xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35 
36 #define _SBF(s, v)			((v) << (s))
37 
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT		0x0000
40 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
46 
47 #define SSS_REG_FCINTENSET		0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
54 
55 #define SSS_REG_FCINTENCLR		0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
62 
63 #define SSS_REG_FCINTPEND		0x000C
64 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
70 
71 #define SSS_REG_FCFIFOSTAT		0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
80 
81 #define SSS_REG_FCFIFOCTRL		0x0014
82 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
83 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
86 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
87 
88 #define SSS_REG_FCBRDMAS		0x0020
89 #define SSS_REG_FCBRDMAL		0x0024
90 #define SSS_REG_FCBRDMAC		0x0028
91 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
92 #define SSS_FCBRDMAC_FLUSH		BIT(0)
93 
94 #define SSS_REG_FCBTDMAS		0x0030
95 #define SSS_REG_FCBTDMAL		0x0034
96 #define SSS_REG_FCBTDMAC		0x0038
97 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
98 #define SSS_FCBTDMAC_FLUSH		BIT(0)
99 
100 #define SSS_REG_FCHRDMAS		0x0040
101 #define SSS_REG_FCHRDMAL		0x0044
102 #define SSS_REG_FCHRDMAC		0x0048
103 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
104 #define SSS_FCHRDMAC_FLUSH		BIT(0)
105 
106 #define SSS_REG_FCPKDMAS		0x0050
107 #define SSS_REG_FCPKDMAL		0x0054
108 #define SSS_REG_FCPKDMAC		0x0058
109 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
110 #define SSS_FCPKDMAC_DESCEND		BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
112 #define SSS_FCPKDMAC_FLUSH		BIT(0)
113 
114 #define SSS_REG_FCPKDMAO		0x005C
115 
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL		0x00
118 #define SSS_AES_BYTESWAP_DI		BIT(11)
119 #define SSS_AES_BYTESWAP_DO		BIT(10)
120 #define SSS_AES_BYTESWAP_IV		BIT(9)
121 #define SSS_AES_BYTESWAP_CNT		BIT(8)
122 #define SSS_AES_BYTESWAP_KEY		BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
124 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE		BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT		BIT(0)
132 
133 #define SSS_REG_AES_STATUS		0x04
134 #define SSS_AES_BUSY			BIT(2)
135 #define SSS_AES_INPUT_READY		BIT(1)
136 #define SSS_AES_OUTPUT_READY		BIT(0)
137 
138 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
143 
144 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
147 
148 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
150 						SSS_AES_REG(dev, reg))
151 
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT		BIT(0)
154 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
155 #define FLAGS_AES_CBC			_SBF(1, 0x01)
156 #define FLAGS_AES_CTR			_SBF(1, 0x02)
157 
158 #define AES_KEY_LEN			16
159 #define CRYPTO_QUEUE_LEN		1
160 
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL		0x00
163 
164 #define SSS_HASH_USER_IV_EN		BIT(5)
165 #define SSS_HASH_INIT_BIT		BIT(4)
166 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
169 
170 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
171 
172 #define SSS_REG_HASH_CTRL_PAUSE		0x04
173 
174 #define SSS_HASH_PAUSE			BIT(0)
175 
176 #define SSS_REG_HASH_CTRL_FIFO		0x08
177 
178 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU          0
180 
181 #define SSS_REG_HASH_CTRL_SWAP		0x0C
182 
183 #define SSS_HASH_BYTESWAP_DI		BIT(3)
184 #define SSS_HASH_BYTESWAP_DO		BIT(2)
185 #define SSS_HASH_BYTESWAP_IV		BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
187 
188 #define SSS_REG_HASH_STATUS		0x10
189 
190 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
193 
194 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
196 
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
199 
200 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
202 
203 #define HASH_BLOCK_SIZE			64
204 #define HASH_REG_SIZEOF			4
205 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208 
209 /*
210  * HASH bit numbers, used by device, setting in dev->hash_flags with
211  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214  */
215 #define HASH_FLAGS_BUSY		0
216 #define HASH_FLAGS_FINAL	1
217 #define HASH_FLAGS_DMA_ACTIVE	2
218 #define HASH_FLAGS_OUTPUT_READY	3
219 #define HASH_FLAGS_DMA_READY	4
220 #define HASH_FLAGS_SGS_COPIED	5
221 #define HASH_FLAGS_SGS_ALLOCED	6
222 
223 /* HASH HW constants */
224 #define BUFLEN			HASH_BLOCK_SIZE
225 
226 #define SSS_HASH_DMA_LEN_ALIGN	8
227 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
228 
229 #define SSS_HASH_QUEUE_LENGTH	10
230 
231 /**
232  * struct samsung_aes_variant - platform specific SSS driver data
233  * @aes_offset: AES register offset from SSS module's base.
234  * @hash_offset: HASH register offset from SSS module's base.
235  *
236  * Specifies platform specific configuration of SSS module.
237  * Note: A structure for driver specific platform data is used for future
238  * expansion of its usage.
239  */
240 struct samsung_aes_variant {
241 	unsigned int			aes_offset;
242 	unsigned int			hash_offset;
243 };
244 
245 struct s5p_aes_reqctx {
246 	unsigned long			mode;
247 };
248 
249 struct s5p_aes_ctx {
250 	struct s5p_aes_dev		*dev;
251 
252 	uint8_t				aes_key[AES_MAX_KEY_SIZE];
253 	uint8_t				nonce[CTR_RFC3686_NONCE_SIZE];
254 	int				keylen;
255 };
256 
257 /**
258  * struct s5p_aes_dev - Crypto device state container
259  * @dev:	Associated device
260  * @clk:	Clock for accessing hardware
261  * @ioaddr:	Mapped IO memory region
262  * @aes_ioaddr:	Per-varian offset for AES block IO memory
263  * @irq_fc:	Feed control interrupt line
264  * @req:	Crypto request currently handled by the device
265  * @ctx:	Configuration for currently handled crypto request
266  * @sg_src:	Scatter list with source data for currently handled block
267  *		in device.  This is DMA-mapped into device.
268  * @sg_dst:	Scatter list with destination data for currently handled block
269  *		in device. This is DMA-mapped into device.
270  * @sg_src_cpy:	In case of unaligned access, copied scatter list
271  *		with source data.
272  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
273  *		with destination data.
274  * @tasklet:	New request scheduling jib
275  * @queue:	Crypto queue
276  * @busy:	Indicates whether the device is currently handling some request
277  *		thus it uses some of the fields from this state, like:
278  *		req, ctx, sg_src/dst (and copies).  This essentially
279  *		protects against concurrent access to these fields.
280  * @lock:	Lock for protecting both access to device hardware registers
281  *		and fields related to current request (including the busy field).
282  * @res:	Resources for hash.
283  * @io_hash_base: Per-variant offset for HASH block IO memory.
284  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
285  *		variable.
286  * @hash_flags:	Flags for current HASH op.
287  * @hash_queue:	Async hash queue.
288  * @hash_tasklet: New HASH request scheduling job.
289  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
290  * @hash_req:	Current request sending to SSS HASH block.
291  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292  * @hash_sg_cnt: Counter for hash_sg_iter.
