset	= 0x6000,
391 };
392 
393 static const struct samsung_aes_variant exynos_aes_data = {
394 	.aes_offset	= 0x200,
395 	.hash_offset	= 0x400,
396 };
397 
398 static const struct of_device_id s5p_sss_dt_match[] = {
399 	{
400 		.compatible = "samsung,s5pv210-secss",
401 		.data = &s5p_aes_data,
402 	},
403 	{
404 		.compatible = "samsung,exynos4210-secss",
405 		.data = &exynos_aes_data,
406 	},
407 	{ },
408 };
409 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
410 
411 static inline struct samsung_aes_variant *find_s5p_sss_version
412 				   (struct platform_device *pdev)
413 {
414 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
415 		const struct of_device_id *match;
416 
417 		match = of_match_node(s5p_sss_dt_match,
418 					pdev->dev.of_node);
419 		return (struct samsung_aes_variant *)match->data;
420 	}
421 	return (struct samsung_aes_variant *)
422 			platform_get_device_id(pdev)->driver_data;
423 }
424 
425 static struct s5p_aes_dev *s5p_dev;
426 
427 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
428 {
429 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
430 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
431 }
432 
433 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
434 {
435 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
436 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
437 }
438 
439 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
440 {
441 	int len;
442 
443 	if (!*sg)
444 		return;
445 
446 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
447 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
448 
449 	kfree(*sg);
450 	*sg = NULL;
451 }
452 
453 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
454 			    unsigned int nbytes, int out)
455 {
456 	struct scatter_walk walk;
457 
458 	if (!nbytes)
459 		return;
460 
461 	scatterwalk_start(&walk, sg);
462 	scatterwalk_copychunks(buf, &walk, nbytes, out);
463 	scatterwalk_done(&walk, out, 0);
464 }
465 
466 static void s5p_sg_done(struct s5p_aes_dev *dev)
467 {
468 	if (dev->sg_dst_cpy) {
469 		dev_dbg(dev->dev,
470 			"Copying %d bytes of output data back to original place\n",
471 			dev->req->nbytes);
472 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
473 				dev->req->nbytes, 1);
474 	}
475 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
476 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
477 }
478 
479 /* Calls the completion. Cannot be called with dev->lock hold. */
480 static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
481 {
482 	dev->req->base.complete(&dev->req->base, err);
483 }
484 
485 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
486 {
487 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
488 }
489 
490 static void s5p_unset_indata(struct s5p_aes_dev *dev)
491 {
492 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
493 }
494 
495 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
496 			    struct scatterlist **dst)
497 {
498 	void *pages;
499 	int len;
500 
501 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
502 	if (!*dst)
503 		return -ENOMEM;
504 
505 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
506 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
507 	if (!pages) {
508 		kfree(*dst);
509 		*dst = NULL;
510 		return -ENOMEM;
511 	}
512 
513 	s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
514 
515 	sg_init_table(*dst, 1);
516 	sg_set_buf(*dst, pages, len);
517 
518 	return 0;
519 }
520 
521 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
522 {
523 	int err;
524 
525 	if (!sg->length) {
526 		err = -EINVAL;
527 		goto exit;
528 	}
529 
530 	err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
531 	if (!err) {
532 		err = -ENOMEM;
533 		goto exit;
534 	}
535 
536 	dev->sg_dst = sg;
537 	err = 0;
538 
539 exit:
540 	return err;
541 }
542 
543 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
544 {
545 	int err;
546 
547 	if (!sg->length) {
548 		err = -EINVAL;
549 		goto exit;
550 	}
551 
552 	err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
553 	if (!err) {
554 		err = -ENOMEM;
555 		goto exit;
556 	}
557 
558 	dev->sg_src = sg;
559 	err = 0;
560 
561 exit:
562 	return err;
563 }
564 
565 /*
566  * Returns -ERRNO on error (mapping of new data failed).
567  * On success returns:
568  *  - 0 if there is no more data,
569  *  - 1 if new transmitting (output) data is ready and its address+length
570  *     have to be written to device (by calling s5p_set_dma_outdata()).
571  */
572 static int s5p_aes_tx(struct s5p_aes_dev *dev)
573 {
574 	int ret = 0;
575 
576 	s5p_unset_outdata(dev);
577 
578 	if (!sg_is_last(dev->sg_dst)) {
579 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
580 		if (!ret)
581 			ret = 1;
582 	}
583 
584 	return ret;
585 }
586 
587 /*
588  * Returns -ERRNO on error (mapping of new data failed).
589  * On success returns:
590  *  - 0 if there is no more data,
591  *  - 1 if new receiving (input) data is ready and its address+length
592  *     have to be written to device (by calling s5p_set_dma_indata()).
593  */
594 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
595 {
596 	int ret = 0;
597 
598 	s5p_unset_indata(dev);
599 
600 	if (!sg_is_last(dev->sg_src)) {
601 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
602 		if (!ret)
603 			ret = 1;
604 	}
605 
606 	return ret;
607 }
608 
609 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
610 {
611 	return __raw_readl(dd->io_hash_base + offset);
612 }
613 
614 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
615 				  u32 offset, u32 value)
616 {
617 	__raw_writel(value, dd->io_hash_base + offset);
618 }
619 
620 /**
621  * s5p_set_dma_hashdata() - start DMA with sg
622  * @dev:	device
623  * @sg:		scatterlist ready to DMA transmit
624  */
625 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
626 				 struct scatterlist *sg)
627 {
628 	dev->hash_sg_cnt--;
629 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
630 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
631 }
632 
633 /**
634  * s5p_hash_rx() - get next hash_sg_iter
635  * @dev:	device
636  *
637  * Return:
638  * 2	if there is no more data and it is UPDATE op
639  * 1	if new receiving (input) data is ready and can be written to device
640  * 0	if there is no more data and it is FINAL op
641  */
642 static int s5p_hash_rx(struct s5p_aes_dev *dev)
643 {
644 	if (dev->hash_sg_cnt > 0) {
645 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
646 		return 1;
647 	}
648 
649 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
650 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
651 		return 0;
652 
653 	return 2;
654 }
655 
656 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
657 {
658 	struct platform_device *pdev = dev_id;
659 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
660 	int err_dma_tx = 0;
661 	int err_dma_rx = 0;
662 	int err_dma_hx = 0;
663 	bool tx_end = false;
664 	bool hx_end = false;
665 	unsigned long flags;
666 	uint32_t status;
667 	u32 st_bits;
668 	int err;
669 
670 	spin_lock_irqsave(&dev->lock, flags);
671 
672 	/*
673 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
674 	 * reach end), then map next scatterlist entry.
675 	 * In case of such mapping error, s5p_aes_complete() should be called.
676 	 *
677 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
678 	 * and schedule new tasklet.
679 	 *
680 	 * Handle hx interrupt. If there is still data map next entry.
681 	 */
682 	status = SSS_READ(dev, FCINTSTAT);
683 	if (status & SSS_FCINTSTAT_BRDMAINT)
684 		err_dma_rx = s5p_aes_rx(dev);
685 
686 	if (status & SSS_FCINTSTAT_BTDMAINT) {
687 		if (sg_is_last(dev->sg_dst))
688 			tx_end = true;
689 		err_dma_tx = s5p_aes_tx(dev);
690 	}
691 
692 	if (status & SSS_FCINTSTAT_HRDMAINT)
693 		err_dma_hx = s5p_hash_rx(dev);
694 
695 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
696 				SSS_FCINTSTAT_HRDMAINT);
697 	/* clear DMA bits */
698 	SSS_WRITE(dev, FCINTPEND, st_bits);
699 
700 	/* clear HASH irq bits */
701 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
702 		/* cannot have both HPART and HDONE */
703 		if (status & SSS_FCINTSTAT_HPARTINT)
704 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
705 
706 		if (status & SSS_FCINTSTAT_HDONEINT)
707 			st_bits = SSS_HASH_STATUS_MSG_DONE;
708 
709 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
710 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
711 		hx_end = true;
712 		/* when DONE or PART, do not handle HASH DMA */
713 		err_dma_hx = 0;
714 	}
715 
716 	if (err_dma_rx < 0) {
717 		err = err_dma_rx;
718 		goto error;
719 	}
720 	if (err_dma_tx < 0) {
721 		err = err_dma_tx;
722 		goto error;
723 	}
724 
725 	if (tx_end) {
726 		s5p_sg_done(dev);
727 		if (err_dma_hx == 1)
728 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
729 
730 		spin_unlock_irqrestore(&dev->lock, flags);
731 
732 		s5p_aes_complete(dev, 0);
733 		/* Device is still busy */
734 		tasklet_schedule(&dev->tasklet);
735 	} else {
736 		/*
737 		 * Writing length of DMA block (either receiving or
738 		 * transmitting) will start the operation immediately, so this
739 		 * should be done at the end (even after clearing pending
740 		 * interrupts to not miss the interrupt).
741 		 */
742 		if (err_dma_tx == 1)
743 			s5p_set_dma_outdata(dev, dev->sg_dst);
744 		if (err_dma_rx == 1)
745 			s5p_set_dma_indata(dev, dev->sg_src);
746 		if (err_dma_hx == 1)
747 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
748 
749 		spin_unlock_irqrestore(&dev->lock, flags);
750 	}
751 
752 	goto hash_irq_end;
753 
754 error:
755 	s5p_sg_done(dev);
756 	dev->busy = false;
757 	if (err_dma_hx == 1)
758 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
759 
760 	spin_unlock_irqrestore(&dev->lock, flags);
761 	s5p_aes_complete(dev, err);
762 
763 hash_irq_end:
764 	/*
765 	 * Note about else if:
766 	 *   when hash_sg_iter reaches end and its UPDATE op,
767 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
768 	 */
769 	if (hx_end)
770 		tasklet_schedule(&dev->hash_tasklet);
771 	else if (err_dma_hx == 2)
772 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
773 			       SSS_HASH_PAUSE);
774 
775 	return IRQ_HANDLED;
776 }
777 
778 /**
779  * s5p_hash_read_msg() - read message or IV from HW
780  * @req:	AHASH request
781  */
782 static void s5p_hash_read_msg(struct ahash_request *req)
783 {
784 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
785 	struct s5p_aes_dev *dd = ctx->dd;
786 	u32 *hash = (u32 *)ctx->digest;
787 	unsigned int i;
788 
789 	for (i = 0; i < ctx->nregs; i++)
790 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
791 }
792 
793 /**
794  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
795  * @dd:		device
796  * @ctx:	request context
797  */
798 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
799 				  struct s5p_hash_reqctx *ctx)
800 {
801 	u32 *hash = (u32 *)ctx->digest;
802 	unsigned int i;
803 
804 	for (i = 0; i < ctx->nregs; i++)
805 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
806 }
807 
808 /**
809  * s5p_hash_write_iv() - write IV for next partial/finup op.
810  * @req:	AHASH request
811  */
812 static void s5p_hash_write_iv(struct ahash_request *req)
813 {
814 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
815 
816 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
817 }
818 
819 /**
820  * s5p_hash_copy_result() - copy digest into req->result
821  * @req:	AHASH request
822  */
823 static void s5p_hash_copy_result(struct ahash_request *req)
824 {
825 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
826 
827 	if (!req->result)
828 		return;
829 
830 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
831 }
832 
833 /**
834  * s5p_hash_dma_flush() - flush HASH DMA
835  * @dev:	secss device
836  */
837 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
838 {
839 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
840 }
841 
842 /**
843  * s5p_hash_dma_enable() - enable DMA mode for HASH
844  * @dev:	secss device
845  *
846  * enable DMA mode for HASH
847  */
848 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
849 {
850 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
851 }
852 
853 /**
854  * s5p_hash_irq_disable() - disable irq HASH signals
855  * @dev:	secss device
856  * @flags:	bitfield with irq's to be disabled
857  */
858 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
859 {
860 	SSS_WRITE(dev, FCINTENCLR, flags);
861 }
862 
863 /**
864  * s5p_hash_irq_enable() - enable irq signals
865  * @dev:	secss device
866  * @flags:	bitfield with irq's to be enabled
867  */
868 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
869 {
870 	SSS_WRITE(dev, FCINTENSET, flags);
871 }
872 
873 /**
874  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
875  * @dev:	secss device
876  * @hashflow:	HASH stream flow with/without crypto AES/DES
877  */
878 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
879 {
880 	unsigned long flags;
881 	u32 flow;
882 
883 	spin_lock_irqsave(&dev->lock, flags);
884 
885 	flow = SSS_READ(dev, FCFIFOCTRL);
886 	flow &= ~SSS_HASHIN_MASK;
887 	flow |= hashflow;
888 	SSS_WRITE(dev, FCFIFOCTRL, flow);
889 
890 	spin_unlock_irqrestore(&dev->lock, flags);
891 }
892 
893 /**
894  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
895  * @dev:	secss device
896  * @hashflow:	HASH stream flow with/without AES/DES
897  *
898  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
899  * enable HASH irq's HRDMA, HDONE, HPART
900  */
901 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
902 {
903 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
904 			     SSS_FCINTENCLR_HDONEINTENCLR |
905 			     SSS_FCINTENCLR_HPARTINTENCLR);
906 	s5p_hash_dma_flush(dev);
907 
908 	s5p_hash_dma_enable(dev);
909 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
910 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
911 			    SSS_FCINTENSET_HDONEINTENSET |
912 			    SSS_FCINTENSET_HPARTINTENSET);
913 }
914 
915 /**
916  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
917  * @dd:		secss device
918  * @length:	length for request
919  * @final:	true if final op
920  *
921  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
922  * after previous updates, fill up IV words. For final, calculate and set
923  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
924  * length as 2^63 so it will be never reached and set to zero prelow and
925  * prehigh.