293  *
294  * @use_hash:	true if HASH algs enabled
295  */
296 struct s5p_aes_dev {
297 	struct device			*dev;
298 	struct clk			*clk;
299 	void __iomem			*ioaddr;
300 	void __iomem			*aes_ioaddr;
301 	int				irq_fc;
302 
303 	struct ablkcipher_request	*req;
304 	struct s5p_aes_ctx		*ctx;
305 	struct scatterlist		*sg_src;
306 	struct scatterlist		*sg_dst;
307 
308 	struct scatterlist		*sg_src_cpy;
309 	struct scatterlist		*sg_dst_cpy;
310 
311 	struct tasklet_struct		tasklet;
312 	struct crypto_queue		queue;
313 	bool				busy;
314 	spinlock_t			lock;
315 
316 	struct resource			*res;
317 	void __iomem			*io_hash_base;
318 
319 	spinlock_t			hash_lock; /* protect hash_ vars */
320 	unsigned long			hash_flags;
321 	struct crypto_queue		hash_queue;
322 	struct tasklet_struct		hash_tasklet;
323 
324 	u8				xmit_buf[BUFLEN];
325 	struct ahash_request		*hash_req;
326 	struct scatterlist		*hash_sg_iter;
327 	unsigned int			hash_sg_cnt;
328 
329 	bool				use_hash;
330 };
331 
332 /**
333  * struct s5p_hash_reqctx - HASH request context
334  * @dd:		Associated device
335  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
336  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
337  * @digest:	Digest message or IV for partial result
338  * @nregs:	Number of HW registers for digest or IV read/write
339  * @engine:	Bits for selecting type of HASH in SSS block
340  * @sg:		sg for DMA transfer
341  * @sg_len:	Length of sg for DMA transfer
342  * @sgl[]:	sg for joining buffer and req->src scatterlist
343  * @skip:	Skip offset in req->src for current op
344  * @total:	Total number of bytes for current request
345  * @finup:	Keep state for finup or final.
346  * @error:	Keep track of error.
347  * @bufcnt:	Number of bytes holded in buffer[]
348  * @buffer[]:	For byte(s) from end of req->src in UPDATE op
349  */
350 struct s5p_hash_reqctx {
351 	struct s5p_aes_dev	*dd;
352 	bool			op_update;
353 
354 	u64			digcnt;
355 	u8			digest[SHA256_DIGEST_SIZE];
356 
357 	unsigned int		nregs; /* digest_size / sizeof(reg) */
358 	u32			engine;
359 
360 	struct scatterlist	*sg;
361 	unsigned int		sg_len;
362 	struct scatterlist	sgl[2];
363 	unsigned int		skip;
364 	unsigned int		total;
365 	bool			finup;
366 	bool			error;
367 
368 	u32			bufcnt;
369 	u8			buffer[0];
370 };
371 
372 /**
373  * struct s5p_hash_ctx - HASH transformation context
374  * @dd:		Associated device
375  * @flags:	Bits for algorithm HASH.
376  * @fallback:	Software transformation for zero message or size < BUFLEN.
377  */
378 struct s5p_hash_ctx {
379 	struct s5p_aes_dev	*dd;
380 	unsigned long		flags;
381 	struct crypto_shash	*fallback;
382 };
383 
384 static const struct samsung_aes_variant s5p_aes_data = {
385 	.aes_offset	= 0x4000,
386 	.hash_offset	= 0x6000,
387 };
388 
389 static const struct samsung_aes_variant exynos_aes_data = {
390 	.aes_offset	= 0x200,
391 	.hash_offset	= 0x400,
392 };
393 
394 static const struct of_device_id s5p_sss_dt_match[] = {
395 	{
396 		.compatible = "samsung,s5pv210-secss",
397 		.data = &s5p_aes_data,
398 	},
399 	{
400 		.compatible = "samsung,exynos4210-secss",
401 		.data = &exynos_aes_data,
402 	},
403 	{ },
404 };
405 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
406 
407 static inline struct samsung_aes_variant *find_s5p_sss_version
408 				   (struct platform_device *pdev)
409 {
410 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
411 		const struct of_device_id *match;
412 
413 		match = of_match_node(s5p_sss_dt_match,
414 					pdev->dev.of_node);
415 		return (struct samsung_aes_variant *)match->data;
416 	}
417 	return (struct samsung_aes_variant *)
418 			platform_get_device_id(pdev)->driver_data;
419 }
420 
421 static struct s5p_aes_dev *s5p_dev;
422 
423 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
424 {
425 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
426 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
427 }
428 
429 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
430 {
431 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
432 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
433 }
434 
435 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
436 {
437 	int len;
438 
439 	if (!*sg)
440 		return;
441 
442 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
443 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
444 
445 	kfree(*sg);
446 	*sg = NULL;
447 }
448 
449 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
450 			    unsigned int nbytes, int out)
451 {
452 	struct scatter_walk walk;
453 
454 	if (!nbytes)
455 		return;
456 
457 	scatterwalk_start(&walk, sg);
458 	scatterwalk_copychunks(buf, &walk, nbytes, out);
459 	scatterwalk_done(&walk, out, 0);
460 }
461 
462 static void s5p_sg_done(struct s5p_aes_dev *dev)
463 {
464 	if (dev->sg_dst_cpy) {
465 		dev_dbg(dev->dev,
466 			"Copying %d bytes of output data back to original place\n",
467 			dev->req->nbytes);
468 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
469 				dev->req->nbytes, 1);
470 	}
471 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
472 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
473 }
474 
475 /* Calls the completion. Cannot be called with dev->lock hold. */
476 static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
477 {
478 	dev->req->base.complete(&dev->req->base, err);
479 }
480 
481 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
482 {
483 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
484 }
485 
486 static void s5p_unset_indata(struct s5p_aes_dev *dev)
487 {
488 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
489 }
490 
491 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
492 			    struct scatterlist **dst)
493 {
494 	void *pages;
495 	int len;
496 
497 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
498 	if (!*dst)
499 		return -ENOMEM;
500 
501 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
502 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
503 	if (!pages) {
504 		kfree(*dst);
505 		*dst = NULL;
506 		return -ENOMEM;
507 	}
508 
509 	s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
510 
511 	sg_init_table(*dst, 1);
512 	sg_set_buf(*dst, pages, len);
513 
514 	return 0;
515 }
516 
517 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
518 {
519 	int err;
520 
521 	if (!sg->length) {
522 		err = -EINVAL;
523 		goto exit;
524 	}
525 
526 	err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
527 	if (!err) {
528 		err = -ENOMEM;
529 		goto exit;
530 	}
531 
532 	dev->sg_dst = sg;
533 	err = 0;
534 
535 exit:
536 	return err;
537 }
538 
539 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
540 {
541 	int err;
542 
543 	if (!sg->length) {
544 		err = -EINVAL;
545 		goto exit;
546 	}
547 
548 	err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
549 	if (!err) {
550 		err = -ENOMEM;
551 		goto exit;
552 	}
553 
554 	dev->sg_src = sg;
555 	err = 0;
556 
557 exit:
558 	return err;
559 }
560 
561 /*
562  * Returns -ERRNO on error (mapping of new data failed).
563  * On success returns:
564  *  - 0 if there is no more data,
565  *  - 1 if new transmitting (output) data is ready and its address+length
566  *     have to be written to device (by calling s5p_set_dma_outdata()).
567  */
568 static int s5p_aes_tx(struct s5p_aes_dev *dev)
569 {
570 	int ret = 0;
571 
572 	s5p_unset_outdata(dev);
573 
574 	if (!sg_is_last(dev->sg_dst)) {
575 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
576 		if (!ret)
577 			ret = 1;
578 	}
579 
580 	return ret;
581 }
582 
583 /*
584  * Returns -ERRNO on error (mapping of new data failed).
585  * On success returns:
586  *  - 0 if there is no more data,
587  *  - 1 if new receiving (input) data is ready and its address+length
588  *     have to be written to device (by calling s5p_set_dma_indata()).
589  */
590 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
591 {
592 	int ret = 0;
593 
594 	s5p_unset_indata(dev);
595 
596 	if (!sg_is_last(dev->sg_src)) {
597 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
598 		if (!ret)
599 			ret = 1;
600 	}
601 
602 	return ret;
603 }
604 
605 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
606 {
607 	return __raw_readl(dd->io_hash_base + offset);
608 }
609 
610 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
611 				  u32 offset, u32 value)
612 {
613 	__raw_writel(value, dd->io_hash_base + offset);
614 }
615 
616 /**
617  * s5p_set_dma_hashdata() - start DMA with sg
618  * @dev:	device
619  * @sg:		scatterlist ready to DMA transmit
620  */
621 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
622 				 struct scatterlist *sg)
623 {
624 	dev->hash_sg_cnt--;
625 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
626 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
627 }
628 
629 /**
630  * s5p_hash_rx() - get next hash_sg_iter
631  * @dev:	device
632  *
633  * Return:
634  * 2	if there is no more data and it is UPDATE op
635  * 1	if new receiving (input) data is ready and can be written to device
636  * 0	if there is no more data and it is FINAL op
637  */
638 static int s5p_hash_rx(struct s5p_aes_dev *dev)
639 {
640 	if (dev->hash_sg_cnt > 0) {
641 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
642 		return 1;
643 	}
644 
645 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
646 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
647 		return 0;
648 
649 	return 2;
650 }
651 
652 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
653 {
654 	struct platform_device *pdev = dev_id;
655 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
656 	int err_dma_tx = 0;
657 	int err_dma_rx = 0;
658 	int err_dma_hx = 0;
659 	bool tx_end = false;
660 	bool hx_end = false;
661 	unsigned long flags;
662 	uint32_t status;
663 	u32 st_bits;
664 	int err;
665 
666 	spin_lock_irqsave(&dev->lock, flags);
667 
668 	/*
669 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
670 	 * reach end), then map next scatterlist entry.