926  *
927  * This function does not start DMA transfer.
928  */
929 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
930 				bool final)
931 {
932 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
933 	u32 prelow, prehigh, low, high;
934 	u32 configflags, swapflags;
935 	u64 tmplen;
936 
937 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
938 
939 	if (likely(ctx->digcnt)) {
940 		s5p_hash_write_ctx_iv(dd, ctx);
941 		configflags |= SSS_HASH_USER_IV_EN;
942 	}
943 
944 	if (final) {
945 		/* number of bytes for last part */
946 		low = length;
947 		high = 0;
948 		/* total number of bits prev hashed */
949 		tmplen = ctx->digcnt * 8;
950 		prelow = (u32)tmplen;
951 		prehigh = (u32)(tmplen >> 32);
952 	} else {
953 		prelow = 0;
954 		prehigh = 0;
955 		low = 0;
956 		high = BIT(31);
957 	}
958 
959 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
960 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
961 
962 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
963 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
964 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
965 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
966 
967 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
968 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
969 }
970 
971 /**
972  * s5p_hash_xmit_dma() - start DMA hash processing
973  * @dd:		secss device
974  * @length:	length for request
975  * @final:	true if final op
976  *
977  * Update digcnt here, as it is needed for finup/final op.
978  */
979 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
980 			     bool final)
981 {
982 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
983 	unsigned int cnt;
984 
985 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
986 	if (!cnt) {
987 		dev_err(dd->dev, "dma_map_sg error\n");
988 		ctx->error = true;
989 		return -EINVAL;
990 	}
991 
992 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
993 	dd->hash_sg_iter = ctx->sg;
994 	dd->hash_sg_cnt = cnt;
995 	s5p_hash_write_ctrl(dd, length, final);
996 	ctx->digcnt += length;
997 	ctx->total -= length;
998 
999 	/* catch last interrupt */
1000 	if (final)
1001 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1002 
1003 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1004 
1005 	return -EINPROGRESS;
1006 }
1007 
1008 /**
1009  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1010  * @ctx:	request context
1011  * @sg:		source scatterlist request
1012  * @new_len:	number of bytes to process from sg
1013  *
1014  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1015  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1016  * with allocated buffer.
1017  *
1018  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1019  */
1020 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1021 			     struct scatterlist *sg, unsigned int new_len)
1022 {
1023 	unsigned int pages, len;
1024 	void *buf;
1025 
1026 	len = new_len + ctx->bufcnt;
1027 	pages = get_order(len);
1028 
1029 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1030 	if (!buf) {
1031 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1032 		ctx->error = true;
1033 		return -ENOMEM;
1034 	}
1035 
1036 	if (ctx->bufcnt)
1037 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1038 
1039 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1040 				 new_len, 0);
1041 	sg_init_table(ctx->sgl, 1);
1042 	sg_set_buf(ctx->sgl, buf, len);
1043 	ctx->sg = ctx->sgl;
1044 	ctx->sg_len = 1;
1045 	ctx->bufcnt = 0;
1046 	ctx->skip = 0;
1047 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1054  * @ctx:	request context
1055  * @sg:		source scatterlist request
1056  * @new_len:	number of bytes to process from sg
1057  *
1058  * Allocate new scatterlist table, copy data for HASH into it. If there was
1059  * xmit_buf filled, prepare it first, then copy page, length and offset from
1060  * source sg into it, adjusting begin and/or end for skip offset and
1061  * hash_later value.
1062  *
1063  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1064  * it after irq ends processing.
1065  */
1066 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1067 				  struct scatterlist *sg, unsigned int new_len)
1068 {
1069 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1070 	struct scatterlist *tmp;
1071 	unsigned int len;
1072 
1073 	if (ctx->bufcnt)
1074 		n++;
1075 
1076 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1077 	if (!ctx->sg) {
1078 		ctx->error = true;
1079 		return -ENOMEM;
1080 	}
1081 
1082 	sg_init_table(ctx->sg, n);
1083 
1084 	tmp = ctx->sg;
1085 
1086 	ctx->sg_len = 0;
1087 
1088 	if (ctx->bufcnt) {
1089 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1090 		tmp = sg_next(tmp);
1091 		ctx->sg_len++;
1092 	}
1093 
1094 	while (sg && skip >= sg->length) {
1095 		skip -= sg->length;
1096 		sg = sg_next(sg);
1097 	}
1098 
1099 	while (sg && new_len) {
1100 		len = sg->length - skip;
1101 		if (new_len < len)
1102 			len = new_len;
1103 
1104 		new_len -= len;
1105 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1106 		skip = 0;
1107 		if (new_len <= 0)
1108 			sg_mark_end(tmp);
1109 
1110 		tmp = sg_next(tmp);
1111 		ctx->sg_len++;
1112 		sg = sg_next(sg);
1113 	}
1114 
1115 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * s5p_hash_prepare_sgs() - prepare sg for processing
1122  * @ctx:	request context
1123  * @sg:		source scatterlist request
1124  * @nbytes:	number of bytes to process from sg
1125  * @final:	final flag
1126  *
1127  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1128  * sg table have good aligned elements (list_ok). If one of this checks fails,
1129  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1130  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1131  * table and prepare sg elements.
1132  *
1133  * For digest or finup all conditions can be good, and we may not need any
1134  * fixes.
1135  */
1136 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1137 				struct scatterlist *sg,
1138 				unsigned int new_len, bool final)
1139 {
1140 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1141 	bool aligned = true, list_ok = true;
1142 	struct scatterlist *sg_tmp = sg;
1143 
1144 	if (!sg || !sg->length || !new_len)
1145 		return 0;
1146 
1147 	if (skip || !final)
1148 		list_ok = false;
1149 
1150 	while (nbytes > 0 && sg_tmp) {
1151 		n++;
1152 		if (skip >= sg_tmp->length) {
1153 			skip -= sg_tmp->length;
1154 			if (!sg_tmp->length) {
1155 				aligned = false;
1156 				break;
1157 			}
1158 		} else {
1159 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1160 				aligned = false;
1161 				break;
1162 			}
1163 
1164 			if (nbytes < sg_tmp->length - skip) {
1165 				list_ok = false;
1166 				break;
1167 			}
1168 
1169 			nbytes -= sg_tmp->length - skip;
1170 			skip = 0;
1171 		}
1172 
1173 		sg_tmp = sg_next(sg_tmp);
1174 	}
1175 
1176 	if (!aligned)
1177 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1178 	else if (!list_ok)
1179 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1180 
1181 	/*
1182 	 * Have aligned data from previous operation and/or current
1183 	 * Note: will enter here only if (digest or finup) and aligned
1184 	 */
1185 	if (ctx->bufcnt) {
1186 		ctx->sg_len = n;
1187 		sg_init_table(ctx->sgl, 2);
1188 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1189 		sg_chain(ctx->sgl, 2, sg);
1190 		ctx->sg = ctx->sgl;
1191 		ctx->sg_len++;
1192 	} else {
1193 		ctx->sg = sg;
1194 		ctx->sg_len = n;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 /**
1201  * s5p_hash_prepare_request() - prepare request for processing
1202  * @req:	AHASH request
1203  * @update:	true if UPDATE op
1204  *
1205  * Note 1: we can have update flag _and_ final flag at the same time.
1206  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1207  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1208  *	   we have final op
1209  */
1210 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1211 {
1212 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1213 	bool final = ctx->finup;
1214 	int xmit_len, hash_later, nbytes;
1215 	int ret;
1216 
1217 	if (!req)
1218 		return 0;
1219 
1220 	if (update)
1221 		nbytes = req->nbytes;
1222 	else
1223 		nbytes = 0;
1224 
1225 	ctx->total = nbytes + ctx->bufcnt;
1226 	if (!ctx->total)
1227 		return 0;
1228 
1229 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1230 		/* bytes left from previous request, so fill up to BUFLEN */
1231 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1232 
1233 		if (len > nbytes)
1234 			len = nbytes;
1235 
1236 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1237 					 0, len, 0);
1238 		ctx->bufcnt += len;
1239 		nbytes -= len;
1240 		ctx->skip = len;
1241 	} else {
1242 		ctx->skip = 0;
1243 	}
1244 
1245 	if (ctx->bufcnt)
1246 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1247 
1248 	xmit_len = ctx->total;
1249 	if (final) {
1250 		hash_later = 0;
1251 	} else {
1252 		if (IS_ALIGNED(xmit_len, BUFLEN))
1253 			xmit_len -= BUFLEN;
1254 		else
1255 			xmit_len -= xmit_len & (BUFLEN - 1);
1256 
1257 		hash_later = ctx->total - xmit_len;
1258 		/* copy hash_later bytes from end of req->src */
1259 		/* previous bytes are in xmit_buf, so no overwrite */
1260 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1261 					 req->nbytes - hash_later,
1262 					 hash_later, 0);
1263 	}
1264 
1265 	if (xmit_len > BUFLEN) {
1266 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1267 					   final);
1268 		if (ret)
1269 			return ret;
1270 	} else {
1271 		/* have buffered data only */
1272 		if (unlikely(!ctx->bufcnt)) {
1273 			/* first update didn't fill up buffer */
1274 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1275 						 0, xmit_len, 0);
1276 		}
1277 
1278 		sg_init_table(ctx->sgl, 1);
1279 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1280 
1281 		ctx->sg = ctx->sgl;
1282 		ctx->sg_len = 1;
1283 	}
1284 
1285 	ctx->bufcnt = hash_later;
1286 	if (!final)
1287 		ctx->total = xmit_len;
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * s5p_hash_update_dma_stop() - unmap DMA
1294  * @dd:		secss device
1295  *
1296  * Unmap scatterlist ctx->sg.
1297  */
1298 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1299 {
1300 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1301 
1302 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1303 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1304 }
1305 
1306 /**
1307  * s5p_hash_finish() - copy calculated digest to crypto layer
1308  * @req:	AHASH request
1309  */
1310 static void s5p_hash_finish(struct ahash_request *req)
1311 {
1312 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1313 	struct s5p_aes_dev *dd = ctx->dd;
1314 
1315 	if (ctx->digcnt)
1316 		s5p_hash_copy_result(req);
1317 
1318 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1319 }
1320 
1321 /**
1322  * s5p_hash_finish_req() - finish request
1323  * @req:	AHASH request
1324  * @err:	error
1325  */
1326 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1327 {
1328 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1329 	struct s5p_aes_dev *dd = ctx->dd;
1330 	unsigned long flags;
1331 
1332 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1333 		free_pages((unsigned long)sg_virt(ctx->sg),
1334 			   get_order(ctx->sg->length));
1335 
1336 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1337 		kfree(ctx->sg);
1338 
1339 	ctx->sg = NULL;
1340 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1341 			    BIT(HASH_FLAGS_SGS_COPIED));
1342 
1343 	if (!err && !ctx->error) {
1344 		s5p_hash_read_msg(req);
1345 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1346 			s5p_hash_finish(req);
1347 	} else {
1348 		ctx->error = true;
1349 	}
1350 
1351 	spin_lock_irqsave(&dd->hash_lock, flags);
1352 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1353 			    BIT(HASH_FLAGS_DMA_READY) |
1354 			    BIT(HASH_FLAGS_OUTPUT_READY));
1355 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1356 
1357 	if (req->base.complete)
1358 		req->base.complete(&req->base, err);
1359 }
1360 
1361 /**
1362  * s5p_hash_handle_queue() - handle hash queue
1363  * @dd:		device s5p_aes_dev
1364  * @req:	AHASH request
1365  *
1366  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1367  * device then processes the first request from the dd->queue
1368  *
1369  * Returns: see s5p_hash_final below.
1370  */
1371 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1372 				 struct ahash_request *req)
1373 {
1374 	struct crypto_async_request *async_req, *backlog;
1375 	struct s5p_hash_reqctx *ctx;
1376 	unsigned long flags;
1377 	int err = 0, ret = 0;
1378 
1379 retry:
1380 	spin_lock_irqsave(&dd->hash_lock, flags);
1381 	if (req)
1382 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1383 
1384 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1385 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1386 		return ret;
1387 	}
1388 
1389 	backlog = crypto_get_backlog(&dd->hash_queue);
1390 	async_req = crypto_dequeue_request(&dd->hash_queue);
1391 	if (async_req)
1392 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1393 
1394 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1395 
1396 	if (!async_req)
1397 		return ret;
1398 
1399 	if (backlog)
1400 		backlog->complete(backlog, -EINPROGRESS);
1401 
1402 	req = ahash_request_cast(async_req);
1403 	dd->hash_req = req;
1404 	ctx = ahash_request_ctx(req);
1405 
1406 	err = s5p_hash_prepare_request(req, ctx->op_update);
1407 	if (err || !ctx->total)
1408 		goto out;
1409 
1410 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1411 		ctx->op_update, req->nbytes);
1412 
1413 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1414 	if (ctx->digcnt)
1415 		s5p_hash_write_iv(req); /* restore hash IV */
1416 
1417 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1418 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1419 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1420 			/* no final() after finup() */
1421 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1422 	} else { /* HASH_OP_FINAL */
1423 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1424 	}
1425 out:
1426 	if (err != -EINPROGRESS) {
1427 		/* hash_tasklet_cb will not finish it, so do it here */
1428 		s5p_hash_finish_req(req, err);
1429 		req = NULL;
1430 
1431 		/*
1432 		 * Execute next request immediately if there is anything
1433 		 * in queue.