671 	 * In case of such mapping error, s5p_aes_complete() should be called.
672 	 *
673 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
674 	 * and schedule new tasklet.
675 	 *
676 	 * Handle hx interrupt. If there is still data map next entry.
677 	 */
678 	status = SSS_READ(dev, FCINTSTAT);
679 	if (status & SSS_FCINTSTAT_BRDMAINT)
680 		err_dma_rx = s5p_aes_rx(dev);
681 
682 	if (status & SSS_FCINTSTAT_BTDMAINT) {
683 		if (sg_is_last(dev->sg_dst))
684 			tx_end = true;
685 		err_dma_tx = s5p_aes_tx(dev);
686 	}
687 
688 	if (status & SSS_FCINTSTAT_HRDMAINT)
689 		err_dma_hx = s5p_hash_rx(dev);
690 
691 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
692 				SSS_FCINTSTAT_HRDMAINT);
693 	/* clear DMA bits */
694 	SSS_WRITE(dev, FCINTPEND, st_bits);
695 
696 	/* clear HASH irq bits */
697 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
698 		/* cannot have both HPART and HDONE */
699 		if (status & SSS_FCINTSTAT_HPARTINT)
700 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
701 
702 		if (status & SSS_FCINTSTAT_HDONEINT)
703 			st_bits = SSS_HASH_STATUS_MSG_DONE;
704 
705 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
706 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
707 		hx_end = true;
708 		/* when DONE or PART, do not handle HASH DMA */
709 		err_dma_hx = 0;
710 	}
711 
712 	if (err_dma_rx < 0) {
713 		err = err_dma_rx;
714 		goto error;
715 	}
716 	if (err_dma_tx < 0) {
717 		err = err_dma_tx;
718 		goto error;
719 	}
720 
721 	if (tx_end) {
722 		s5p_sg_done(dev);
723 		if (err_dma_hx == 1)
724 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
725 
726 		spin_unlock_irqrestore(&dev->lock, flags);
727 
728 		s5p_aes_complete(dev, 0);
729 		/* Device is still busy */
730 		tasklet_schedule(&dev->tasklet);
731 	} else {
732 		/*
733 		 * Writing length of DMA block (either receiving or
734 		 * transmitting) will start the operation immediately, so this
735 		 * should be done at the end (even after clearing pending
736 		 * interrupts to not miss the interrupt).
737 		 */
738 		if (err_dma_tx == 1)
739 			s5p_set_dma_outdata(dev, dev->sg_dst);
740 		if (err_dma_rx == 1)
741 			s5p_set_dma_indata(dev, dev->sg_src);
742 		if (err_dma_hx == 1)
743 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
744 
745 		spin_unlock_irqrestore(&dev->lock, flags);
746 	}
747 
748 	goto hash_irq_end;
749 
750 error:
751 	s5p_sg_done(dev);
752 	dev->busy = false;
753 	if (err_dma_hx == 1)
754 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
755 
756 	spin_unlock_irqrestore(&dev->lock, flags);
757 	s5p_aes_complete(dev, err);
758 
759 hash_irq_end:
760 	/*
761 	 * Note about else if:
762 	 *   when hash_sg_iter reaches end and its UPDATE op,
763 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
764 	 */
765 	if (hx_end)
766 		tasklet_schedule(&dev->hash_tasklet);
767 	else if (err_dma_hx == 2)
768 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
769 			       SSS_HASH_PAUSE);
770 
771 	return IRQ_HANDLED;
772 }
773 
774 /**
775  * s5p_hash_read_msg() - read message or IV from HW
776  * @req:	AHASH request
777  */
778 static void s5p_hash_read_msg(struct ahash_request *req)
779 {
780 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
781 	struct s5p_aes_dev *dd = ctx->dd;
782 	u32 *hash = (u32 *)ctx->digest;
783 	unsigned int i;
784 
785 	for (i = 0; i < ctx->nregs; i++)
786 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
787 }
788 
789 /**
790  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
791  * @dd:		device
792  * @ctx:	request context
793  */
794 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
795 				  struct s5p_hash_reqctx *ctx)
796 {
797 	u32 *hash = (u32 *)ctx->digest;
798 	unsigned int i;
799 
800 	for (i = 0; i < ctx->nregs; i++)
801 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
802 }
803 
804 /**
805  * s5p_hash_write_iv() - write IV for next partial/finup op.
806  * @req:	AHASH request
807  */
808 static void s5p_hash_write_iv(struct ahash_request *req)
809 {
810 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
811 
812 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
813 }
814 
815 /**
816  * s5p_hash_copy_result() - copy digest into req->result
817  * @req:	AHASH request
818  */
819 static void s5p_hash_copy_result(struct ahash_request *req)
820 {
821 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
822 
823 	if (!req->result)
824 		return;
825 
826 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
827 }
828 
829 /**
830  * s5p_hash_dma_flush() - flush HASH DMA
831  * @dev:	secss device
832  */
833 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
834 {
835 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
836 }
837 
838 /**
839  * s5p_hash_dma_enable() - enable DMA mode for HASH
840  * @dev:	secss device
841  *
842  * enable DMA mode for HASH
843  */
844 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
845 {
846 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
847 }
848 
849 /**
850  * s5p_hash_irq_disable() - disable irq HASH signals
851  * @dev:	secss device
852  * @flags:	bitfield with irq's to be disabled
853  */
854 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
855 {
856 	SSS_WRITE(dev, FCINTENCLR, flags);
857 }
858 
859 /**
860  * s5p_hash_irq_enable() - enable irq signals
861  * @dev:	secss device
862  * @flags:	bitfield with irq's to be enabled
863  */
864 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
865 {
866 	SSS_WRITE(dev, FCINTENSET, flags);
867 }
868 
869 /**
870  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
871  * @dev:	secss device
872  * @hashflow:	HASH stream flow with/without crypto AES/DES
873  */
874 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
875 {
876 	unsigned long flags;
877 	u32 flow;
878 
879 	spin_lock_irqsave(&dev->lock, flags);
880 
881 	flow = SSS_READ(dev, FCFIFOCTRL);
882 	flow &= ~SSS_HASHIN_MASK;
883 	flow |= hashflow;
884 	SSS_WRITE(dev, FCFIFOCTRL, flow);
885 
886 	spin_unlock_irqrestore(&dev->lock, flags);
887 }
888 
889 /**
890  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
891  * @dev:	secss device
892  * @hashflow:	HASH stream flow with/without AES/DES
893  *
894  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
895  * enable HASH irq's HRDMA, HDONE, HPART
896  */
897 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
898 {
899 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
900 			     SSS_FCINTENCLR_HDONEINTENCLR |
901 			     SSS_FCINTENCLR_HPARTINTENCLR);
902 	s5p_hash_dma_flush(dev);
903 
904 	s5p_hash_dma_enable(dev);
905 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
906 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
907 			    SSS_FCINTENSET_HDONEINTENSET |
908 			    SSS_FCINTENSET_HPARTINTENSET);
909 }
910 
911 /**
912  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
913  * @dd:		secss device
914  * @length:	length for request
915  * @final:	true if final op
916  *
917  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
918  * after previous updates, fill up IV words. For final, calculate and set
919  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
920  * length as 2^63 so it will be never reached and set to zero prelow and
921  * prehigh.
922  *
923  * This function does not start DMA transfer.
924  */
925 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
926 				bool final)
927 {
928 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
929 	u32 prelow, prehigh, low, high;
930 	u32 configflags, swapflags;
931 	u64 tmplen;
932 
933 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
934 
935 	if (likely(ctx->digcnt)) {
936 		s5p_hash_write_ctx_iv(dd, ctx);
937 		configflags |= SSS_HASH_USER_IV_EN;
938 	}
939 
940 	if (final) {
941 		/* number of bytes for last part */
942 		low = length;
943 		high = 0;
944 		/* total number of bits prev hashed */
945 		tmplen = ctx->digcnt * 8;
946 		prelow = (u32)tmplen;
947 		prehigh = (u32)(tmplen >> 32);
948 	} else {
949 		prelow = 0;
950 		prehigh = 0;
951 		low = 0;
952 		high = BIT(31);
953 	}
954 
955 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
956 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
957 
958 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
959 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
960 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
961 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
962 
963 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
964 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
965 }
966 
967 /**
968  * s5p_hash_xmit_dma() - start DMA hash processing
969  * @dd:		secss device
970  * @length:	length for request
971  * @final:	true if final op
972  *
973  * Update digcnt here, as it is needed for finup/final op.
974  */
975 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
976 			     bool final)
977 {
978 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
979 	unsigned int cnt;
980 
981 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
982 	if (!cnt) {
983 		dev_err(dd->dev, "dma_map_sg error\n");
984 		ctx->error = true;
985 		return -EINVAL;
986 	}
987 
988 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
989 	dd->hash_sg_iter = ctx->sg;
990 	dd->hash_sg_cnt = cnt;
991 	s5p_hash_write_ctrl(dd, length, final);
992 	ctx->digcnt += length;
993 	ctx->total -= length;
994 
995 	/* catch last interrupt */
996 	if (final)
997 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
998 
999 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1000 
1001 	return -EINPROGRESS;
1002 }
1003 
1004 /**
1005  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1006  * @ctx:	request context
1007  * @sg:		source scatterlist request
1008  * @new_len:	number of bytes to process from sg
1009  *
1010  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1011  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1012  * with allocated buffer.
1013  *
1014  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1015  */
1016 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1017 			     struct scatterlist *sg, unsigned int new_len)
1018 {
1019 	unsigned int pages, len;
1020 	void *buf;
1021 
1022 	len = new_len + ctx->bufcnt;
1023 	pages = get_order(len);
1024 
1025 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1026 	if (!buf) {
1027 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1028 		ctx->error = true;
1029 		return -ENOMEM;
1030 	}
1031 
1032 	if (ctx->bufcnt)
1033 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1034 
1035 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1036 				 new_len, 0);
1037 	sg_init_table(ctx->sgl, 1);
1038 	sg_set_buf(ctx->sgl, buf, len);
1039 	ctx->sg = ctx->sgl;
1040 	ctx->sg_len = 1;
1041 	ctx->bufcnt = 0;
1042 	ctx->skip = 0;
1043 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1050  * @ctx:	request context
1051  * @sg:		source scatterlist request
1052  * @new_len:	number of bytes to process from sg
1053  *
1054  * Allocate new scatterlist table, copy data for HASH into it. If there was
1055  * xmit_buf filled, prepare it first, then copy page, length and offset from
1056  * source sg into it, adjusting begin and/or end for skip offset and
1057  * hash_later value.
1058  *
1059  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1060  * it after irq ends processing.
1061  */
1062 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1063 				  struct scatterlist *sg, unsigned int new_len)
1064 {
1065 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1066 	struct scatterlist *tmp;
1067 	unsigned int len;
1068 
1069 	if (ctx->bufcnt)
1070 		n++;
1071 
1072 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1073 	if (!ctx->sg) {
1074 		ctx->error = true;
1075 		return -ENOMEM;
1076 	}
1077 
1078 	sg_init_table(ctx->sg, n);
1079 
1080 	tmp = ctx->sg;
1081 
1082 	ctx->sg_len = 0;
1083 
1084 	if (ctx->bufcnt) {
1085 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1086 		tmp = sg_next(tmp);
1087 		ctx->sg_len++;
1088 	}
1089 
1090 	while (sg && skip >= sg->length) {
1091 		skip -= sg->length;
1092 		sg = sg_next(sg);
1093 	}
1094 
1095 	while (sg && new_len) {
1096 		len = sg->length - skip;
1097 		if (new_len < len)
1098 			len = new_len;
1099 
1100 		new_len -= len;
1101 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1102 		skip = 0;
1103 		if (new_len <= 0)
1104 			sg_mark_end(tmp);
1105 
1106 		tmp = sg_next(tmp);
1107 		ctx->sg_len++;
1108 		sg = sg_next(sg);
1109 	}
1110 
1111 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1112 
1113 	return 0;
1114 }
1115 
1116 /**
1117  * s5p_hash_prepare_sgs() - prepare sg for processing
1118  * @ctx:	request context
1119  * @sg:		source scatterlist request
1120  * @nbytes:	number of bytes to process from sg
1121  * @final:	final flag
1122  *
1123  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1124  * sg table have good aligned elements (list_ok). If one of this checks fails,
1125  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1126  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1127  * table and prepare sg elements.
1128  *
1129  * For digest or finup all conditions can be good, and we may not need any
1130  * fixes.
1131  */
1132 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1133 				struct scatterlist *sg,
1134 				unsigned int new_len, bool final)
1135 {
1136 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1137 	bool aligned = true, list_ok = true;
1138 	struct scatterlist *sg_tmp = sg;
1139 
1140 	if (!sg || !sg->length || !new_len)
1141 		return 0;
1142 
1143 	if (skip || !final)
1144 		list_ok = false;
1145 
1146 	while (nbytes > 0 && sg_tmp) {
1147 		n++;
1148 		if (skip >= sg_tmp->length) {
1149 			skip -= sg_tmp->length;
1150 			if (!sg_tmp->length) {
1151 				aligned = false;
1152 				break;
1153 			}
1154 		} else {
1155 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1156 				aligned = false;
1157 				break;
1158 			}
1159 
1160 			if (nbytes < sg_tmp->length - skip) {
1161 				list_ok = false;
1162 				break;
1163 			}
1164 
1165 			nbytes -= sg_tmp->length - skip;
1166 			skip = 0;
1167 		}
1168 
1169 		sg_tmp = sg_next(sg_tmp);
1170 	}
1171 
1172 	if (!aligned)
1173 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1174 	else if (!list_ok)
1175 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1176 
1177 	/*
1178 	 * Have aligned data from previous operation and/or current
1179 	 * Note: will enter here only if (digest or finup) and aligned
1180 	 */
1181 	if (ctx->bufcnt) {
1182 		ctx->sg_len = n;
1183 		sg_init_table(ctx->sgl, 2);
1184 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1185 		sg_chain(ctx->sgl, 2, sg);
1186 		ctx->sg = ctx->sgl;
1187 		ctx->sg_len++;
1188 	} else {
1189 		ctx->sg = sg;
1190 		ctx->sg_len = n;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 /**
1197  * s5p_hash_prepare_request() - prepare request for processing
1198  * @req:	AHASH request
1199  * @update:	true if UPDATE op
1200  *
1201  * Note 1: we can have update flag _and_ final flag at the same time.