1434 		 */
1435 		goto retry;
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 /**
1442  * s5p_hash_tasklet_cb() - hash tasklet
1443  * @data:	ptr to s5p_aes_dev
1444  */
1445 static void s5p_hash_tasklet_cb(unsigned long data)
1446 {
1447 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1448 
1449 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1450 		s5p_hash_handle_queue(dd, NULL);
1451 		return;
1452 	}
1453 
1454 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1455 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1456 				       &dd->hash_flags)) {
1457 			s5p_hash_update_dma_stop(dd);
1458 		}
1459 
1460 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1461 				       &dd->hash_flags)) {
1462 			/* hash or semi-hash ready */
1463 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1464 				goto finish;
1465 		}
1466 	}
1467 
1468 	return;
1469 
1470 finish:
1471 	/* finish curent request */
1472 	s5p_hash_finish_req(dd->hash_req, 0);
1473 
1474 	/* If we are not busy, process next req */
1475 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1476 		s5p_hash_handle_queue(dd, NULL);
1477 }
1478 
1479 /**
1480  * s5p_hash_enqueue() - enqueue request
1481  * @req:	AHASH request
1482  * @op:		operation UPDATE (true) or FINAL (false)
1483  *
1484  * Returns: see s5p_hash_final below.
1485  */
1486 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1487 {
1488 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1489 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1490 
1491 	ctx->op_update = op;
1492 
1493 	return s5p_hash_handle_queue(tctx->dd, req);
1494 }
1495 
1496 /**
1497  * s5p_hash_update() - process the hash input data
1498  * @req:	AHASH request
1499  *
1500  * If request will fit in buffer, copy it and return immediately
1501  * else enqueue it with OP_UPDATE.
1502  *
1503  * Returns: see s5p_hash_final below.
1504  */
1505 static int s5p_hash_update(struct ahash_request *req)
1506 {
1507 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1508 
1509 	if (!req->nbytes)
1510 		return 0;
1511 
1512 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1513 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1514 					 0, req->nbytes, 0);
1515 		ctx->bufcnt += req->nbytes;
1516 		return 0;
1517 	}
1518 
1519 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1520 }
1521 
1522 /**
1523  * s5p_hash_shash_digest() - calculate shash digest
1524  * @tfm:	crypto transformation
1525  * @flags:	tfm flags
1526  * @data:	input data
1527  * @len:	length of data
1528  * @out:	output buffer
1529  */
1530 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1531 				 const u8 *data, unsigned int len, u8 *out)
1532 {
1533 	SHASH_DESC_ON_STACK(shash, tfm);
1534 
1535 	shash->tfm = tfm;
1536 	shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1537 
1538 	return crypto_shash_digest(shash, data, len, out);
1539 }
1540 
1541 /**
1542  * s5p_hash_final_shash() - calculate shash digest
1543  * @req:	AHASH request
1544  */
1545 static int s5p_hash_final_shash(struct ahash_request *req)
1546 {
1547 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1548 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1549 
1550 	return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1551 				     ctx->buffer, ctx->bufcnt, req->result);
1552 }
1553 
1554 /**
1555  * s5p_hash_final() - close up hash and calculate digest
1556  * @req:	AHASH request
1557  *
1558  * Note: in final req->src do not have any data, and req->nbytes can be
1559  * non-zero.
1560  *
1561  * If there were no input data processed yet and the buffered hash data is
1562  * less than BUFLEN (64) then calculate the final hash immediately by using
1563  * SW algorithm fallback.
1564  *
1565  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1566  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1567  * previous update op, so there are always some buffered bytes in ctx->buffer,
1568  * which means that ctx->bufcnt!=0
1569  *
1570  * Returns:
1571  * 0 if the request has been processed immediately,
1572  * -EINPROGRESS if the operation has been queued for later execution or is set
1573  *		to processing by HW,
1574  * -EBUSY if queue is full and request should be resubmitted later,
1575  * other negative values denotes an error.
1576  */
1577 static int s5p_hash_final(struct ahash_request *req)
1578 {
1579 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1580 
1581 	ctx->finup = true;
1582 	if (ctx->error)
1583 		return -EINVAL; /* uncompleted hash is not needed */
1584 
1585 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1586 		return s5p_hash_final_shash(req);
1587 
1588 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1589 }
1590 
1591 /**
1592  * s5p_hash_finup() - process last req->src and calculate digest
1593  * @req:	AHASH request containing the last update data
1594  *
1595  * Return values: see s5p_hash_final above.
1596  */
1597 static int s5p_hash_finup(struct ahash_request *req)
1598 {
1599 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1600 	int err1, err2;
1601 
1602 	ctx->finup = true;
1603 
1604 	err1 = s5p_hash_update(req);
1605 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1606 		return err1;
1607 
1608 	/*
1609 	 * final() has to be always called to cleanup resources even if
1610 	 * update() failed, except EINPROGRESS or calculate digest for small
1611 	 * size
1612 	 */
1613 	err2 = s5p_hash_final(req);
1614 
1615 	return err1 ?: err2;
1616 }
1617 
1618 /**
1619  * s5p_hash_init() - initialize AHASH request contex
1620  * @req:	AHASH request
1621  *
1622  * Init async hash request context.
1623  */
1624 static int s5p_hash_init(struct ahash_request *req)
1625 {
1626 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1627 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1628 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1629 
1630 	ctx->dd = tctx->dd;
1631 	ctx->error = false;
1632 	ctx->finup = false;
1633 	ctx->bufcnt = 0;
1634 	ctx->digcnt = 0;
1635 	ctx->total = 0;
1636 	ctx->skip = 0;
1637 
1638 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1639 		crypto_ahash_digestsize(tfm));
1640 
1641 	switch (crypto_ahash_digestsize(tfm)) {
1642 	case MD5_DIGEST_SIZE:
1643 		ctx->engine = SSS_HASH_ENGINE_MD5;
1644 		ctx->nregs = HASH_MD5_MAX_REG;
1645 		break;
1646 	case SHA1_DIGEST_SIZE:
1647 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1648 		ctx->nregs = HASH_SHA1_MAX_REG;
1649 		break;
1650 	case SHA256_DIGEST_SIZE:
1651 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1652 		ctx->nregs = HASH_SHA256_MAX_REG;
1653 		break;
1654 	default:
1655 		ctx->error = true;
1656 		return -EINVAL;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * s5p_hash_digest - calculate digest from req->src
1664  * @req:	AHASH request
1665  *
1666  * Return values: see s5p_hash_final above.