1202  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1203  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1204  *	   we have final op
1205  */
1206 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1207 {
1208 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1209 	bool final = ctx->finup;
1210 	int xmit_len, hash_later, nbytes;
1211 	int ret;
1212 
1213 	if (!req)
1214 		return 0;
1215 
1216 	if (update)
1217 		nbytes = req->nbytes;
1218 	else
1219 		nbytes = 0;
1220 
1221 	ctx->total = nbytes + ctx->bufcnt;
1222 	if (!ctx->total)
1223 		return 0;
1224 
1225 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1226 		/* bytes left from previous request, so fill up to BUFLEN */
1227 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1228 
1229 		if (len > nbytes)
1230 			len = nbytes;
1231 
1232 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1233 					 0, len, 0);
1234 		ctx->bufcnt += len;
1235 		nbytes -= len;
1236 		ctx->skip = len;
1237 	} else {
1238 		ctx->skip = 0;
1239 	}
1240 
1241 	if (ctx->bufcnt)
1242 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1243 
1244 	xmit_len = ctx->total;
1245 	if (final) {
1246 		hash_later = 0;
1247 	} else {
1248 		if (IS_ALIGNED(xmit_len, BUFLEN))
1249 			xmit_len -= BUFLEN;
1250 		else
1251 			xmit_len -= xmit_len & (BUFLEN - 1);
1252 
1253 		hash_later = ctx->total - xmit_len;
1254 		/* copy hash_later bytes from end of req->src */
1255 		/* previous bytes are in xmit_buf, so no overwrite */
1256 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1257 					 req->nbytes - hash_later,
1258 					 hash_later, 0);
1259 	}
1260 
1261 	if (xmit_len > BUFLEN) {
1262 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1263 					   final);
1264 		if (ret)
1265 			return ret;
1266 	} else {
1267 		/* have buffered data only */
1268 		if (unlikely(!ctx->bufcnt)) {
1269 			/* first update didn't fill up buffer */
1270 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1271 						 0, xmit_len, 0);
1272 		}
1273 
1274 		sg_init_table(ctx->sgl, 1);
1275 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1276 
1277 		ctx->sg = ctx->sgl;
1278 		ctx->sg_len = 1;
1279 	}
1280 
1281 	ctx->bufcnt = hash_later;
1282 	if (!final)
1283 		ctx->total = xmit_len;
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * s5p_hash_update_dma_stop() - unmap DMA
1290  * @dd:		secss device
1291  *
1292  * Unmap scatterlist ctx->sg.
1293  */
1294 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1295 {
1296 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1297 
1298 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1299 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1300 }
1301 
1302 /**
1303  * s5p_hash_finish() - copy calculated digest to crypto layer
1304  * @req:	AHASH request
1305  */
1306 static void s5p_hash_finish(struct ahash_request *req)
1307 {
1308 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309 	struct s5p_aes_dev *dd = ctx->dd;
1310 
1311 	if (ctx->digcnt)
1312 		s5p_hash_copy_result(req);
1313 
1314 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1315 }
1316 
1317 /**
1318  * s5p_hash_finish_req() - finish request
1319  * @req:	AHASH request
1320  * @err:	error
1321  */
1322 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1323 {
1324 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1325 	struct s5p_aes_dev *dd = ctx->dd;
1326 	unsigned long flags;
1327 
1328 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1329 		free_pages((unsigned long)sg_virt(ctx->sg),
1330 			   get_order(ctx->sg->length));
1331 
1332 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1333 		kfree(ctx->sg);
1334 
1335 	ctx->sg = NULL;
1336 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1337 			    BIT(HASH_FLAGS_SGS_COPIED));
1338 
1339 	if (!err && !ctx->error) {
1340 		s5p_hash_read_msg(req);
1341 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1342 			s5p_hash_finish(req);
1343 	} else {
1344 		ctx->error = true;
1345 	}
1346 
1347 	spin_lock_irqsave(&dd->hash_lock, flags);
1348 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1349 			    BIT(HASH_FLAGS_DMA_READY) |
1350 			    BIT(HASH_FLAGS_OUTPUT_READY));
1351 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1352 
1353 	if (req->base.complete)
1354 		req->base.complete(&req->base, err);
1355 }
1356 
1357 /**
1358  * s5p_hash_handle_queue() - handle hash queue
1359  * @dd:		device s5p_aes_dev
1360  * @req:	AHASH request
1361  *
1362  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1363  * device then processes the first request from the dd->queue
1364  *
1365  * Returns: see s5p_hash_final below.
1366  */
1367 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1368 				 struct ahash_request *req)
1369 {
1370 	struct crypto_async_request *async_req, *backlog;
1371 	struct s5p_hash_reqctx *ctx;
1372 	unsigned long flags;
1373 	int err = 0, ret = 0;
1374 
1375 retry:
1376 	spin_lock_irqsave(&dd->hash_lock, flags);
1377 	if (req)
1378 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1379 
1380 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1381 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1382 		return ret;
1383 	}
1384 
1385 	backlog = crypto_get_backlog(&dd->hash_queue);
1386 	async_req = crypto_dequeue_request(&dd->hash_queue);
1387 	if (async_req)
1388 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1389 
1390 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1391 
1392 	if (!async_req)
1393 		return ret;
1394 
1395 	if (backlog)
1396 		backlog->complete(backlog, -EINPROGRESS);
1397 
1398 	req = ahash_request_cast(async_req);
1399 	dd->hash_req = req;
1400 	ctx = ahash_request_ctx(req);
1401 
1402 	err = s5p_hash_prepare_request(req, ctx->op_update);
1403 	if (err || !ctx->total)
1404 		goto out;
1405 
1406 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1407 		ctx->op_update, req->nbytes);
1408 
1409 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1410 	if (ctx->digcnt)
1411 		s5p_hash_write_iv(req); /* restore hash IV */
1412 
1413 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1414 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1415 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1416 			/* no final() after finup() */
1417 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1418 	} else { /* HASH_OP_FINAL */
1419 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1420 	}
1421 out:
1422 	if (err != -EINPROGRESS) {
1423 		/* hash_tasklet_cb will not finish it, so do it here */
1424 		s5p_hash_finish_req(req, err);
1425 		req = NULL;
1426 
1427 		/*
1428 		 * Execute next request immediately if there is anything
1429 		 * in queue.
1430 		 */
1431 		goto retry;
1432 	}
1433 
1434 	return ret;
1435 }
1436 
1437 /**
1438  * s5p_hash_tasklet_cb() - hash tasklet
1439  * @data:	ptr to s5p_aes_dev
1440  */
1441 static void s5p_hash_tasklet_cb(unsigned long data)
1442 {
1443 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1444 
1445 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1446 		s5p_hash_handle_queue(dd, NULL);
1447 		return;
1448 	}
1449 
1450 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1451 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1452 				       &dd->hash_flags)) {
1453 			s5p_hash_update_dma_stop(dd);
1454 		}
1455 
1456 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1457 				       &dd->hash_flags)) {
1458 			/* hash or semi-hash ready */
1459 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1460 			goto finish;
1461 		}
1462 	}
1463 
1464 	return;
1465 
1466 finish:
1467 	/* finish curent request */
1468 	s5p_hash_finish_req(dd->hash_req, 0);
1469 
1470 	/* If we are not busy, process next req */
1471 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1472 		s5p_hash_handle_queue(dd, NULL);
1473 }
1474 
1475 /**
1476  * s5p_hash_enqueue() - enqueue request
1477  * @req:	AHASH request
1478  * @op:		operation UPDATE (true) or FINAL (false)
1479  *
1480  * Returns: see s5p_hash_final below.
1481  */
1482 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1483 {
1484 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1485 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1486 
1487 	ctx->op_update = op;
1488 
1489 	return s5p_hash_handle_queue(tctx->dd, req);
1490 }
1491 
1492 /**
1493  * s5p_hash_update() - process the hash input data
1494  * @req:	AHASH request
1495  *
1496  * If request will fit in buffer, copy it and return immediately
1497  * else enqueue it with OP_UPDATE.
1498  *
1499  * Returns: see s5p_hash_final below.
1500  */
1501 static int s5p_hash_update(struct ahash_request *req)
1502 {
1503 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1504 
1505 	if (!req->nbytes)
1506 		return 0;
1507 
1508 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1509 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1510 					 0, req->nbytes, 0);
1511 		ctx->bufcnt += req->nbytes;
1512 		return 0;
1513 	}
1514 
1515 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1516 }
1517 
1518 /**
1519  * s5p_hash_shash_digest() - calculate shash digest
1520  * @tfm:	crypto transformation
1521  * @flags:	tfm flags
1522  * @data:	input data
1523  * @len:	length of data
1524  * @out:	output buffer
1525  */
1526 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1527 				 const u8 *data, unsigned int len, u8 *out)
1528 {
1529 	SHASH_DESC_ON_STACK(shash, tfm);
1530 
1531 	shash->tfm = tfm;
1532 	shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1533 
1534 	return crypto_shash_digest(shash, data, len, out);
1535 }
1536 
1537 /**
1538  * s5p_hash_final_shash() - calculate shash digest
1539  * @req:	AHASH request
1540  */
1541 static int s5p_hash_final_shash(struct ahash_request *req)
1542 {
1543 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1544 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1545 
1546 	return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1547 				     ctx->buffer, ctx->bufcnt, req->result);
1548 }
1549 
1550 /**
1551  * s5p_hash_final() - close up hash and calculate digest
1552  * @req:	AHASH request
1553  *
1554  * Note: in final req->src do not have any data, and req->nbytes can be
1555  * non-zero.