1667  */
1668 static int s5p_hash_digest(struct ahash_request *req)
1669 {
1670 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1671 }
1672 
1673 /**
1674  * s5p_hash_cra_init_alg - init crypto alg transformation
1675  * @tfm:	crypto transformation
1676  */
1677 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1678 {
1679 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1680 	const char *alg_name = crypto_tfm_alg_name(tfm);
1681 
1682 	tctx->dd = s5p_dev;
1683 	/* Allocate a fallback and abort if it failed. */
1684 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1685 					    CRYPTO_ALG_NEED_FALLBACK);
1686 	if (IS_ERR(tctx->fallback)) {
1687 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1688 		return PTR_ERR(tctx->fallback);
1689 	}
1690 
1691 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1692 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1693 
1694 	return 0;
1695 }
1696 
1697 /**
1698  * s5p_hash_cra_init - init crypto tfm
1699  * @tfm:	crypto transformation
1700  */
1701 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1702 {
1703 	return s5p_hash_cra_init_alg(tfm);
1704 }
1705 
1706 /**
1707  * s5p_hash_cra_exit - exit crypto tfm
1708  * @tfm:	crypto transformation
1709  *
1710  * free allocated fallback
1711  */
1712 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1713 {
1714 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1715 
1716 	crypto_free_shash(tctx->fallback);
1717 	tctx->fallback = NULL;
1718 }
1719 
1720 /**
1721  * s5p_hash_export - export hash state
1722  * @req:	AHASH request
1723  * @out:	buffer for exported state
1724  */
1725 static int s5p_hash_export(struct ahash_request *req, void *out)
1726 {
1727 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1728 
1729 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1730 
1731 	return 0;
1732 }
1733 
1734 /**
1735  * s5p_hash_import - import hash state
1736  * @req:	AHASH request
1737  * @in:		buffer with state to be imported from
1738  */
1739 static int s5p_hash_import(struct ahash_request *req, const void *in)
1740 {
1741 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1742 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1743 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1744 	const struct s5p_hash_reqctx *ctx_in = in;
1745 
1746 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1747 	if (ctx_in->bufcnt > BUFLEN) {
1748 		ctx->error = true;
1749 		return -EINVAL;
1750 	}
1751 
1752 	ctx->dd = tctx->dd;
1753 	ctx->error = false;
1754 
1755 	return 0;
1756 }
1757 
1758 static struct ahash_alg algs_sha1_md5_sha256[] = {
1759 {
1760 	.init		= s5p_hash_init,
1761 	.update		= s5p_hash_update,
1762 	.final		= s5p_hash_final,
1763 	.finup		= s5p_hash_finup,
1764 	.digest		= s5p_hash_digest,
1765 	.export		= s5p_hash_export,
1766 	.import		= s5p_hash_import,
1767 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1769 	.halg.base	= {
1770 		.cra_name		= "sha1",
1771 		.cra_driver_name	= "exynos-sha1",
1772 		.cra_priority		= 100,
1773 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1774 					  CRYPTO_ALG_KERN_DRIVER_ONLY |
1775 					  CRYPTO_ALG_ASYNC |
1776 					  CRYPTO_ALG_NEED_FALLBACK,
1777 		.cra_blocksize		= HASH_BLOCK_SIZE,
1778 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1779 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1780 		.cra_module		= THIS_MODULE,
1781 		.cra_init		= s5p_hash_cra_init,
1782 		.cra_exit		= s5p_hash_cra_exit,
1783 	}
1784 },
1785 {
1786 	.init		= s5p_hash_init,
1787 	.update		= s5p_hash_update,
1788 	.final		= s5p_hash_final,
1789 	.finup		= s5p_hash_finup,
1790 	.digest		= s5p_hash_digest,
1791 	.export		= s5p_hash_export,
1792 	.import		= s5p_hash_import,
1793 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1794 	.halg.digestsize	= MD5_DIGEST_SIZE,
1795 	.halg.base	= {
1796 		.cra_name		= "md5",
1797 		.cra_driver_name	= "exynos-md5",
1798 		.cra_priority		= 100,
1799 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1800 					  CRYPTO_ALG_KERN_DRIVER_ONLY |
1801 					  CRYPTO_ALG_ASYNC |
1802 					  CRYPTO_ALG_NEED_FALLBACK,
1803 		.cra_blocksize		= HASH_BLOCK_SIZE,
1804 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1805 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1806 		.cra_module		= THIS_MODULE,
1807 		.cra_init		= s5p_hash_cra_init,
1808 		.cra_exit		= s5p_hash_cra_exit,
1809 	}
1810 },
1811 {
1812 	.init		= s5p_hash_init,
1813 	.update		= s5p_hash_update,
1814 	.final		= s5p_hash_final,
1815 	.finup		= s5p_hash_finup,
1816 	.digest		= s5p_hash_digest,
1817 	.export		= s5p_hash_export,
1818 	.import		= s5p_hash_import,
1819 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1820 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1821 	.halg.base	= {
1822 		.cra_name		= "sha256",
1823 		.cra_driver_name	= "exynos-sha256",
1824 		.cra_priority		= 100,
1825 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1826 					  CRYPTO_ALG_KERN_DRIVER_ONLY |
1827 					  CRYPTO_ALG_ASYNC |
1828 					  CRYPTO_ALG_NEED_FALLBACK,
1829 		.cra_blocksize		= HASH_BLOCK_SIZE,
1830 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1831 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1832 		.cra_module		= THIS_MODULE,
1833 		.cra_init		= s5p_hash_cra_init,
1834 		.cra_exit		= s5p_hash_cra_exit,
1835 	}
1836 }
1837 
1838 };
1839 
1840 static void s5p_set_aes(struct s5p_aes_dev *dev,
1841 			uint8_t *key, uint8_t *iv, unsigned int keylen)
1842 {
1843 	void __iomem *keystart;
1844 
1845 	if (iv)
1846 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
1847 
1848 	if (keylen == AES_KEYSIZE_256)
1849 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1850 	else if (keylen == AES_KEYSIZE_192)
1851 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1852 	else
1853 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1854 
1855 	memcpy_toio(keystart, key, keylen);
1856 }
1857 
1858 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1859 {
1860 	while (sg) {
1861 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1862 			return false;
1863 		sg = sg_next(sg);
1864 	}
1865 
1866 	return true;
1867 }
1868 
1869 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1870 				struct ablkcipher_request *req)
1871 {
1872 	struct scatterlist *sg;
1873 	int err;
1874 
1875 	dev->sg_src_cpy = NULL;
1876 	sg = req->src;
1877 	if (!s5p_is_sg_aligned(sg)) {
1878 		dev_dbg(dev->dev,
1879 			"At least one unaligned source scatter list, making a copy\n");