1556  *
1557  * If there were no input data processed yet and the buffered hash data is
1558  * less than BUFLEN (64) then calculate the final hash immediately by using
1559  * SW algorithm fallback.
1560  *
1561  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1562  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1563  * previous update op, so there are always some buffered bytes in ctx->buffer,
1564  * which means that ctx->bufcnt!=0
1565  *
1566  * Returns:
1567  * 0 if the request has been processed immediately,
1568  * -EINPROGRESS if the operation has been queued for later execution or is set
1569  *		to processing by HW,
1570  * -EBUSY if queue is full and request should be resubmitted later,
1571  * other negative values denotes an error.
1572  */
1573 static int s5p_hash_final(struct ahash_request *req)
1574 {
1575 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1576 
1577 	ctx->finup = true;
1578 	if (ctx->error)
1579 		return -EINVAL; /* uncompleted hash is not needed */
1580 
1581 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1582 		return s5p_hash_final_shash(req);
1583 
1584 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1585 }
1586 
1587 /**
1588  * s5p_hash_finup() - process last req->src and calculate digest
1589  * @req:	AHASH request containing the last update data
1590  *
1591  * Return values: see s5p_hash_final above.
1592  */
1593 static int s5p_hash_finup(struct ahash_request *req)
1594 {
1595 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1596 	int err1, err2;
1597 
1598 	ctx->finup = true;
1599 
1600 	err1 = s5p_hash_update(req);
1601 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1602 		return err1;
1603 
1604 	/*
1605 	 * final() has to be always called to cleanup resources even if
1606 	 * update() failed, except EINPROGRESS or calculate digest for small
1607 	 * size
1608 	 */
1609 	err2 = s5p_hash_final(req);
1610 
1611 	return err1 ?: err2;
1612 }
1613 
1614 /**
1615  * s5p_hash_init() - initialize AHASH request contex
1616  * @req:	AHASH request
1617  *
1618  * Init async hash request context.
1619  */
1620 static int s5p_hash_init(struct ahash_request *req)
1621 {
1622 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1623 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1624 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1625 
1626 	ctx->dd = tctx->dd;
1627 	ctx->error = false;
1628 	ctx->finup = false;
1629 	ctx->bufcnt = 0;
1630 	ctx->digcnt = 0;
1631 	ctx->total = 0;
1632 	ctx->skip = 0;
1633 
1634 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1635 		crypto_ahash_digestsize(tfm));
1636 
1637 	switch (crypto_ahash_digestsize(tfm)) {
1638 	case MD5_DIGEST_SIZE:
1639 		ctx->engine = SSS_HASH_ENGINE_MD5;
1640 		ctx->nregs = HASH_MD5_MAX_REG;
1641 		break;
1642 	case SHA1_DIGEST_SIZE:
1643 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1644 		ctx->nregs = HASH_SHA1_MAX_REG;
1645 		break;
1646 	case SHA256_DIGEST_SIZE:
1647 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1648 		ctx->nregs = HASH_SHA256_MAX_REG;
1649 		break;
1650 	default:
1651 		ctx->error = true;
1652 		return -EINVAL;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 /**
1659  * s5p_hash_digest - calculate digest from req->src
1660  * @req:	AHASH request
1661  *
1662  * Return values: see s5p_hash_final above.
1663  */
1664 static int s5p_hash_digest(struct ahash_request *req)
1665 {
1666 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1667 }
1668 
1669 /**
1670  * s5p_hash_cra_init_alg - init crypto alg transformation
1671  * @tfm:	crypto transformation
1672  */
1673 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1674 {
1675 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1676 	const char *alg_name = crypto_tfm_alg_name(tfm);
1677 
1678 	tctx->dd = s5p_dev;
1679 	/* Allocate a fallback and abort if it failed. */
1680 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1681 					    CRYPTO_ALG_NEED_FALLBACK);
1682 	if (IS_ERR(tctx->fallback)) {
1683 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1684 		return PTR_ERR(tctx->fallback);
1685 	}
1686 
1687 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1688 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  * s5p_hash_cra_init - init crypto tfm
1695  * @tfm:	crypto transformation
1696  */
1697 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1698 {
1699 	return s5p_hash_cra_init_alg(tfm);
1700 }
1701 
1702 /**
1703  * s5p_hash_cra_exit - exit crypto tfm
1704  * @tfm:	crypto transformation
1705  *
1706  * free allocated fallback
1707  */
1708 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1709 {
1710 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1711 
1712 	crypto_free_shash(tctx->fallback);
1713 	tctx->fallback = NULL;
1714 }
1715 
1716 /**
1717  * s5p_hash_export - export hash state
1718  * @req:	AHASH request
1719  * @out:	buffer for exported state
1720  */
1721 static int s5p_hash_export(struct ahash_request *req, void *out)
1722 {
1723 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1724 
1725 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1726 
1727 	return 0;
1728 }
1729 
1730 /**
1731  * s5p_hash_import - import hash state
1732  * @req:	AHASH request
1733  * @in:		buffer with state to be imported from
1734  */
1735 static int s5p_hash_import(struct ahash_request *req, const void *in)
1736 {
1737 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1738 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1739 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1740 	const struct s5p_hash_reqctx *ctx_in = in;
1741 
1742 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1743 	if (ctx_in->bufcnt > BUFLEN) {
1744 		ctx->error = true;
1745 		return -EINVAL;
1746 	}
1747 
1748 	ctx->dd = tctx->dd;
1749 	ctx->error = false;
1750 
1751 	return 0;
1752 }
1753 
1754 static struct ahash_alg algs_sha1_md5_sha256[] = {
1755 {
1756 	.init		= s5p_hash_init,
1757 	.update		= s5p_hash_update,
1758 	.final		= s5p_hash_final,
1759 	.finup		= s5p_hash_finup,
1760 	.digest		= s5p_hash_digest,
1761 	.export		= s5p_hash_export,
1762 	.import		= s5p_hash_import,
1763 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1764 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1765 	.halg.base	= {
1766 		.cra_name		= "sha1",
1767 		.cra_driver_name	= "exynos-sha1",
1768 		.cra_priority		= 100,
1769 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1770 					  CRYPTO_ALG_KERN_DRIVER_ONLY |
1771 					  CRYPTO_ALG_ASYNC |
1772 					  CRYPTO_ALG_NEED_FALLBACK,
1773 		.cra_blocksize		= HASH_BLOCK_SIZE,
1774 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1775 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1776 		.cra_module		= THIS_MODULE,
1777 		.cra_init		= s5p_hash_cra_init,
1778 		.cra_exit		= s5p_hash_cra_exit,
1779 	}
1780 },
1781 {
1782 	.init		= s5p_hash_init,
1783 	.update		= s5p_hash_update,
1784 	.final		= s5p_hash_final,
1785 	.finup		= s5p_hash_finup,
1786 	.digest		= s5p_hash_digest,
1787 	.export		= s5p_hash_export,
1788 	.import		= s5p_hash_import,
1789 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1790 	.halg.digestsize	= MD5_DIGEST_SIZE,
1791 	.halg.base	= {
1792 		.cra_name		= "md5",
1793 		.cra_driver_name	= "exynos-md5",
1794 		.cra_priority		= 100,
1795 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1796 					  CRYPTO_ALG_KERN_DRIVER_ONLY |
1797 					  CRYPTO_ALG_ASYNC |
1798 					  CRYPTO_ALG_NEED_FALLBACK,
1799 		.cra_blocksize		= HASH_BLOCK_SIZE,
1800 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1801 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1802 		.cra_module		= THIS_MODULE,
1803 		.cra_init		= s5p_hash_cra_init,
1804 		.cra_exit		= s5p_hash_cra_exit,
1805 	}
1806 },
1807 {
1808 	.init		= s5p_hash_init,
1809 	.update		= s5p_hash_update,
1810 	.final		= s5p_hash_final,
1811 	.finup		= s5p_hash_finup,
1812 	.digest		= s5p_hash_digest,
1813 	.export		= s5p_hash_export,
1814 	.import		= s5p_hash_import,
1815 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1816 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1817 	.halg.base	= {
1818 		.cra_name		= "sha256",
1819 		.cra_driver_name	= "exynos-sha256",
1820 		.cra_priority		= 100,
1821 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1822 					  CRYPTO_ALG_KERN_DRIVER_ONLY |
1823 					  CRYPTO_ALG_ASYNC |
1824 					  CRYPTO_ALG_NEED_FALLBACK,
1825 		.cra_blocksize		= HASH_BLOCK_SIZE,
1826 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1827 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1828 		.cra_module		= THIS_MODULE,
1829 		.cra_init		= s5p_hash_cra_init,
1830 		.cra_exit		= s5p_hash_cra_exit,
1831 	}
1832 }
1833 
1834 };
1835 
1836 static void s5p_set_aes(struct s5p_aes_dev *dev,
1837 			uint8_t *key, uint8_t *iv, unsigned int keylen)
1838 {
1839 	void __iomem *keystart;
1840 
1841 	if (iv)
1842 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
1843 
1844 	if (keylen == AES_KEYSIZE_256)
1845 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1846 	else if (keylen == AES_KEYSIZE_192)
1847 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1848 	else
1849 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1850 
1851 	memcpy_toio(keystart, key, keylen);
1852 }
1853 
1854 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1855 {
1856 	while (sg) {
1857 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1858 			return false;
1859 		sg = sg_next(sg);
1860 	}
1861 
1862 	return true;
1863 }
1864 
1865 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1866 				struct ablkcipher_request *req)
1867 {
1868 	struct scatterlist *sg;
1869 	int err;
1870 
1871 	dev->sg_src_cpy = NULL;
1872 	sg = req->src;
1873 	if (!s5p_is_sg_aligned(sg)) {
1874 		dev_dbg(dev->dev,
1875 			"At least one unaligned source scatter list, making a copy\n");
1876 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1877 		if (err)
1878 			return err;
1879 
1880 		sg = dev->sg_src_cpy;
1881 	}
1882 
1883 	err = s5p_set_indata(dev, sg);
1884 	if (err) {
1885 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1886 		return err;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1893 				struct ablkcipher_request *req)
1894 {
1895 	struct scatterlist *sg;
1896 	int err;
1897 
1898 	dev->sg_dst_cpy = NULL;
1899 	sg = req->dst;
1900 	if (!s5p_is_sg_aligned(sg)) {
1901 		dev_dbg(dev->dev,
1902 			"At least one unaligned dest scatter list, making a copy\n");
1903 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1904 		if (err)
1905 			return err;
1906 
1907 		sg = dev->sg_dst_cpy;
1908 	}
1909 
1910 	err = s5p_set_outdata(dev, sg);
1911 	if (err) {
1912 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1913 		return err;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1920 {
1921 	struct ablkcipher_request *req = dev->req;
1922 	uint32_t aes_control;
1923 	unsigned long flags;
1924 	int err;
1925 	u8 *iv;
1926 
1927 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1928 	if (mode & FLAGS_AES_DECRYPT)
1929 		aes_control |= SSS_AES_MODE_DECRYPT;
1930 
1931 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1932 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1933 		iv = req->info;
1934 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1935 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1936 		iv = req->info;
1937 	} else {
1938 		iv = NULL; /* AES_ECB */
1939 	}
1940 
1941 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1942 		aes_control |= SSS_AES_KEY_SIZE_192;
1943 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1944 		aes_control |= SSS_AES_KEY_SIZE_256;
1945 
1946 	aes_control |= SSS_AES_FIFO_MODE;
1947 
1948 	/* as a variant it is possible to use byte swapping on DMA side */
1949 	aes_control |= SSS_AES_BYTESWAP_DI
1950 		    |  SSS_AES_BYTESWAP_DO
1951 		    |  SSS_AES_BYTESWAP_IV
1952 		    |  SSS_AES_BYTESWAP_KEY
1953 		    |  SSS_AES_BYTESWAP_CNT;
1954 
1955 	spin_lock_irqsave(&dev->lock, flags);
1956 
1957 	SSS_WRITE(dev, FCINTENCLR,
1958 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1959 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1960 
1961 	err = s5p_set_indata_start(dev, req);
1962 	if (err)
1963 		goto indata_error;
1964 
1965 	err = s5p_set_outdata_start(dev, req);
1966 	if (err)
1967 		goto outdata_error;
1968 
1969 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1970 	s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen);
1971 
1972 	s5p_set_dma_indata(dev,  dev->sg_src);
1973 	s5p_set_dma_outdata(dev, dev->sg_dst);
1974 
1975 	SSS_WRITE(dev, FCINTENSET,
1976 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1977 
1978 	spin_unlock_irqrestore(&dev->lock, flags);
1979 
1980 	return;
1981 
1982 outdata_error:
1983 	s5p_unset_indata(dev);
1984 
1985 indata_error:
1986 	s5p_sg_done(dev);
1987 	dev->busy = false;
1988 	spin_unlock_irqrestore(&dev->lock, flags);
1989 	s5p_aes_complete(dev, err);
1990 }
1991 
1992 static void s5p_tasklet_cb(unsigned long data)
1993 {
1994 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1995 	struct crypto_async_request *async_req, *backlog;
1996 	struct s5p_aes_reqctx *reqctx;
1997 	unsigned long flags;
1998 
1999 	spin_lock_irqsave(&dev->lock, flags);
2000 	backlog   = crypto_get_backlog(&dev->queue);
2001 	async_req = crypto_dequeue_request(&dev->queue);
2002 
2003 	if (!async_req) {
2004 		dev->busy = false;
2005 		spin_unlock_irqrestore(&dev->lock, flags);
2006 		return;
2007 	}
2008 	spin_unlock_irqrestore(&dev->lock, flags);
2009 
2010 	if (backlog)
2011 		backlog->complete(backlog, -EINPROGRESS);
2012 
2013 	dev->req = ablkcipher_request_cast(async_req);
2014 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2015 	reqctx   = ablkcipher_request_ctx(dev->req);
2016 
2017 	s5p_aes_crypt_start(dev, reqctx->mode);
2018 }
2019 
2020 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2021 			      struct ablkcipher_request *req)
2022 {
2023 	unsigned long flags;
2024 	int err;
2025 
2026 	spin_lock_irqsave(&dev->lock, flags);
2027 	err = ablkcipher_enqueue_request(&dev->queue, req);
2028 	if (dev->busy) {
2029 		spin_unlock_irqrestore(&dev->lock, flags);
2030 		goto exit;
2031 	}
2032 	dev->busy = true;
2033 
2034 	spin_unlock_irqrestore(&dev->lock, flags);
2035 
2036 	tasklet_schedule(&dev->tasklet);
2037 
2038 exit:
2039 	return err;
2040 }
2041 
2042 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2043 {
2044 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2045 	struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2046 	struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2047 	struct s5p_aes_dev *dev = ctx->dev;
2048 
2049 	if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
2050 		dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2051 		return -EINVAL;
2052 	}
2053 
2054 	reqctx->mode = mode;
2055 
2056 	return s5p_aes_handle_req(dev, req);
2057 }
2058 
2059 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2060 			  const uint8_t *key, unsigned int keylen)
2061 {
2062 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2063 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2064 
2065 	if (keylen != AES_KEYSIZE_128 &&
2066 	    keylen != AES_KEYSIZE_192 &&
2067 	    keylen != AES_KEYSIZE_256)
2068 		return -EINVAL;
2069 