1880 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1881 		if (err)
1882 			return err;
1883 
1884 		sg = dev->sg_src_cpy;
1885 	}
1886 
1887 	err = s5p_set_indata(dev, sg);
1888 	if (err) {
1889 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1890 		return err;
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1897 				struct ablkcipher_request *req)
1898 {
1899 	struct scatterlist *sg;
1900 	int err;
1901 
1902 	dev->sg_dst_cpy = NULL;
1903 	sg = req->dst;
1904 	if (!s5p_is_sg_aligned(sg)) {
1905 		dev_dbg(dev->dev,
1906 			"At least one unaligned dest scatter list, making a copy\n");
1907 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1908 		if (err)
1909 			return err;
1910 
1911 		sg = dev->sg_dst_cpy;
1912 	}
1913 
1914 	err = s5p_set_outdata(dev, sg);
1915 	if (err) {
1916 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1917 		return err;
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1924 {
1925 	struct ablkcipher_request *req = dev->req;
1926 	uint32_t aes_control;
1927 	unsigned long flags;
1928 	int err;
1929 
1930 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1931 	if (mode & FLAGS_AES_DECRYPT)
1932 		aes_control |= SSS_AES_MODE_DECRYPT;
1933 
1934 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
1935 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1936 	else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
1937 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1938 
1939 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1940 		aes_control |= SSS_AES_KEY_SIZE_192;
1941 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1942 		aes_control |= SSS_AES_KEY_SIZE_256;
1943 
1944 	aes_control |= SSS_AES_FIFO_MODE;
1945 
1946 	/* as a variant it is possible to use byte swapping on DMA side */
1947 	aes_control |= SSS_AES_BYTESWAP_DI
1948 		    |  SSS_AES_BYTESWAP_DO
1949 		    |  SSS_AES_BYTESWAP_IV
1950 		    |  SSS_AES_BYTESWAP_KEY
1951 		    |  SSS_AES_BYTESWAP_CNT;
1952 
1953 	spin_lock_irqsave(&dev->lock, flags);
1954 
1955 	SSS_WRITE(dev, FCINTENCLR,
1956 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1957 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1958 
1959 	err = s5p_set_indata_start(dev, req);
1960 	if (err)
1961 		goto indata_error;
1962 
1963 	err = s5p_set_outdata_start(dev, req);
1964 	if (err)
1965 		goto outdata_error;
1966 
1967 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1968 	s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
1969 
1970 	s5p_set_dma_indata(dev,  dev->sg_src);
1971 	s5p_set_dma_outdata(dev, dev->sg_dst);
1972 
1973 	SSS_WRITE(dev, FCINTENSET,
1974 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1975 
1976 	spin_unlock_irqrestore(&dev->lock, flags);
1977 
1978 	return;
1979 
1980 outdata_error:
1981 	s5p_unset_indata(dev);
1982 
1983 indata_error:
1984 	s5p_sg_done(dev);
1985 	dev->busy = false;
1986 	spin_unlock_irqrestore(&dev->lock, flags);
1987 	s5p_aes_complete(dev, err);
1988 }
1989 
1990 static void s5p_tasklet_cb(unsigned long data)
1991 {
1992 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1993 	struct crypto_async_request *async_req, *backlog;
1994 	struct s5p_aes_reqctx *reqctx;
1995 	unsigned long flags;
1996 
1997 	spin_lock_irqsave(&dev->lock, flags);
1998 	backlog   = crypto_get_backlog(&dev->queue);
1999 	async_req = crypto_dequeue_request(&dev->queue);
2000 
2001 	if (!async_req) {
2002 		dev->busy = false;
2003 		spin_unlock_irqrestore(&dev->lock, flags);
2004 		return;
2005 	}
2006 	spin_unlock_irqrestore(&dev->lock, flags);
2007 
2008 	if (backlog)
2009 		backlog->complete(backlog, -EINPROGRESS);
2010 
2011 	dev->req = ablkcipher_request_cast(async_req);
2012 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2013 	reqctx   = ablkcipher_request_ctx(dev->req);
2014 
2015 	s5p_aes_crypt_start(dev, reqctx->mode);
2016 }
2017 
2018 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2019 			      struct ablkcipher_request *req)
2020 {
2021 	unsigned long flags;
2022 	int err;
2023 
2024 	spin_lock_irqsave(&dev->lock, flags);
2025 	err = ablkcipher_enqueue_request(&dev->queue, req);
2026 	if (dev->busy) {
2027 		spin_unlock_irqrestore(&dev->lock, flags);
2028 		goto exit;
2029 	}
2030 	dev->busy = true;
2031 
2032 	spin_unlock_irqrestore(&dev->lock, flags);
2033 
2034 	tasklet_schedule(&dev->tasklet);
2035 
2036 exit:
2037 	return err;
2038 }
2039 
2040 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2041 {
2042 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2043 	struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2044 	struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2045 	struct s5p_aes_dev *dev = ctx->dev;
2046 
2047 	if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
2048 		dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2049 		return -EINVAL;
2050 	}
2051 
2052 	reqctx->mode = mode;
2053 
2054 	return s5p_aes_handle_req(dev, req);
2055 }
2056 
2057 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2058 			  const uint8_t *key, unsigned int keylen)
2059 {
2060 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2061 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2062 
2063 	if (keylen != AES_KEYSIZE_128 &&
2064 	    keylen != AES_KEYSIZE_192 &&
2065 	    keylen != AES_KEYSIZE_256)
2066 		return -EINVAL;
2067 
2068 	memcpy(ctx->aes_key, key, keylen);
2069 	ctx->keylen = keylen;
2070 
2071 	return 0;
2072 }
2073 
2074 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2075 {
2076 	return s5p_aes_crypt(req, 0);
2077 }
2078 
2079 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2080 {
2081 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2082 }
2083 
2084 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2085 {
2086 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2087 }
2088 
2089 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2090 {
2091 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2092 }
2093 
2094 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2095 {
2096 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2097 
2098 	ctx->dev = s5p_dev;
2099 	tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2100 
2101 	return 0;
2102 }
2103 
2104 static struct crypto_alg algs[] = {
2105 	{
2106 		.cra_name		= "ecb(aes)",
2107 		.cra_driver_name	= "ecb-aes-s5p",
2108 		.cra_priority		= 100,
2109 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2110 					  CRYPTO_ALG_ASYNC |
2111 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2112 		.cra_blocksize		= AES_BLOCK_SIZE,