2070 	memcpy(ctx->aes_key, key, keylen);
2071 	ctx->keylen = keylen;
2072 
2073 	return 0;
2074 }
2075 
2076 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2077 {
2078 	return s5p_aes_crypt(req, 0);
2079 }
2080 
2081 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2082 {
2083 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2084 }
2085 
2086 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2087 {
2088 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2089 }
2090 
2091 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2092 {
2093 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2094 }
2095 
2096 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2097 {
2098 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2099 
2100 	ctx->dev = s5p_dev;
2101 	tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2102 
2103 	return 0;
2104 }
2105 
2106 static struct crypto_alg algs[] = {
2107 	{
2108 		.cra_name		= "ecb(aes)",
2109 		.cra_driver_name	= "ecb-aes-s5p",
2110 		.cra_priority		= 100,
2111 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2112 					  CRYPTO_ALG_ASYNC |
2113 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2114 		.cra_blocksize		= AES_BLOCK_SIZE,
2115 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2116 		.cra_alignmask		= 0x0f,
2117 		.cra_type		= &crypto_ablkcipher_type,
2118 		.cra_module		= THIS_MODULE,
2119 		.cra_init		= s5p_aes_cra_init,
2120 		.cra_u.ablkcipher = {
2121 			.min_keysize	= AES_MIN_KEY_SIZE,
2122 			.max_keysize	= AES_MAX_KEY_SIZE,
2123 			.setkey		= s5p_aes_setkey,
2124 			.encrypt	= s5p_aes_ecb_encrypt,
2125 			.decrypt	= s5p_aes_ecb_decrypt,
2126 		}
2127 	},
2128 	{
2129 		.cra_name		= "cbc(aes)",
2130 		.cra_driver_name	= "cbc-aes-s5p",
2131 		.cra_priority		= 100,
2132 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2133 					  CRYPTO_ALG_ASYNC |
2134 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2135 		.cra_blocksize		= AES_BLOCK_SIZE,
2136 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2137 		.cra_alignmask		= 0x0f,
2138 		.cra_type		= &crypto_ablkcipher_type,
2139 		.cra_module		= THIS_MODULE,
2140 		.cra_init		= s5p_aes_cra_init,
2141 		.cra_u.ablkcipher = {
2142 			.min_keysize	= AES_MIN_KEY_SIZE,
2143 			.max_keysize	= AES_MAX_KEY_SIZE,
2144 			.ivsize		= AES_BLOCK_SIZE,
2145 			.setkey		= s5p_aes_setkey,
2146 			.encrypt	= s5p_aes_cbc_encrypt,
2147 			.decrypt	= s5p_aes_cbc_decrypt,
2148 		}
2149 	},
2150 };
2151 
2152 static int s5p_aes_probe(struct platform_device *pdev)
2153 {
2154 	struct device *dev = &pdev->dev;
2155 	int i, j, err = -ENODEV;
2156 	struct samsung_aes_variant *variant;
2157 	struct s5p_aes_dev *pdata;
2158 	struct resource *res;
2159 	unsigned int hash_i;
2160 
2161 	if (s5p_dev)
2162 		return -EEXIST;
2163 
2164 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2165 	if (!pdata)
2166 		return -ENOMEM;
2167 
2168 	variant = find_s5p_sss_version(pdev);
2169 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2170 
2171 	/*
2172 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2173 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2174 	 * is enabled in config. We need larger size for HASH registers in
2175 	 * secss, current describe only AES/DES
2176 	 */
2177 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2178 		if (variant == &exynos_aes_data) {
2179 			res->end += 0x300;
2180 			pdata->use_hash = true;
2181 		}
2182 	}
2183 
2184 	pdata->res = res;
2185 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2186 	if (IS_ERR(pdata->ioaddr)) {
2187 		if (!pdata->use_hash)
2188 			return PTR_ERR(pdata->ioaddr);
2189 		/* try AES without HASH */
2190 		res->end -= 0x300;
2191 		pdata->use_hash = false;
2192 		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2193 		if (IS_ERR(pdata->ioaddr))
2194 			return PTR_ERR(pdata->ioaddr);
2195 	}
2196 
2197 	pdata->clk = devm_clk_get(dev, "secss");
2198 	if (IS_ERR(pdata->clk)) {
2199 		dev_err(dev, "failed to find secss clock source\n");
2200 		return -ENOENT;
2201 	}
2202 
2203 	err = clk_prepare_enable(pdata->clk);
2204 	if (err < 0) {
2205 		dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2206 		return err;
2207 	}
2208 
2209 	spin_lock_init(&pdata->lock);
2210 	spin_lock_init(&pdata->hash_lock);
2211 
2212 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2213 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2214 
2215 	pdata->irq_fc = platform_get_irq(pdev, 0);
2216 	if (pdata->irq_fc < 0) {
2217 		err = pdata->irq_fc;
2218 		dev_warn(dev, "feed control interrupt is not available.\n");
2219 		goto err_irq;
2220 	}
2221 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2222 					s5p_aes_interrupt, IRQF_ONESHOT,
2223 					pdev->name, pdev);
2224 	if (err < 0) {
2225 		dev_warn(dev, "feed control interrupt is not available.\n");
2226 		goto err_irq;
2227 	}
2228 
2229 	pdata->busy = false;
2230 	pdata->dev = dev;
2231 	platform_set_drvdata(pdev, pdata);
2232 	s5p_dev = pdata;
2233 
2234 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2235 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2236 
2237 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2238 		err = crypto_register_alg(&algs[i]);
2239 		if (err)
2240 			goto err_algs;
2241 	}
2242 
2243 	if (pdata->use_hash) {
2244 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2245 			     (unsigned long)pdata);
2246 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2247 
2248 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2249 		     hash_i++) {
2250 			struct ahash_alg *alg;
2251 
2252 			alg = &algs_sha1_md5_sha256[hash_i];
2253 			err = crypto_register_ahash(alg);
2254 			if (err) {
2255 				dev_err(dev, "can't register '%s': %d\n",
2256 					alg->halg.base.cra_driver_name, err);
2257 				goto err_hash;
2258 			}
2259 		}
2260 	}
2261 
2262 	dev_info(dev, "s5p-sss driver registered\n");
2263 
2264 	return 0;
2265 
2266 err_hash:
2267 	for (j = hash_i - 1; j >= 0; j--)
2268 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2269 
2270 	tasklet_kill(&pdata->hash_tasklet);
2271 	res->end -= 0x300;
2272 
2273 err_algs:
2274 	if (i < ARRAY_SIZE(algs))
2275 		dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2276 			err);
2277 
2278 	for (j = 0; j < i; j++)
2279 		crypto_unregister_alg(&algs[j]);
2280 
2281 	tasklet_kill(&pdata->tasklet);
2282 
2283 err_irq:
2284 	clk_disable_unprepare(pdata->clk);
2285 
2286 	s5p_dev = NULL;
2287 
2288 	return err;
2289 }
2290 
2291 static int s5p_aes_remove(struct platform_device *pdev)
2292 {
2293 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2294 	int i;
2295 
2296 	if (!pdata)
2297 		return -ENODEV;
2298 
2299 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2300 		crypto_unregister_alg(&algs[i]);
2301 
2302 	tasklet_kill(&pdata->tasklet);
2303 	if (pdata->use_hash) {
2304 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2305 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2306 
2307 		pdata->res->end -= 0x300;
2308 		tasklet_kill(&pdata->hash_tasklet);
2309 		pdata->use_hash = false;
2310 	}
2311 
2312 	clk_disable_unprepare(pdata->clk);
2313 	s5p_dev = NULL;
2314 
2315 	return 0;
2316 }
2317 
2318 static struct platform_driver s5p_aes_crypto = {
2319 	.probe	= s5p_aes_probe,
2320 	.remove	= s5p_aes_remove,
2321 	.driver	= {
2322 		.name	= "s5p-secss",
2323 		.of_match_table = s5p_sss_dt_match,
2324 	},
2325 };
2326 
2327 module_platform_driver(s5p_aes_crypto);
2328 
2329 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2330 MODULE_LICENSE("GPL v2");
2331 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2332 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2333