2113 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2114 		.cra_alignmask		= 0x0f,
2115 		.cra_type		= &crypto_ablkcipher_type,
2116 		.cra_module		= THIS_MODULE,
2117 		.cra_init		= s5p_aes_cra_init,
2118 		.cra_u.ablkcipher = {
2119 			.min_keysize	= AES_MIN_KEY_SIZE,
2120 			.max_keysize	= AES_MAX_KEY_SIZE,
2121 			.setkey		= s5p_aes_setkey,
2122 			.encrypt	= s5p_aes_ecb_encrypt,
2123 			.decrypt	= s5p_aes_ecb_decrypt,
2124 		}
2125 	},
2126 	{
2127 		.cra_name		= "cbc(aes)",
2128 		.cra_driver_name	= "cbc-aes-s5p",
2129 		.cra_priority		= 100,
2130 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2131 					  CRYPTO_ALG_ASYNC |
2132 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2133 		.cra_blocksize		= AES_BLOCK_SIZE,
2134 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2135 		.cra_alignmask		= 0x0f,
2136 		.cra_type		= &crypto_ablkcipher_type,
2137 		.cra_module		= THIS_MODULE,
2138 		.cra_init		= s5p_aes_cra_init,
2139 		.cra_u.ablkcipher = {
2140 			.min_keysize	= AES_MIN_KEY_SIZE,
2141 			.max_keysize	= AES_MAX_KEY_SIZE,
2142 			.ivsize		= AES_BLOCK_SIZE,
2143 			.setkey		= s5p_aes_setkey,
2144 			.encrypt	= s5p_aes_cbc_encrypt,
2145 			.decrypt	= s5p_aes_cbc_decrypt,
2146 		}
2147 	},
2148 };
2149 
2150 static int s5p_aes_probe(struct platform_device *pdev)
2151 {
2152 	struct device *dev = &pdev->dev;
2153 	int i, j, err = -ENODEV;
2154 	struct samsung_aes_variant *variant;
2155 	struct s5p_aes_dev *pdata;
2156 	struct resource *res;
2157 	unsigned int hash_i;
2158 
2159 	if (s5p_dev)
2160 		return -EEXIST;
2161 
2162 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2163 	if (!pdata)
2164 		return -ENOMEM;
2165 
2166 	variant = find_s5p_sss_version(pdev);
2167 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2168 
2169 	/*
2170 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2171 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2172 	 * is enabled in config. We need larger size for HASH registers in
2173 	 * secss, current describe only AES/DES
2174 	 */
2175 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2176 		if (variant == &exynos_aes_data) {
2177 			res->end += 0x300;
2178 			pdata->use_hash = true;
2179 		}
2180 	}
2181 
2182 	pdata->res = res;
2183 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2184 	if (IS_ERR(pdata->ioaddr)) {
2185 		if (!pdata->use_hash)
2186 			return PTR_ERR(pdata->ioaddr);
2187 		/* try AES without HASH */
2188 		res->end -= 0x300;
2189 		pdata->use_hash = false;
2190 		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2191 		if (IS_ERR(pdata->ioaddr))
2192 			return PTR_ERR(pdata->ioaddr);
2193 	}
2194 
2195 	pdata->clk = devm_clk_get(dev, "secss");
2196 	if (IS_ERR(pdata->clk)) {
2197 		dev_err(dev, "failed to find secss clock source\n");
2198 		return -ENOENT;
2199 	}
2200 
2201 	err = clk_prepare_enable(pdata->clk);
2202 	if (err < 0) {
2203 		dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2204 		return err;
2205 	}
2206 
2207 	spin_lock_init(&pdata->lock);
2208 	spin_lock_init(&pdata->hash_lock);
2209 
2210 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2211 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2212 
2213 	pdata->irq_fc = platform_get_irq(pdev, 0);
2214 	if (pdata->irq_fc < 0) {
2215 		err = pdata->irq_fc;
2216 		dev_warn(dev, "feed control interrupt is not available.\n");
2217 		goto err_irq;
2218 	}
2219 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2220 					s5p_aes_interrupt, IRQF_ONESHOT,
2221 					pdev->name, pdev);
2222 	if (err < 0) {
2223 		dev_warn(dev, "feed control interrupt is not available.\n");
2224 		goto err_irq;
2225 	}
2226 
2227 	pdata->busy = false;
2228 	pdata->dev = dev;
2229 	platform_set_drvdata(pdev, pdata);
2230 	s5p_dev = pdata;
2231 
2232 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2233 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2234 
2235 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2236 		err = crypto_register_alg(&algs[i]);
2237 		if (err)
2238 			goto err_algs;
2239 	}
2240 
2241 	if (pdata->use_hash) {
2242 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2243 			     (unsigned long)pdata);
2244 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2245 
2246 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2247 		     hash_i++) {
2248 			struct ahash_alg *alg;
2249 
2250 			alg = &algs_sha1_md5_sha256[hash_i];
2251 			err = crypto_register_ahash(alg);
2252 			if (err) {
2253 				dev_err(dev, "can't register '%s': %d\n",
2254 					alg->halg.base.cra_driver_name, err);
2255 				goto err_hash;
2256 			}
2257 		}
2258 	}
2259 
2260 	dev_info(dev, "s5p-sss driver registered\n");
2261 
2262 	return 0;
2263 
2264 err_hash:
2265 	for (j = hash_i - 1; j >= 0; j--)
2266 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2267 
2268 	tasklet_kill(&pdata->hash_tasklet);
2269 	res->end -= 0x300;
2270 
2271 err_algs:
2272 	if (i < ARRAY_SIZE(algs))
2273 		dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2274 			err);
2275 
2276 	for (j = 0; j < i; j++)
2277 		crypto_unregister_alg(&algs[j]);
2278 
2279 	tasklet_kill(&pdata->tasklet);
2280 
2281 err_irq:
2282 	clk_disable_unprepare(pdata->clk);
2283 
2284 	s5p_dev = NULL;
2285 
2286 	return err;
2287 }
2288 
2289 static int s5p_aes_remove(struct platform_device *pdev)
2290 {
2291 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2292 	int i;
2293 
2294 	if (!pdata)
2295 		return -ENODEV;
2296 
2297 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2298 		crypto_unregister_alg(&algs[i]);
2299 
2300 	tasklet_kill(&pdata->tasklet);
2301 	if (pdata->use_hash) {
2302 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2303 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2304 
2305 		pdata->res->end -= 0x300;
2306 		tasklet_kill(&pdata->hash_tasklet);
2307 		pdata->use_hash = false;
2308 	}
2309 
2310 	clk_disable_unprepare(pdata->clk);
2311 	s5p_dev = NULL;
2312 
2313 	return 0;
2314 }
2315 
2316 static struct platform_driver s5p_aes_crypto = {
2317 	.probe	= s5p_aes_probe,
2318 	.remove	= s5p_aes_remove,
2319 	.driver	= {
2320 		.name	= "s5p-secss",
2321 		.of_match_table = s5p_sss_dt_match,
2322 	},
2323 };
2324 
2325 module_platform_driver(s5p_aes_crypto);
2326 
2327 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2328 MODULE_LICENSE("GPL v2");
2329 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2330 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2331